BrittonChance生物医学光子学
- 格式:pdf
- 大小:1.49 MB
- 文档页数:34
生物医学光子学技术研究进展随着现代医学的快速发展,生物医学光子学技术正在成为医学领域的一个热点话题。
这种技术利用光子学原理进行研究和治疗,已经在激光治疗、光学成像等领域发挥了重大作用。
本文将从生物医学光子学技术的发展历程、应用范围、研究方向等方面进行深入探讨。
一、生物医学光子学技术的发展历程在大约100年前,医学界开始使用光学作为一种工具来探究人体内部结构和功能。
直到20世纪60年代,激光出现,这种技术才真正开始应用于医疗领域。
随着激光技术的不断发展,生物医学光子学技术也在不断地发展和创新。
20世纪70年代,光纤技术的发明和应用使激光技术在生物医学领域的应用更加广泛。
1983年,南非科学家K.C.Chu首次将激光用于治疗癌症。
此后,激光治疗迅速发展,成为了许多疾病的治疗方法之一。
21世纪初期,光学成像技术在医学领域的应用又取得了重大突破,这种技术利用光学信号来获得生物体内部的图像,能够不侵入地获得高质量的影像。
二、生物医学光子学技术的应用范围生物医学光子学技术主要应用在激光治疗、光学成像、生物传感、光遗传学等领域。
其中,激光治疗是目前生物医学光子学技术应用最广泛的领域之一。
激光治疗是利用激光能够聚焦和达到高能量密度的特性,破坏癌细胞或其他异常细胞的功能,从而达到治疗的目的。
光学成像是另一个比较重要的生物医学光子学技术应用领域。
这种技术利用光学信号来获得生物体内部的图像,提供了一种不侵入性的检测手段,特别是在心血管、神经等领域中应用广泛。
随着技术的发展,光学成像技术正在实现对活体细胞的实时测量,这将为生物医学研究提供更多可能性。
生物传感是利用生物体对光的响应,开发出一种高灵敏度、高分辨率的生物传感器的技术。
生物传感技术已经被广泛地应用于生命科学领域,例如癌症早期诊断、糖尿病检测、肾病筛查等领域。
最近,光遗传学也成为了生物医学光子学技术中的一个重要领域。
这种技术利用非天然光敏蛋白,通过光控制遗传信息的表达,实现基因分子水平的操控,从而为研究神经学、行为学、癌症研究等领域提供新的研究手段。
生物医学光子学运用光子学原理和技术,为医学、生物学和生物技术领域中的问题提供解决方案即构成生物医学光子学的研究内容。
生物医学光子学涉及对生物材料的成像、探测和操纵。
在生物学领域,主要研究分子水平的机理,监测分子结构与功能,在医学领域,主要研究生物组织结构与功能,能对生物体以非侵入的方式,实现宏观与微观尺度分子水平的疾病探测、诊断和治疗。
目前,生物医学光子学主要包含以下研究内容:一是生物系统中产生的光子及其反映的生命过程,以及这种光子在生物学研究、医学诊断、农业、环境、甚至食品品质检查方面的重要应用。
利用光子及其技术对生物系统进行的检测、治疗、加工和改造等也是一项重要的任务。
二是医学光子学基础和技术,包括组织光学、医学光谱技术、医学成像术、新颖的激光诊断和激光医疗机理极其作用机理的研究。
这里我主要介绍的是生物医学光子学在医学上的应用。
1.生物医学光子学的发展与战略地位生物医学光子学的内涵生物学或生命科学是光子学的一个重要应用领域。
生物学研究与医学研究、诊断和治疗涉及到的光学及其相关的应用技术,包括其中最基础性的光物理问题,均可列为生物医学光子学的研究对象。
一般认为,光学领域未来发展的重点是将各种复杂的光学系统和技术更加广泛地应用于保健和医疗。
当今世界中,与光学有关的技术冲击着人类健康领域,正在改变着药物疗法和常规手术的实施手段,并为医疗诊断提供了新方法,为生物学研究提供了新的手段,还开辟了在细胞内进行高度定位的光化学疗法。
越来越多的事实说明人们对采用生物医学光子学技术解决长期困扰人类的疑难顽疾如心血管疾病和癌症所起的作用寄予很大希望,其中的重大突破将起到类似X射线和CT技术在人类文明进步史上的重要推动作用,在知识经济崛起的时代还可能产生和带动一批高新技术产2.生物医学光子学有关医学的的主要内容(1)生物物组织中的传输理论;当前组织光学统一的理论架构体系尚未建立,生物组织的光学理论远未成熟。
需要有更精细和准确的理论来替代现有过于简化的模型,也就是要用更复杂的理论来描述生物组织的光学性质以及光在其中的传播行为。
生物医学光子学的科学和技术生物医学光子学是一个新兴的交叉学科领域,它将光子学和医学相结合,利用光的特性研究生物组织的结构和功能,开发新型的光学技术和设备,为医学健康事业做出贡献。
生物医学光子学领域涵盖的范围很广,包括生物成像、光学治疗、光学诊断、光学生物传感、激光组织切割等多个方面。
本文就对生物医学光子学的科学和技术展开探讨。
生物成像是生物医学光子学领域的核心技术之一,它可以非常精准地观察生物组织的结构和功能。
近年来,一种叫做光学相干层析成像(OCT)的新型光学成像技术受到广泛关注。
OCT利用光的内插模定理,对生物组织进行高分辨率的非接触式成像。
与传统的医学成像技术相比,OCT成像无需使用任何放射性物质,对人体无害,成像结果非常清晰,可用于眼科、皮肤科、外科等多个医学领域的临床应用。
光学治疗是生物医学光子学领域的另一个热门技术,利用光的作用,对生物组织进行治疗。
激光治疗是光学治疗的一种,它目前已经应用于多个医学领域,如眼科、口腔科、皮肤科等。
激光经常被用于疾病的外科手术和治疗,像肿瘤切除、黄斑变性等疾病的治疗都已经通过激光治疗得到解决。
而光动力疗法(PDT)则利用光的能量来刺激药物的分子,并使其释放出有治疗作用的反应物质,有效地治疗了一些肿瘤和其他疾病。
光学诊断是科学家们近期研究的领域。
在生物医学光子学领域,非常重要的一个方面就是光学诊断。
光学诊断是指使用光学技术对疾病进行筛查、诊断和监测。
通过灵敏的光学传感器和数据分析系统,医生可以快速准确地确定疾病的类型和程度。
日前,科学家们利用数字组合与散射技术进行光学诊断。
新技术通过利用散射出的光子在组织内传播的特定路径,对人体内部的细胞、生物分子和化学物质进行测量和分析,具有较高的敏感性和特异性。
光学生物传感是一个新兴的领域,它可以应用光学技术来检测特定的生物分子的存在和浓度。
生物传感器是光学生物传感的关键部分,可以实现对特定分子的高灵敏检测。
光学生物传感器有以下几个特点:首先,具有高选择性和灵敏度,能够非常精确地检测到特定分子的浓度;其次,具有实时反馈性,能够快速响应影响疾病的变化;最后,是无损、实时、高效和可重复性好的特点。
生物医学光子学概况Biomedical Photonics朱1主要内容• • • • • 生物医学光子学学科简介 相关研究机构 主要学术组织 相关学术期刊 国际前沿动态2光子学• 研究作为信息和能量载体的光子行 为及其应用的科学。
– 理论方面:主要研究光子的量子特性及其 在与物质(包括与分子、原子、电子以及光 子)的相互作用中出现的各类效应及其规律 – 应用方面:研究光子的产生、传输、控制 以及探测等3光与生命• 光是万物之灵,地球上如果没有 光也就没有生命。
• 光在生命科学中的应用,经历了 一个漫长的发展阶段。
• 激光与光子技术的介入,推动了 生命科学的发展,使生命科学进 入一个迅速发展的新时期。
4生物医学光子学• 生物医光学子学是光子学技术和生命 科学相互交叉与渗透,而形成的一门 新的边缘学科。
Biomedical Photonics Biomedical Optics Biophotonics5生物医学光子学的研究内容• 光子学原理与技术在生物健康领域中 的应用即构成生物医学光子学的研究 内容。
• 它涉及对生物体的成像、探测和操 纵。
6生物医学光子学研究内容• 在生物学领域:主要探测分子的机 理、功能和结构; • 在医学领域:检测组织与血液参数探 索组织结构与功能的变化; • 进而实现微观(微纳尺度)与宏观 (大尺度)和水平的疾病无损探测、 诊断和治疗。
7研究领域• 生物光子学 • 医学光子学8生物光子学• 研究生物系统的光子辐射以及这些光 子携带的有关生物系统的结构与功能 信息 • 研究利用光子及其技术对生物系统进 行的检测、治疗、加工和改造等9生物光子学• 微观层次:显微光学成像技术与现代 分子生物学、细胞生物学和系统生物 学的基本手段相结合,从离体和在体 水平上,深入研究生物分子间相互作 用的本质,揭示生命现象的基本规 律,进一步探索疾病发生的分子机 制,为疾病诊断、治疗和药物设计与 筛选寻找新的思路。
pH敏感的荧光探针及在活细胞中的应用陈瑞希;周宏福;刘秀丽;曾绍群【摘要】细胞内的pH是细胞内多种酶活性和生理活动的重要调节因素,准确、动态的监测细胞内pH变化对研究细胞内的活动至关重要.一些荧光小分子可以感应pH的变化,同时具有较高的灵敏度和特异性,对细胞损伤较小且标记操作简单,已逐渐发展成为一种监测细胞内pH变化的有效方法.本文主要介绍目前常用pH敏感的荧光探针及其在活细胞研究中的进展.%Changes of intracellular pH have been shown to be critical determinants of many enzymes and physiology activities.Therefore it is critical to monitor accurately the dynamic intracellular pH for the intracellular activity research.Some small molecular fluorescent probes have become an effective tool to monitor the intracellular pH with high sensitivity,high selectivity,simple operation and being non-detrimental.This review highlights the recent advances of pH-sensitive fluorescent probes and their applications in living cell imaging.【期刊名称】《激光生物学报》【年(卷),期】2016(025)006【总页数】10页(P491-500)【关键词】pH敏感;荧光探针;小分子;活细胞【作者】陈瑞希;周宏福;刘秀丽;曾绍群【作者单位】华中科技大学-武汉光电国家实验室,Britton Chance生物医学光子学研究中心,湖北武汉430074;华中科技大学,生物医学工程系,生物医学光子学教育部重点实验室,湖北武汉430074;华中科技大学-武汉光电国家实验室,Britton Chance生物医学光子学研究中心,湖北武汉430074;华中科技大学,生物医学工程系,生物医学光子学教育部重点实验室,湖北武汉430074;华中科技大学-武汉光电国家实验室,Britton Chance生物医学光子学研究中心,湖北武汉430074;华中科技大学,生物医学工程系,生物医学光子学教育部重点实验室,湖北武汉430074;华中科技大学-武汉光电国家实验室,Britton Chance生物医学光子学研究中心,湖北武汉430074;华中科技大学,生物医学工程系,生物医学光子学教育部重点实验室,湖北武汉430074【正文语种】中文【中图分类】Q334细胞内pH值对维持细胞正常的活动,如细胞的增殖,凋亡[1],自我吞噬[2],离子运输[3],内环境平衡[4]和酶的活性[5]至关重要。
生物医学光子学的理论和实践随着科技的不断发展和进步,各个领域都得到了快速的发展,人类对于生命和健康的研究也越来越深入。
其中,光子学作为一种前沿科技,已经在生物医学领域产生了广泛的应用。
本文将对生物医学光子学的理论和实践进行探讨。
一、光子学的基础理论光子学是光学研究中的一个领域,它主要研究光的产生、传播、操控和应用等方面。
在生物医学领域,光子学的应用主要是基于光的特性来进行医学研究,其中涉及到很多基础理论。
光子学的基础理论主要包括:量子光学、光学相干性、光谱学、光电子学、非线性光学和弱光测量等方面。
这些理论充分说明了光子学在生物医学中的应用过程,比如说在光子学成像、光学治疗、生物光子学及光谱学等方面的应用。
二、生物医学光子学的应用生物医学光子学的应用非常广泛,以下将详细介绍其主要应用领域。
1、生物光子学生物光子学指的是应用光子学原理来研究生物体内发生的光学过程和现象。
在这个领域里,光的特性、传播规律和光学成像的方法被广泛应用。
其中,光学成像主要通过激光扫描显微镜、多光子显微镜、荧光显微镜等手段来实现。
这些光学成像方法可以非常清晰地看到细胞结构、生物内部不同的分子构成等细节信息,从而促进了对于生物的认识和研究。
2、光学治疗光学治疗是指利用光子学原理来进行疾病治疗的方法。
在这个领域里,主要应用激光光束来进行治疗。
激光光束可以精确定位病变区域,避免伤及健康组织。
在此基础之上,激光光束可以被用来进行病变切除、癌症治疗和疤痕修复等过程。
其治疗效果优越,且对患者没有副作用。
3、光学传感器光学传感器是指应用光子学原理来进行测量,并将获得的信息转化为电信号的传感器。
在生物医学领域,光学传感器可以通过灵敏的光学材料来接收并反映生物体内的信息,如没有针头的血糖测试器,非侵入性血糖检测装置等等。
这种技术可以更加轻便、快捷、精确地检测患者的生理指标,且由于非侵入性操作,对患者无任何危险。
4、光学诊断光学诊断是指利用光子学原理来进行疾病诊断的方法。
生物医学光子学biomedical photonics 定义:运用光子学原理和技术,为医学、生物学和生物技术领域中的问题提供解决方案即构成生物医学光子学的研究内容。
生物医学光子学涉及对生物材料的成像、探测和操纵。
在生物学领域,主要研究分子水平的机理,监测分子结构与功能,在医学领域,主要研究生物组织结构与功能,能对生物体以非侵入的方式,实现宏观与微观尺度分子水平的疾病探测、诊断和治疗。
研究内容:生物医学是光子学的一个重要应用领域, 两者的交叉形成了新兴学科“ 生物医学光子学”. 主要研究内容包含: 一是生命系统中产生的光子及其反映的生命过程, 以及这种光子在物学研究、医学诊断与治疗方面的重要应用; 二 是医学光学与光子学基础和技术 , 包括组织光学、光与组织相互作用和组织工程、新颖的光诊断和光医疗技术及其作用机理的研究等. 生物医学光子学目前仅具雏形, 但其发展之快引人注目.新进展:近年来, 在国家自然科学基金、省部级基金以及其他基金项目的资助下, 我国在生物医学光子学的研究中取得了很大的进展, 尤其是2000年第152 次主题为 “ 生物医学光子学与医学成像若干前沿问题” 、第217 次主题为“ 生物分子光子学” 的香山会议后, 有许多学校和科研单位开展了生物医学光子学的研究工作, 并初步建成了几个具有代表性的、具有自己研究特色和明确科研方向的研究机构或实验室, 并在生物医学光学成像( 如optical coherence tomography, 简称OCT, 光声光谱成像, 双光子激发荧光成像, 二次谐波成像, 光学层析成像等) 、组织光学理论及光子医学诊断、分子光子学( 包括成像与分析) 、生物医学光谱、X 射线相衬成像、光学功能成像、认知光学成像、PDT 光剂量学、高时空谱探测技术及仪器研究等方面取得了显著的研究成果. 发表了许多研究论文, 申请了许多发明专利, 有些已经获得产业化. 国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届, 对我国生物医学光子学学科的发展起到了积极的推动作用. 我国近年所召开的亚太地区光子学会议中, 有关生物医学光子学的内容已大幅增加, 成为主要的研讨专题. 我国的生物医学光子学研究方兴未艾, 呈现与国际同步的态势。