数值分析Runge-Kutta方法综述
- 格式:ppt
- 大小:3.67 MB
- 文档页数:24
龙格-库塔⽅法(Runge-Kutta)龙格-库塔⽅法(Runge-Kutta)3.2 Runge-Kutta法3.2.1 显式Runge-Kutta法的⼀般形式上节已给出与初值问题(1.2.1)等价的积分形式(3.2.1)只要对右端积分⽤不同的数值求积公式近似就可得到不同的求解初值问题(1.2.1)的数值⽅法,若⽤显式单步法(3.2.2)当,即数值求积⽤左矩形公式,它就是Euler法(3.1.2),⽅法只有⼀阶精度,若取(3.2.3)就是改进Euler法,这时数值求积公式是梯形公式的⼀种近似,计算时要⽤⼆个右端函数f的值,但⽅法是⼆阶精度的.若要得到更⾼阶的公式,则求积分时必须⽤更多的f值,根据数值积分公式,可将(3.2.1)右端积分表⽰为注意,右端f中还不能直接得到,需要像改进Euler法(3.1.11)⼀样,⽤前⾯已算得的f值表⽰为(3.2.3),⼀般情况可将(3.2.2)的表⽰为(3.2.4)其中这⾥均为待定常数,公式(3.2.2),(3.2.4)称为r级的显式Runge-Kutta法,简称R-K⽅法.它每步计算r个f值(即),⽽k由前⾯(i-1)个已算出的表⽰,故公式是显式的.例i如当r=2时,公式可表⽰为(3.2.5) 其中.改进Euler 法(3.1.11)就是⼀个⼆级显式R-K ⽅法.参数取不同的值,可得到不同公式.3.2.2 ⼆、三级显式R-K ⽅法对r=2的显式R-K ⽅法(3.2.5),要求选择参数,使公式的精度阶p 尽量⾼,由局部截断误差定义11122211()()[(,())(,)]n n n n n n n T y x y x h c f x y x c f x a h y b hk ++=--+++ (3.2.6) 令,对(3.2.6)式在处按Taylor 公式展开,由于将上述结果代⼊(3.2.6)得要使公式(3.2.5)具有的阶p=2,即,必须(3.2.7)即由此三式求的解不唯⼀.因r=2,由(3.2.5)式可知,于是有解(3.2.8)它表明使(3.2.5)具有⼆阶的⽅法很多,只要都可得到⼆阶精度R-K⽅法.若取,则,则得改进Euler法(3.1.11),若取,则得,此时(3.2.5)为(3.2.9)其中称为中点公式.改进的Euler法(3.1.11)及中点公式(3.2.9)是两个常⽤的⼆级R-K⽅法,注意⼆级R-K⽅法只能达到⼆阶,⽽不可能达到三阶.因为r=2只有4个参数,要达到p=3则在(3.2.6)的展开式中要增加3项,即增加三个⽅程,加上(3.2.7)的三个⽅程,共计六个⽅程求4个待定参数,验证得出是⽆解的.当然r=2,p=2的R-K⽅法(3.2.5)当取其他数时,也可得到其他公式,但系数较复杂,⼀般不再给出.对r=3的情形,要计算三个k值,即其中将按⼆元函数在处按Taylor公式展开,然后代⼊局部截断误差表达式,可得可得三阶⽅法,其系数共有8个,所应满⾜的⽅程为这是8个未知数6个⽅程的⽅程组,解也是不唯⼀的,通常.⼀种常见的三级三阶R-K⽅法是下⾯的三级Kutta⽅法:(3.2.11)附:R-K 的三级Kutta ⽅法程序如下function y = DELGKT3_kuta(f, h,a,b,y0,varvec) format long; N = (b-a)/h;y = zeros(N+1,1); y(1) = y0; x = a:h:b;var = findsym(f); for i=2:N+1K1 = Funval(f,varvec,[x(i-1) y(i-1)]);K2 = Funval(f,varvec,[x(i-1)+h/2 y(i-1)+K1*h/2]); K3 = Funval(f,varvec,[x(i-1)+h y(i-1)-h*K1+K2*2*h]);y(i) = y(i-1)+h*(K1+4*K2+K3)/6; %满⾜c1+c2+c3=1,(1/6 4/6 1/6)endformat short; 3.2.3 四阶R-K ⽅法及步长的⾃动选择利⽤⼆元函数Taylor 展开式可以确定(3.2.4)中r=4,p=4的R-K ⽅法,其迭代公式为111223344()n n y y h c k c k c k c k +=++++其中1(,)n n k f x y =,2221(,(,))n n n n k f x a h y b hf x y =++,⽽33311322(,)n n k f x a h y b hk b hk =+++ 44411422433(,)n n k f x a h y b hk b hk b hk =++++共计13个参数待定,Taylor 展开分析局部截断误差,使得精度达到四阶,即误差为5()O h 。
龙格库塔法解轨道参数引言龙格库塔法(Runge-Kutta method)是一种常用的数值计算方法,用于求解常微分方程的数值解。
在天体力学中,我们经常需要通过数值方法来计算天体的轨道参数,如轨道椭圆的长短轴、离心率、倾角等。
本文将介绍龙格库塔法在解轨道参数中的应用,并详细探讨该方法的原理和实现过程。
基本原理龙格库塔法是一种迭代求解的方法,在每个时间步长内利用当前的状态来估计下一个状态。
具体而言,龙格库塔法将微分方程的求解问题转化为一个迭代的求解问题,通过逐步迭代来逼近精确解。
在解轨道参数的问题中,我们通常需要根据已知的初始条件以及天体的质量和力学模型来求解天体的轨道参数。
常用的力学模型有开普勒模型和牛顿模型。
龙格库塔法可以根据力学模型的不同进行相应的求解。
开普勒模型下的轨道参数求解步骤一:确定初始条件在使用龙格库塔法求解轨道参数之前,我们需要确定一些初始条件。
这些初始条件包括天体的质量、位置和速度。
步骤二:选择时间步长在求解过程中,我们需要选择一个合适的时间步长。
时间步长越小,计算的精度会越高,但计算的时间会增加。
步骤三:迭代求解利用龙格库塔法进行迭代求解的具体步骤如下:1.根据当前时刻的位置和速度,计算天体在该时刻的加速度。
2.根据当前时刻的位置、速度和加速度,计算下一个时刻的位置和速度。
3.更新当前时刻的位置和速度为新的位置和速度。
4.重复上述步骤,直到达到指定的终止条件。
步骤四:计算轨道参数通过迭代求解,我们可以得到天体在不同时刻的位置和速度。
根据这些位置和速度,我们可以计算出轨道参数,如离心率、倾角、长短轴等。
常用的轨道参数计算公式如下:1.离心率:e=√1+2El2μ(GM⊕)2)2.倾角:i=arccos(ℎzℎ3.长轴:a=−μT22E4.短轴:b=a√1−e2其中,E表示能量,l表示轨道角动量,μ表示标准引力参数,G表示引力常数,M⊕表示地球的质量,ℎ和ℎz分别表示轨道角动量和轨道角动量在z轴上的分量。
Runge —Kutta 法求解布拉修斯解摘要薄剪切层方程主要有三种解法,即相似解,非相似条件下对偏微分方程组的数值解和近似解。
布拉修斯解是布拉修斯于1908年求出的,它是零攻角沿平板流动的相似解。
本文用四阶Runge —Kutta 法求解高阶微分方程的方法,并用matlab 编程实现,求得了与实际层流边界层相符合的数值解。
关键词:布拉修斯解,相似解,Runge —Kutta 法,数值解。
1 布拉修斯近似解方程二维定常不可压缩层流边界层的方程为:0=∂∂+∂∂yvx u (1)22yuv dx d y u v x u u u u e e ∂∂+=∂∂+∂∂ (2)边界条件为:0=y )(,0x v u vw==:δ=y )(x u u e =将式(1)和式(2)进行法沃克纳—斯坎变换(简称F —S 变换),将边界层方程无量纲化,即设y x v u e 5.0⎪⎪⎭⎫⎝⎛=η (3)x x = (4)得出F —S 变换后的动量方程()[]()[]⎪⎭⎫ ⎝⎛∂∂''-∂'∂'='-+''++'''+x f f xf f x f m f f m f t k221211 (5)其中k 为流动类型指标,横曲率项t 为212120cos 211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++-=ηφe u vx L r L t (6) m 是量纲一的压力梯度参数,定义为xd du u x m ee =(7)其边界条件变为:0=η 0='f:∞=η 1='f对于二维平面实壁流动(:0=η0=w f )可以忽略横曲率项t 的轴对称流动,式(5)成为()[]⎪⎭⎫ ⎝⎛∂∂''-∂'∂'='-+''++'''x f f xf f x f m f f m f 2121 (8) 根据相似解的定义,方程(8)中的函数f 若式相似的,则它应只与η有关而与x 无关,即对x 的偏导数应为零。
matlab经典的4级4阶runge kutta法-回复使用MATLAB 实现经典的4 阶4 级Runge-Kutta 法引言:数值计算是现代科学和工程中的一个重要领域,它涉及到通过计算机模拟来解决数学问题。
在数值计算中,求解微分方程是一个常见的任务。
Runge-Kutta 法是求解微分方程的一种常见方法,它可以用于数值求解常微分方程和偏微分方程。
本文将介绍经典的4 级4 阶Runge-Kutta 法的原理,并使用MATLAB 来实现该方法。
一、原理介绍:Runge-Kutta 法是数值计算领域中最常用的方法之一。
它通过将微分方程的解逐步逼近来求解微分方程。
经典的4 级4 阶Runge-Kutta 法基于以下公式:\begin{align*}k_1 &= h f(t_n, y_n) \\k_2 &= h f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) \\k_3 &= h f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) \\k_4 &= h f(t_n + h, y_n + k_3) \\y_{n+1} &= y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)\end{align*}其中,h 是步长,t_n 是当前时间点,y_n 是当前的解,f(t, y) 是微分方程的右手函数。
二、算法实现:现在我们将使用MATLAB 实现经典的4 级4 阶Runge-Kutta 法,并解决一个简单的一阶常微分方程。
首先,我们定义一个MATLAB 函数,用于实现4 级4 阶Runge-Kutta 法。
函数接受输入参数为微分方程的右手函数f(t, y),初始时间t_0,初始解y_0,以及步长h。
函数输出为一个数组,包含了每个时间点的解。
以下是MATLAB 代码实现:matlabfunction y = runge_kutta(f, t0, y0, h, num_steps)初始化解数组y = zeros(num_steps+1, 1);y(1) = y0;循环计算每个时间点的解for i = 1:num_stepst = t0 + (i-1)*h;计算k1, k2, k3, 和k4k1 = h * f(t, y(i));k2 = h * f(t + h/2, y(i) + k1/2);k3 = h * f(t + h/2, y(i) + k2/2);k4 = h * f(t + h, y(i) + k3);计算下一个时间点的解y(i+1) = y(i) + (k1 + 2*k2 + 2*k3 + k4)/6;endend接下来,我们使用这个函数来解决一个简单的一阶常微分方程。
4阶Runge-Kutta方法是一种数值求解常微分方程的方法,它通过迭代的方式逐步逼近微分方程的解。
本文将从原理、推导以及应用等方面对4阶Runge-Kutta方法进行详细解读。
1. 原理4阶Runge-Kutta方法是数值分析中常用的数值解常微分方程的方法之一。
它的核心思想是利用哈密顿显式中点法求解微分方程。
该方法通过将微分方程的解离散化,然后通过计算每一步的斜率来逐步逼近方程的解,最终得到数值解。
2. 推导假设我们要求解如下的一阶常微分方程初值问题:$\frac{dy}{dx} = f(x, y)$$y(x_0) = y_0$其中$f(x, y)$是关于$x$和$y$的函数,$y_0$是初值,$x_0$是初始点。
现在我们希望通过4阶Runge-Kutta方法来求解上述方程。
我们将自变量$x$进行离散化,即将其分成$n$个小区间,每个小区间长度为$h$,即$x_i = x_0 + ih$,$i=0,1,2,...,n$。
然后我们利用下面的迭代公式来计算每一步的$y$的近似值:$k_1 = h f(x_i, y_i)$$k_2 = h f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$k_3 = h f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$k_4 = h f(x_i + h, y_i + k_3)$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$式中,$k_1$、$k_2$、$k_3$、$k_4$分别表示斜率的四个近似值,$y_{i+1}$表示下一个点的近似值。
3. 应用4阶Runge-Kutta方法在实际工程问题中有着广泛的应用。
它不仅可以用来解决一阶常微分方程,还可以推广到高阶微分方程、常微分方程组以及偏微分方程等更复杂的问题。
由于该方法的高精度和稳定性,它也被广泛应用于科学计算领域,例如物理学、工程学、生物学和经济学等各个领域。