第十四章 傅里叶级数
- 格式:doc
- 大小:300.00 KB
- 文档页数:5
傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。
一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。
2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。
(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。
(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。
二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。
对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。
2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。
(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。
(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。
3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。
三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。
2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。
傅里叶级数的定义及应用傅里叶级数是一种将周期函数表示为三角函数和正弦函数之和的数学工具。
它在信号处理、图像处理和电子通信等领域中有着广泛的应用。
本文将介绍傅里叶级数的定义及其在实际中的应用。
第一部分:傅里叶级数的定义傅里叶级数是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
它将周期函数表示为无穷级数的形式,其中每一项为三角函数或正弦函数的乘积。
一个周期为T的函数f(t)可以表示为以下无穷级数的形式:f(t) = a₀ + Σ(aₙcos(nω₀t) + bₙsin(nω₀t))在公式中,a₀是常数项,aₙ和bₙ是系数,n是正整数,ω₀是基波角频率。
根据傅里叶级数的定义,周期函数f(t)可以通过确定其系数来表示。
系数的计算可以通过将函数f(t)与三角函数进行内积运算来实现。
这种数学上的运算使得我们能够将任意周期函数表示为一系列简单的三角函数的和,从而更好地理解和分析函数的特性。
第二部分:傅里叶级数在信号处理中的应用傅里叶级数在信号处理中有着广泛的应用。
信号处理是指对信号进行分析、合成、编码和解码的过程,傅里叶级数为信号处理提供了有效的工具。
首先,傅里叶级数可以将时域信号转换为频域信号。
通过对信号进行傅里叶级数分解,我们可以将信号的频谱表示出来,了解信号在不同频率下的成分情况。
这对于音频信号的合成、滤波、去噪等处理非常有用。
其次,傅里叶级数在通信系统中起着重要的作用。
在数字通信中,信号需要经过调制、解调等处理。
傅里叶级数可以帮助我们理解信道传输中的信号畸变情况,从而对传输信号进行补偿和恢复。
此外,傅里叶级数还广泛应用于图像处理领域。
图像可以看作是由像素点组成的二维数组,每个像素点的灰度值可以用一个周期为1的函数表示。
通过对图像进行傅里叶级数分析,我们可以提取图像中的频域特征,如边缘、纹理等。
这对于图像压缩、增强和恢复等处理具有重要意义。
第三部分:傅里叶级数在其他领域的应用除了信号处理领域,傅里叶级数还在许多其他领域有着广泛的应用。
傅里叶级数定理傅里叶级数定理是数学中的一项重要定理,它是法国数学家傅里叶在18世纪提出的。
傅里叶级数定理的中心思想是任意一个周期函数都可以表示成一系列三角函数的和,这些三角函数的频率是原周期函数的基本频率的整数倍。
这个定理在数学、物理和工程等学科中都有非常广泛的应用。
傅里叶级数定理的表述可以用以下方式来说明:设f(x)是一个周期为T的函数,那么f(x)可以展开成各个频率的三角函数幅度和相位逐渐递减的级数表达式。
这个级数中的三角函数是正弦函数和余弦函数,其频率为基频的整数倍。
傅里叶级数表达式如下:f(x) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]在这个公式中,A0是基频分量的直流分量,An和Bn分别是基频分量的余弦和正弦分量。
ω是基频角频率,n是频率的整数倍。
这个定理是非常重要的,因为它告诉我们任意周期函数都可以用无穷多个正弦和余弦函数来逼近。
这个逼近的程度可以通过级数中各个分量的幅度来控制。
如果级数中的幅度越大,那么逼近的程度就越高,而如果幅度趋近于零,那么函数的表示也就趋近于原函数。
傅里叶级数定理的应用非常广泛。
在数学领域,它可以用于解决各种泛函方程,比如热传导方程、波动方程和拉普拉斯方程等。
通过傅里叶级数的展开,我们可以将这些复杂的方程转化为简单的三角函数的运算。
在物理学中,傅里叶级数定理是研究振动和波动现象的重要工具。
通过将物理量表示为傅里叶级数,我们可以更好地理解光、声音等波动的性质。
在工程学中,傅里叶级数定理被广泛应用于信号处理和通信系统。
通过将信号进行频域变换,我们可以分析信号的频率成分,进而提取有用的信息。
傅里叶级数定理还有一项重要的推广,即傅里叶变换。
傅里叶变换是将一个非周期函数表示成一系列连续频谱的方法。
通过傅里叶变换,我们可以将信号从时域转换到频域,进而分析信号的频率特性。
傅里叶变换在数字信号处理、图像处理和音频处理等领域有着广泛的应用。
总结起来,傅里叶级数定理是数学中的一个重要定理,它告诉我们任意周期函数都可以表示成一系列三角函数的和。
第十四章 傅里叶级数
§1 三角级数与傅里叶级数
1.证明
(1) sin x ,sin 2x , , sin nx , 是[0,]π上的正交系; (2) sin x ,sin 3x , , ()sin 21n x +, 是[0,
]2
π
上的正交系;
(3) 1,cos x ,cos 2x , ,cos nx , 是[0,]π上的正交系; (4) 1,sin x ,sin 2x , , sin nx , 不是[0,]π上的正交系; 2.求下列周期为2π的函数的傅里叶级数:
(1) 三角多项式()()0
cos sin n
n i
i i P x a
ix b ix ==
+∑;
(2) ()()3
f x x x ππ=-<<; (3) ()cos
2
x f x =;
(4) ()() ax
f x e x ππ=-<<; (5) ()()sin f x x x ππ=-<<; (6) ()()cos f x x x x ππ=-<<; (7) (), 00, 0x x f x x ππ
-<<⎧=⎨
≤<⎩;
(8) ()()2
2
f x x x πππ=--<<; (9) ()sgn cos f x x =; (10) ()() 022
x
f x x ππ-=
<<.
3.设()f x 以2π为周期,在[,]ππ-绝对可积,证明: (1) 如果函数()f x 在[,]ππ-满足()()f x f x π+=,则
21210, 1,2,m m a b m --=== ;
(2) 如果函数()f x 在[,]ππ-满足()()f x f x π+=-,则
220, 1,2,m m a b m === .
§2 傅里叶级数的收敛性
1.将下列函数展成傅里叶级数,并讨论收敛性: (1) ()sin [,]f x x x x ππ=∈-;
(2) ()2, [0,]
1, [,0)x x f x x ππ⎧∈=⎨∈-⎩
;
2.由展开式
()1
1sin 2(1)
n n nx x x n
ππ∞
+==--<<∑,
(1) 用逐项积分法求2
x ,3
x ,4
x 在(,)ππ-中的傅里叶展开式;
(2) 求级数()
1
4
1
1n n n
+∞
=-∑
,4
1
1n n
∞
=∑
的和.
3. (1) 在 (,)ππ-内,求()x
f x e =的傅里叶展开式;
(2) 求级数2
11
1n n
∞
=+∑
的和.
4.设()f x 在[,]ππ-上逐段可微,且()()f f ππ-=. n a ,n b 为()f x 的傅里叶系数,
'n a ,'n b 是()f x 的导函数'()f x 的傅里叶系数,证明:
0'0a =,'n n a nb =,'n n b na =- ( n 1,2,=
.
5.证明:若三角级数
()01
cos sin 2
n
n n a a
nx b nx ∞
=+
+∑
中的系数n a ,n b 满足关系
{
}33
max ,n n
n a n b M
≤,
M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.
6.设()()01
cos sin 2
n
n k
k k a T x a
kx b kx ==
+
+∑,求证:
()()1sin 122sin
2
n n
n t T x T x t dt t ππ
π-⎛
⎫+
⎪⎝
⎭
=+⎰.
7.设()f x 以2π为周期,在(0,2)π上单调递减,且有界,求证:()0 0n b n ≥>. 8.设()f x 以2π为周期,在(0,2)π上导数'()f x 单调上升有界. 求证:()0 0n a n ≥>.
9.证明:若()f x 在0x 点满足α阶的利普希茨条件,则()f x 在0x 点连续. 给出一个表明这论断的逆命题不成立的例子.
10.设()f x 是以2π为周期的函数,在[,]ππ-绝对可积,又设()n S x 是()f x 的傅里叶级数的前n 项部分和
()()01
cos sin 2
n
n k
k k a S x a
kx b kx ==
+
+∑,
则 ()()()
()20
224
22
n n f
x t f x t S x D t dt π
π
++-=⎰
,
其中()n D t 是狄利克雷核.
11.设()f x 是以2π为周期,在(),-∞∞连续,它的傅里叶级数在0x 点收敛. 求证:
()()()00 n S x f x n →→+∞.
12.设()f x 是以2π为周期、连续,其傅里叶系数全为0,则()0f x ≡. 13.设()f x 是以2π为周期,在[,]ππ-绝对可积. 又设0(,)x ππ∈-满足
()()
000
lim 2
t f
x t f x t L +
→++-=
存在. 证明()0lim n n x L σ→∞
=. 进一步,若()f x 在0x 点连续,则()()00lim n n x f x σ→∞
=,其中
()()0
1
1
n
n k
k x S x n σ==
+∑.
§3 任意区间上的傅里叶级数
1.将下列函数在指定区间上展开为傅里叶级数,并讨论其收敛性: (1) 在区间()0,2l 展开
, 0,
()0, 2;A x l f x l x l <<⎧=⎨
≤<⎩
(2) ()cos , ,
22f x x x ππ⎛
⎫
=-
⎪⎝
⎭
;
(3) ()(), 0,f x x l =;
(4) , 01,()1, 12,3, 2 3.x x f x x x x ≤≤⎧⎪
=<<⎨⎪-≤≤⎩
2.求下列周期函数的傅里叶级数: (1) ()cos f x x =; (2) []()f x x x =-.
3.把下列函数在指定区间上展开为余弦级数: (1) ()sin , 0f x x x π=≤≤;
(2) 1, 02,
()3, 2 4.x x f x x x -<≤⎧=⎨-<<⎩
4.把下列函数在指定区间上展开为正弦级数: (1) ()cos
, 02
x f x x π=≤≤
(2) 2
(), 02f x x x =≤≤.
5.把函数()2
()1f x x =-在()0,1上展开成余弦级数,并推出
2
22116123π
⎛⎫
=+++ ⎪⎝⎭
.
6.将函数()f x 分别作奇延拓和偶延拓后,求函数的傅里叶级数,其中
1, 0,21
(), ,2
20, .2x f x x x ππππ⎧
<<⎪⎪
⎪==⎨⎪⎪<≤⎪⎩
7.应当如何把给定在区间0,
2π⎛
⎫
⎪⎝
⎭
的可积函数延拓到区间(),ππ-内,
使得它在()
,ππ-中对应的傅里叶级数为:
(1) ()()21
1cos 21n n f x a
n x ∞
-=-∑
;
(2) ()()21
1
sin 21n n f x b
n x ∞
-=-∑ .
§4 傅里叶级数的平均收敛性
1.若()f x ,()g x 以2π为周期,在[,]ππ-平方可积,
()01()cos sin 2
n
n n a f x a
nx b nx ∞
=+
+∑ ,
()0
1
()cos sin 2
n
n n g x nx nx αα
β∞
=+
+∑
,
则
()001
1
()()2
n
n
n n n a f x g x dx a b π
π
αα
βπ
∞
-
==
+
+∑⎰.
2.设()f x 在[0,]l 上平方可积,求证:
2
220
1
21()2
l n
n f x dx a a
l
∞
==
+
∑⎰
,
其中
2()cos
l n n x a f x dx l
l
π=
⎰
.。