MATLAB求解微分方程
- 格式:ppt
- 大小:278.00 KB
- 文档页数:19
Matlab Function求解微分方程引言微分方程是描述自然和社会现象中的变化规律的数学工具,它在许多领域中都具有重要的应用价值。
在数值计算中,利用计算机求解微分方程成为一种常用的方法。
Matlab是一款强大的科学计算软件,它提供了丰富的函数库和工具箱,可以方便地求解各种类型的微分方程。
本文将介绍如何使用Matlab Function来求解微分方程,并通过实例说明其具体应用。
Matlab Function概述Matlab Function是Matlab中用于定义函数的关键字。
函数是一段完成特定任务的代码,可以接受输入参数并返回输出结果。
在求解微分方程中,可以通过定义一个函数来描述微分方程的数学形式,并使用Matlab内置的数值求解器来求解该微分方程。
通过封装微分方程的求解过程为一个函数,可以提高代码的复用性和可读性。
求解一阶微分方程定义微分方程函数首先需要定义微分方程的函数形式。
以一阶常微分方程dy/dx=f(x, y)为例,其中f(x, y)为已知函数。
在Matlab中,可以通过以下方式定义函数:function dy = f(x, y)dy = % 根据微分方程形式计算dy/dx的表达式end在函数中,输入参数 x 和 y 表示自变量和因变量,输出参数 dy 表示微分方程的导数值。
实际使用时,需要根据具体问题自行定义 f(x, y) 的表达式。
求解微分方程定义好微分方程函数后,可以使用Matlab内置的数值求解器来求解微分方程。
以求解某一点上的导数为例,可以使用以下代码:y0 = % 指定求解点的因变量值dydx = f(x0, y0); % 调用微分方程函数求解导数值通过以上代码,可以获得求解点上的导数值。
需要注意的是,求解点的自变量值和因变量值需要根据具体问题进行设定。
求解二阶微分方程转化为一阶微分方程组对于二阶常微分方程d2y/dx2=f(x, y, dy/dx),可以通过引入新的变量z=dy/dx,将其转化为一阶微分方程组。
用Matlab 软件求解微分方程1.解析解(1)一阶微分方程 求21y dxdy +=的通解:dsolve('Dy=1+y^2','x') 求y x dxdy -+=21的通解:dsolve('Dy=1+x^2-y','x') 求⎪⎩⎪⎨⎧=+=1)0(12y y dx dy 的特解:dsolve('Dy=1+y^2',’y(0)=1’,'x')(2)高阶微分方程 求解⎩⎨⎧-='==-+'+''.2)2(,2)2(,0)(222πππy y y n x y x y x 其中,21=n ,命令为: dsolve('x^2*D2y+x*Dy+(x^2-0.5^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x') 求042=-+'-'''x y y y 的通解,命令为:dsolve('D3y-2*Dy+y-4*x=0','x')输出为:ans=8+4*x+C1*exp(x)+C2*exp(-1/2*(5^(1/2)+1)*x)+C3*exp(1/2*(5^(1/2)-1)*x)(3)一阶微分方程组求⎩⎨⎧+-='+=').(3)(4)(),(4)(3)(x g x f x g x g x f x f 的通解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','x') 输出为: f =exp(3*x)*(cos(4*x)*C1+sin(4*x)*C2)g =-exp(3*x)*(sin(4*x)*C1-cos(4*x)*C2)若再加上初始条件1)0(,0)0(==g f ,则求特解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','f(0)=0,g(0)=1','x')输出为: f =exp(3*x)*sin(4*x)g =exp(3*x)*cos(4*x)2.数值解(1)一阶微分方程⎪⎩⎪⎨⎧=≤≤-=.1)0(,10,2y x y x y dxdy 现以步长h=0.1用“4阶龙格—库塔公式”求数值解: 先建立“函数M —文件”:function f=eqs1(x,y)f=y-2*x/y;再命令: 格式为:[自变量,因变量]=ode45(‘函数文件名’,节点数组,初始值) 命令为: [x,y]=ode45('eqs1',0:0.1:1,1)若还要画图,就继续命令: plot(x,y)(2)一阶微分方程组⎪⎩⎪⎨⎧==+-='≤≤-+='.3.0)0(,2.0)0(,2sin ,10,2cos 21212211y y y y x y x y y x y 只须向量化,即可用前面方法: function f=eqs2(x,y)f=[cos(x)+2*y(1)-y(2);sin(x)-y(1)+2*y(2)];将此函数文件,以文件名eqs2保存后,再下命令:[x,y]=ode45('eqs2',0:0.1:1,[0.2;0.3])(注:输出的y 是矩阵,第i 列为函数i y 的数值解)要画图,继续命令:hold on,plot(x,y(:,1)),plot(x,y(:,2)),hold off(3)高阶微分方程先化成一阶微分方程组,再用前面方法。
解微分⽅程有两种解,⼀种是解析解,⼀种是数值解,这两种分别对应不同的解法利⽤dsolve 函数进⾏求解syms x;s = dsolve('eq1,eq2,...', ’cond1,cond2,...', 'v');%eq :微分⽅程%cond :条件%v :独⽴变量%形如:⽅程:y'= f(t,y),初值:y(t0) = y0dsolve('Du = 1+ u^2','t')ans =tan(C2 + t)1i-1i求的解析解s = dsolve('D2y=3*y+2*x','x');% D2y ⽤以表⽰y 的⼆阶导数,默认是以t 为⾃变量的,所以最好指明⾃变量为x.syms y(x);s = dsolve([diff(y,x,2) == 3*y+2*x], [y(0) == 5])% diff 内依次是函数、⾃变量、微分阶数,⽅程⽤==表⽰相等⽽不是赋值求初值问题s = dsolve('Dy = y - 2*t / y','y(0) =1');求边界问题s = dsolve('x*D2y - 3*Dy =x^2','y(1)=0','y(5) = 0','x');求解⽅程s=dsolve('D2y =cos(2*x) - y','y(0) =1','Dy(0) = 0','x');simplify(s);(eqn,cond,‘IgnoreAnalyticConstraints’,false) %设置不化简结果求解⽅程组[f,g]= dsolve('Df = f + g','Dg = -f + g','f(0)=1','g(0) = 2','x');⽤Matlab 求解微分⽅程⽤Matlab 求解微分⽅程解析解1.求解析解2.初值问题3.边界问题4.⾼阶⽅程5.⽅程组问题⼀些例⼦dsolve('D2y+4*Dy+29*y = 0','y(0) = 0','Dy(0)= 15 ','x')ans =3*sin(5*x)*exp(-2*x)[x y z] = dsolve('Dx = 2*x-3*y+3*z','Dy = 4*x-5*y+3*z','Dz = 4*x-4*y+2*z')x =C7*exp(2*t) + C8*exp(-t)y =C7*exp(2*t) + C8*exp(-t) + C9*exp(-2*t)z =C7*exp(2*t) + C9*exp(-2*t)%可以对其进⾏简化操作x = simplify(x)x = C7*exp(2*t) + C8*exp(-t)y = simplify(y)y =exp(-2*t)*(C9 + C8*exp(t) + C7*exp(4*t))%龙格库塔法(Runge-Kutta 法)xfun=@(t,x)0.3.*x.*(1-x/8); %定义赋值函数r=0.3,k=8[tout,xout]=ode45(fun,[0,40],0.1) %⽅程数值解,四五阶RK 法[tout,xout]=ode23(xfun,[t0,tfinal],x0) %⼆三阶RK 法%%ode 系列数值求解形如 / = ( , )的微分⽅程组, 并绘图。
matlab 求解微分方程
在 MATLAB中可以使用 ode45 或者 ode15s 函数来求解常微分方程。
如果想要求解初值问题,可以使用 ode45 函数,语法如下:
```
tspan = [t0, tf]; % t0为初始时刻,tf为结束时刻
y0 = [y1, y2, ..., yn]; % y1, y2, ..., yn为初始条件
[t, y] = ode45(@(t, y) diffeq(t, y), tspan, y0);
```
其中,`diffeq` 是一个用户定义的函数,用来表示微分方程的右端,它的输入参数为时间 t 和状态变量 y,输出为微分方程的右端的值。
`t` 是时间向量,`y` 是状态变量的解。
如果想要求解延迟微分方程或者刚性微分方程,可以使用ode15s 函数,语法和 ode45 函数类似:
```
[t, y] = ode15s(@(t, y) diffeq(t, y), tspan, y0);
```
需要注意的是,求解微分方程之前,需要先定义好微分方程的右端函数 `diffeq` 。
第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’left') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
matlab解带参数的微分方程微分方程是描述物理和数学问题的重要方程之一。
它通常用于描述系统随时间的变化,并且在工程、物理、生物和经济等领域中都有广泛的应用。
MATLAB是一种强大的数值计算软件,可以用于解决微分方程的数值近似解。
在MATLAB中,可以使用ode45函数来求解带参数的微分方程。
ode45函数是一种常用的数值求解微分方程的方法,它使用了龙格-库塔(Runge-Kutta)方法,并具有自适应步长控制和误差控制的功能,因此能够较准确地求解微分方程。
首先,我们需要定义一个匿名函数来表示微分方程。
假设我们要求解的微分方程是dy/dt = f(t, y, p),其中y是未知函数的值,t 是自变量的值,p是参数。
可以使用如下方式定义这个函数:```MATLABfunction dydt = myODE(t, y, p)dydt = f(t, y, p); % f是一个给定的函数,用于计算dy/dtend```然后,我们可以使用ode45函数来求解微分方程。
其中,tspan表示求解的时间区间,y0表示初始条件,p表示参数。
可以使用如下方式调用ode45函数:```MATLAB[t, y] = ode45(@(t, y) myODE(t, y, p), tspan, y0);```在这个例子中,@(t, y) myODE(t, y, p)是一个匿名函数,它将t 和y作为输入,调用myODE函数来计算dy/dt,然后返回结果。
ode45函数将返回一个时间向量t和一个与t对应的解向量y。
在解得微分方程后,可以使用plot函数将结果可视化。
例如,如果要绘制y关于t的图像,可以使用如下方式:```MATLABplot(t, y);xlabel('t');ylabel('y');title('Solution of the differential equation');```以上代码将绘制出y关于t的图像,并添加了合适的坐标轴标签和标题。
Matlab 程序设计:微分方程求解主讲人:王佐才1.引言Matlab能够求解的微分方程包括:常微分方程的初值问题,常微分方程的边值问题,时变常微分方程的初值问题,以及偏微分方程。
2.常微分方程的初值问题Matlab可以求解的常微分方程包括:显示常微分方程:y′=f(t, y)线性隐式常微分方程:M(t,y)y′=f(t, y), 其中,M(t,y)为矩阵。
全隐式常微分方程:f(t, y, y′)=03.利用Matlab编程时需要用的主要命令ode45: 基于显示Runge-Kutta(4,5)方法求解。
对于多数方程来讲,ode45是最佳的尝试函数命令。
ode23:基于显示Runge-Kutta(2,3)方法求解。
ode113:利用变阶Adams-Bashforth-Moulton 算法求解。
与ode45函数相比,该方程对于精密度步长及方程难于估计时效更好,但是该方法是多步算法,需要用到前面几个节点的信息来求解当前节点,效率较低。
4.ode45调用格式[t, x]=ode45(@myode, [t0:dt:t1], initial_condition)从调用格式来看,首先必须生成函数文件“myode”。
function dydt=myode(t,y)dydt=[fun1; fun2;…;funn];end5.应用实例一:求解微分方程:(1+y2)y′−2y=0,初值y(0)=1时, t从0至10时刻的解。
function dydt=myode(t,y)dydt=[y(1)*2./(1+y(1).^2)];end[t, y]=ode45(@myode, [0:0.01:10], [1])求解范德蒙方程y′′−(1−y2)y′+y=0的解。
时间0至20,初值y(0)=2, y’(0)=0。
function dydt=myode(t,y)dydt=[y(2);(1-y(1)^2)*y(2)-y(1)];end[t, y]=ode45(@myode, [0:0.01:20], [2; 0])7.应用实例三:一质点在空中飞行,所受的空气阻力方向始终与速度方向相反,大小与速度平方成正比。
Matlab学习——求解微分⽅程(组)介绍:1.在 Matlab 中,⽤⼤写字母 D 表⽰导数,Dy 表⽰ y 关于⾃变量的⼀阶导数,D2y 表⽰ y 关于⾃变量的⼆阶导数,依此类推.函数 dsolve ⽤来解决常微分⽅程(组)的求解问题,调⽤格式为X=dsolve(‘eqn1’,’eqn2’,…)如果没有初始条件,则求出通解,如果有初始条件,则求出特解系统缺省的⾃变量为 t。
2.函数 dsolve 求解的是常微分⽅程的精确解法,也称为常微分⽅程的符号解.但是,有⼤量的常微分⽅程虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解,在求常微分⽅程数值解⽅⾯,MATLAB 具有丰富的函数,将其统称为 solver,其⼀般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver 为命令 ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i 之⼀.(2)odefun 是显⽰微分⽅程y ' = f (t , y) 在积分区间 tspan = [t 0 , t f ] 上从t0 到t f⽤初始条件 y0求解.(3)如果要获得微分⽅程问题在其他指定时间点t 0 , t1 , t 2 , , t f上的解,则令tspan = [t 0 , t1 , t 2 , t f ](要求是单调的).(4)因为没有⼀种算法可以有效的解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 solver,对于不同的 ODE 问题,采⽤不同的 solver3.在 matlab 命令窗⼝、程序或函数中创建局部函数时,可⽤内联函数 inline,inline 函数形式相当于编写 M 函数⽂件,但不需编写 M-⽂件就可以描述出某种数学关系.调⽤ inline 函数,只能由⼀个 matlab 表达式组成,并且只能返回⼀个变量,不允许[u,v]这种向量形式.因⽽,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应⽤ inline 函数,inline 函数的⼀般形式为:FunctionName=inline(‘函数内容’, ‘所有⾃变量列表’)例如:(求解 F(x)=x^2*cos(a*x)-b ,a,b 是标量;x 是向量)在命令窗⼝输⼊:Fofx=inline('x.^2.*cos(a.*x)-b','x','a','b');g = Fofx([pi/3 pi/3.5],4,1)系统输出为:g=-1.5483 -1.7259注意:由于使⽤内联对象函数 inline 不需要另外建⽴ m ⽂件,所有使⽤⽐较⽅便,另外在使⽤ ode45 函数的时候,定义函数往往需要编辑⼀个 m ⽂件来单独定义,这样不便于管理⽂件,这⾥可以使⽤ inline 来定义函数。
一、概述Matlab作为一种常用的科学计算软件,在微分方程的数值解法领域具有广泛的应用。
微分方程是描述自然现象中变化规律的数学工具,而数值解法则是指使用计算机进行近似求解微分方程的方法。
在Matlab 中,有多种常用的数值解法可以用来求解微分方程,例如欧拉法、改进的欧拉法、四阶龙格-库塔法等。
本文将对这些数值解法进行介绍和比较,以帮助读者更好地理解和应用微分方程求解数值方法。
二、欧拉法欧拉法是微分方程的最简单的数值解法之一,它通过离散化微分方程进行近似求解。
具体而言,对于一阶常微分方程dy/dx=f(x,y),可以利用欧拉法进行数值解。
欧拉法的基本思想是将自变量x的增量Δx分成n个小区间,然后根据微分方程的数值近似公式y(x+Δx)=y(x)+f(x,y)Δx对每个小区间进行迭代计算。
欧拉法的优点是简单易实现,但由于它是一阶的数值方法,因此对于某些微分方程求解效果可能不够准确。
三、改进的欧拉法改进的欧拉法是对欧拉法的一种改进,它通过在每个小区间内使用平均斜率来提高求解的精度。
具体而言,对于微分方程dy/dx=f(x,y),改进的欧拉法可以通过以下迭代公式进行数值求解:y(x+Δx)=y(x)+Δx/2[f(x,y)+f(x+Δx,y+Δx*f(x,y))]改进的欧拉法相比于欧拉法具有更高的数值精度,但计算量也相对增加。
四、四阶龙格-库塔法四阶龙格-库塔法是一种常用的数值微分方程求解方法,它通过四次迭代计算来获得微分方程的数值解。
具体而言,对于微分方程dy/dx=f(x,y),四阶龙格-库塔法可以用以下公式进行数值求解:k1=f(x,y)k2=f(x+Δx/2,y+Δx/2*k1)k3=f(x+Δx/2,y+Δx/2*k2)k4=f(x+Δx,y+Δx*k3)y(x+Δx)=y(x)+Δx/6*(k1+2*k2+2*k3+k4)四阶龙格-库塔法相比于欧拉法和改进的欧拉法具有更高的数值精度和稳定性,但计算量也相对较大。