盖斯定律的教学设计说明
- 格式:doc
- 大小:90.00 KB
- 文档页数:9
“盖斯定律”的教学设计"盖斯定律"是一种教学法,被广泛用于教学实践中。
它由美国心理学家韦廉·盖斯(William Glasser)提出,是一种基于情感、认知和行为的整合教学理论。
盖斯定律认为,学生的学习成就和学习动机是由情感、认知和行为的综合因素决定的。
在这种教学设计中,教师将学生的情感、认知和行为有机结合起来,以提高学生的学习效果。
盖斯定律的核心理念是:学习是一个积极的过程,学习者应该主动参与并负责自己的学习。
教师在设计课堂教学时,应该充分考虑学生的情感需求、认知水平和行为表现,以激发他们的学习兴趣和动机,促进他们的学习成就。
以下是一个基于盖斯定律的教学设计方案:主题:数学知识的探索教学目标:学生能够掌握基本的数学知识,培养数学思维和解决问题的能力。
教学内容:1.数学基础知识(加减乘除、小数、分数等)2.数学问题解决的方法和策略3.数学实践应用教学方法:1.情感教育:通过教师的引导和激励,让学生认识到学习数学的重要性和乐趣,建立自信心。
2.认知教育:引导学生积极思考、主动提问,培养他们的数学思维和分析能力。
3.行为教育:通过互动和合作学习,激发学生的学习兴趣,培养团队精神和解决问题的能力。
教学过程:1.开场活动:教师介绍今天的学习内容,并与学生进行互动,了解他们的数学学习情况和需求。
2.知识导入:通过案例分析和问题探讨,引导学生主动思考数学问题,并提出解决方法。
3.案例练习:让学生在小组合作中解决数学问题,激发学生的学习兴趣和动力。
4.教师示范:教师针对学生普遍存在的问题进行讲解和示范,帮助学生理解和掌握数学知识。
5.学生练习:让学生在课堂上进行练习,巩固所学知识,并及时纠正错误。
6.课堂总结:教师和学生一起对今天的学习进行总结,并展望下一次课的内容和目标。
评估方法:1.课堂表现:通过观察学生在课堂上的表现,包括积极参与、思维活跃等方面进行评价。
2.练习成绩:通过学生的作业和练习成绩,评估他们对数学知识的掌握程度和学习态度。
“盖斯定律”的教学设计1、3【化学反响热的计算盖斯定律】教学设计---人教版选修 4 化学反响原理【教材分析】1、《课程标准》分析内容标准:能用盖斯定律进展有关反响热的简洁计算2、内容分析本节课是人教版高中化学选修 4 第一章《化学反响与能量》第三节“化学反响热的计算”第一课时的内容,是中学化学根本理论的重要组成局部,是热化学理论性概念。
本章通过化学能与热能转化规律的争论帮助学生生疏热化学原理在生产、生活和科学争论中的应用。
本节旨在让学生了解盖斯定律,并从定量的角度来进一步生疏物质发生化学反响伴随的热效应。
本节内容分为两局部:第一局部,介绍了盖斯定律。
其次局部,利用反响热的概念、盖斯定律和热化学方程式进展有关反响热的计算。
本节内容是第一章的重点,由于热化学争论的主要内容之一就是反响热效应的计算。
反响热的计算对于燃料燃烧和反响条件的把握、热工和化工设备的设计都具有重要意义。
已有根底力气进展形成素养【学生分析】构建学生的科学本质观,逐步形成科学素养;渗透 STEM 理念;完善“能量守恒观”、“化学价值观”,主要形成“证据推理与模型认知”的核心素养,同时渗透科学探究意识、科学精神与社会责任的核心素养。
通过化学史,初步学会科学家争论反响热的思维方法和争论方法;学会从定性感受到定量争论的方法;在 STEM 理念下,培育理论联系生活、生产的力气。
已有能量和能量转化的感性阅历,通过试验感受了反响热;了解了物质发生反响产生能量变化与物质质量的关系;燃烧热的概念。
【教学目标】1、学问与技能●理解盖斯定律的内涵●能运用盖斯定律进展简洁的反响热的计算2、过程与方法●通过化学史情境,初步学会科学家争论问题的思维和方法●从途径角度、能量守恒角度分析论证盖斯定律,培育证据推理和模型认知的核心素养●通过盖斯定律在实际化工生产中的应用,学会主动应用盖斯定律解决实际问题的技巧3、情感态度与价值观●体验科学家觉察科学学问的一般过程,完善“能量守恒观”,逐步构建“科学本质观”●学习科学家敢于质疑,不轻易放弃,勇于创和探究的科学精神●通过盖斯定律的应用,逐步构建“化学价值观”【教学重难点】教学重点:盖斯定律的内涵教学难点:盖斯定律的应用【教学策略】基于科学本质观的化学科学教学策略:觉察问题基于化学史学习科学观点与证明应用回忆与评价;类比法类比生活中实例理解盖斯定律;推理法从能量守恒角度论证盖斯定律;模型认知策略。
丹阳五中张月霞教学目的1、知识与技能(1)知道盖斯定律的内容。
(2)能运用盖斯定律计算反应热2、过程与方法(1)通过对盖斯定律的教学,培养观察和抽象思维的能力。
(2)通过练习思考不断提升知识应用能力。
3、情感态度与价值观培养学生由具体到抽象的研究问题的方法,使学生领会从现象到本质的认识事物的科学方法。
教学重点、难点利用盖斯定律计算反应热。
教学方法讨论、探究、归纳教学用具课件教学过程【引入】前面我们学习了化学反应过程中的焓变,一般情况下就是反应热,那么反应热是否都需要像中和热一样测量而来呢,今天这节课我们就来解决这个问题。
【投影】例1 已知下列热化学方程式:2H2(g)+O2(g)===2H2O(g) ΔH=-483.6 kJ·mol-1,则H(g)+1/2O2(g)===H2O(g)的ΔH=__________________22H2O(g)=== 2H2(g)+O2(g) 的ΔH=_________________【归纳】1、热化学方程式同乘以某一个数时,反应热数值也必须乘上该数。
2、将一个热化学方程式的反应物和生成物颠倒时,ΔH的“+”或“-”号必须随之改变,但数值不变。
【设疑】例2已知:①C(s)+O2(g)===CO2(g)ΔH1=-393.5 kJ·mol-1,②C(s)+ 1/2O2(g)=CO(g) ΔH2=-110.5 kJ·mol-1,③CO(g)+1/2O2(g)===CO2(g)ΔH3=-283.0 kJ·mol-1,你能从方程式叠加的角度分析这三个方程式存在的关系吗?反应热之间的数量关系呢?对方程式的意义入手分析,你想到了什么?【学生讨论】【讲解】从C和O2最终生成CO2,不管是一步还是两步完成,反应热最终并没有发生变化,这个规律早在1840年就被俄国的化学家盖斯发现了,今天我们来学习它,只是达到了知识传承的目的。
【投影】盖斯定律的1、内容,2、意义,3、理解。
1-3-1 盖斯定律教学目标知识与技能:1、理解并掌握盖斯定律;2、能正确运用盖斯定律解决具体问题;3、初步学会化学反应热的有关计算。
过程与方法:通过运用盖斯定律求有关的反应热,进一步理解反应热的概念情感态度与价值观:通过实例感受盖斯定律,并以此说明盖斯定律在科学研究中的重要作用教学重点:盖斯定律的应用教学难点:盖斯定律的应用教学过程:【导入】:在化学科研中,经常要测量化学反应所放出或吸收的热量,但是某些物质的反应热,由于种种原因不能直接测得,只能通过化学计算的方式间接获得。
在生产中,对燃料的燃烧、反应条件的控制以及废热的利用,也需要反应热计算,为方便反应热计算,我们来学习盖斯定律。
【板书】第三节化学反应热计算一、盖斯定律【讲解】1840年,盖斯(G.H.Hess,俄国化学家)从大量的实验事实中总结出一条规律:化学反应不管是一步完成还是分几步完成,其反应热是相同的。
也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成时的反应热是相同的,这就是盖斯定律。
【投影】【讲解】根据图示从山山的高度与上山途径无关及能量守衡定律来例证盖斯定律。
【学生活动】学生自学相关内容后讲解解【板书】1、盖斯定律:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关。
【讲解】盖斯定律在生产和科学研究中有很重要的意义。
有些反应的反应热虽然无法直接测得,但利用盖斯定律不难间接计算求得。
【板书】2、盖斯定律在生产和科学研究中有很重要的意义【科学探究】对于反应:C(s)+ O2(g)=CO(g)因为C燃烧时不可能完全生成CO,总有一部分CO2生成,因此这个反应的ΔH无法直接测得,请同学们自己根据盖斯定律设计一个方案反应的ΔH。
【师生共同分析】我们可以测得C与O2反应生成CO2以及CO与O2反应生成CO2的反应热:C(s)+O2(g) =CO2(g);ΔH=-393.5 kJ/molCO(g)+ O2(g)=CO2(g);ΔH=-283.0 kJ/mol【投影】【讲解】根据盖斯定律。
教学设计:化学反应热的计算——盖斯定律一、教学目标: 1. 了解盖斯定律的基本概念和原理; 2. 掌握运用盖斯定律计算化学反应热的方法; 3. 能够通过盖斯定律分析化学反应热的影响因素; 4. 培养学生运用盖斯定律解决实际问题的能力。
二、教学重点和难点: 1. 盖斯定律的应用与实际问题解决; 2. 盖斯定律计算化学反应热的步骤; 3. 化学反应热的影响因素分析。
三、教学过程: 1. 导入(5分钟)老师出示两张相同的照片或物品,要求学生告诉他们有什么不同之处,并引导学生思考,为什么相同物体会有不同的感受。
教师通过这个引入,给学生带来对“热量”的思考,热量是如何传递和转化的。
2.概念讲解(10分钟) 2.1 盖斯定律的定义和原理•盖斯定律是热力学的基本定律之一,该定律指出,在恒压条件下,物质在标准状态下的标准生成焓变与其反应物质摩尔数之间存在着固定的比例关系。
•盖斯定律的数学表达式为:ΔH=ΣnpΔHf•其中,ΔH为反应热,np为各反应物的摩尔数,ΔHf为反应物的标准生成焓变。
2.2 盖斯定律的适用范围 - 盖斯定律适用于多种化学反应,包括气体的燃烧反应、溶解反应、化合反应等。
- 盖斯定律对非标准条件下的反应热计算也是有效的,只需将反应物的摩尔数和生成焓变换算到所需的条件下即可。
3.计算实例(15分钟) 3.1 燃烧反应的热计算例如有反应:C(s) +O2(g) -> CO2(g),已知C(s)的标准生成焓变为-393.5 kJ/mol,CO2(g)的标准摩尔生成焓变为-393.5 kJ/mol,求该反应的反应热。
解题步骤如下:•确定反应物和生成物的摩尔数:np(C) = 1 mol,np(O2) = 1 mol,np(CO2) = 1 mol。
•利用盖斯定律计算反应热:ΔH = np(C)ΔHf(C) + np(O2)ΔHf(O2) - np(CO2)ΔHf(CO2)•代入各项数值进行计算,并注意单位的转换。
【精品】《盖斯定律》的教学设计
一、教学目标
1、通过学习盖斯定律,了解和掌握物理实验处理和分析的基本方法。
2、培养学生的实验操作和观察能力,提高实验数据处理的精确度和信度。
3、了解物理学中的一些基本概念、物理现象,拓展学生对物理学的认识。
二、教学重点
1、学生对盖斯定律的认识和应用。
四、教学过程设计
1、引入
1.1、通过实验现象引入盖斯定律的概念和应用。
1.2、让学生讨论实验现象背后的物理原理。
2、理论讲解
2.1、讲解盖斯定律的基本概念和公式。
2.2、讲解盖斯定律与气体分子运动的关系。
3、实验操作
3.1、实验前准备:准备实验器材,确定实验步骤。
3.2、实验操作:按照实验步骤操作,记录实验数据。
4、数据处理和分析
4.1、对实验数据进行统计分析。
4.2、让学生自行处理分析实验数据,提出结论。
5、总结和拓展
五、教学评价
1、考试评价:期末考试测试学生对盖斯定律概念和应用的掌握程度。
3、课程设计评价:学生完成盖斯定律课程设计,评价其综合素质,如独立思考、实验设计和数据处理等。
教案精选:高三化学《盖斯定律》教学设计教案精选:高三化学《盖斯定律》教学设计一:盖斯定律要点1840年,瑞士化学家盖斯(G。
H。
Hess,1802—1850)通过大量实验证明,不管化学反应是一步完成或分几步完成,其反应热是相同的。
换句话说,化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。
这就是盖斯定律。
例如:可以通过两种途径来完成。
如上图表:已知:H2(g)+ O2(g)= H2O(g);△H1=-241.8kJ/molH2O(g)=H2O(l);△H2=-44.0kJ/mol根据盖斯定律,则△H=△H1+△H2=-241.8kJ/mol+(-44.0kJ/mol)=-285.8kJ/mol盖斯定律表明反应热效应取决于体系变化的始终态而与过程无关。
因此,热化学方程式之间可以进行代数变换等数学处理。
该定律使用时应注意:热效应与参与反应的各物质的本性、聚集状态、完成反应的物质数量,反应进行的方式、温度、压力等因素均有关,这就要求涉及的各个反应式必须是严格完整的热化学方程式。
二:盖斯定律在热化学方程式计算中的应用盖斯定律的应用价值在于可以根据已准确测定的反应热来求知实验难测或根本无法测定的反应热,可以利用已知的反应热计算未知的反应热。
,它在热化学方程式中的主要应用在于求未知反应的反应热,物质蒸发时所需能量的计算,不完全燃烧时损失热量的计算,判断热化学方程式是否正确,涉及的反应可能是同素异形体的转变,也可能与物质三态变化有关。
其主要考察方向如下:1.已知一定量的物质参加反应放出的热量,写出其热化学反应方程式。
例1、将0.3mol的气态高能燃料乙硼烷(B2H6)在氧气中燃烧,生成固态三氧化二硼和液态水,放出649.5kJ热量,该反应的热化学方程式为_____________。
又已知:H2O(g)=H2O(l);△H2=-44.0kJ/mol,则11.2L(标准状况)乙硼烷完全燃烧生成气态水时放出的热量是_____________kJ。