圆锥曲线小题练
- 格式:doc
- 大小:70.00 KB
- 文档页数:4
圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。
答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。
答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。
答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。
答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。
答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。
答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。
答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。
答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。
答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。
答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。
13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。
答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。
答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。
一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。
圆锥曲线的参数方程练习题1、若点()3,P m 在以点F 为焦点的抛物线24{4x t y t == (t 为参数)上,则PF 等于( )A.2B.3C.4D.5答案:C解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.故选C.2、参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )A.圆的一部分B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分答案:B解析:参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,表示抛物线的一部分.3、椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±答案:B解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为221259x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.4、已知过曲线3cos ,{4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭C.2⎛ ⎝D.1212,55⎛⎫ ⎪⎝⎭ 答案:D解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125x y ==. 5、已知O 为原点,P为椭圆4cos ,{x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3π,则点P 坐标为( ) A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos ,{x y αα== (α为参数)化为普通方程,得2211612x y +=.由题意可得直线OP的方程为y = (0x >).由22(0),{11612y x x y =>+=解得x y ==. ∴点P的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为( ) A.2214y x += B.2212y x += C.2214x y += D.2212x y +=答案:A 解析:易知,2y cos x sin θθ==,∴2214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D解析:由xcos a θ=,∴a cos xθ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.8、若曲线2sin cos 1x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )A.RB.()0,+∞C.()0,1D.[)0,1答案:D解析:将曲线2sin cos 1x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12的直线方程为__________ 答案:x-2y-4=0解析:椭圆的普通方程为221259x y+=,故5,3,a b==所以4c==,故右焦点的坐标为(4,0),又直线的斜率为12,故直线的方程为1(4)2y x=-,即240x y--=.9、已知实数0p>,曲线212:{2x ptCy pt==(t为参数)上的点(2,)A m,曲线26cos :{26sinpxCyθθ=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆2C的半径,则p=__________.答案:8解析:曲线212:{2x ptCy pt==(t为参数)化为普通方程为22y px=,代入2x=得m=±则点(2,A±.曲线26cos:{26sinpxCyθθ=+=的圆心为(,0)2p,半径为6.10、设点O为坐标原点,直线l:4,{2xy t=+=(参数t R∈)与曲线24,:{4x uCy u==(参数u R∈)交于A、B两点.(1)求直线l与曲线C的普通方程;(2)求证:OA OB⊥.答案:1.直线l:4y x=-.曲线C:24y x=.2.证明:设1122(,),(,),A x yB x y由24{4y xy x==-消去y,得212160x x-+=.∴121212,16,x x x x+==∴12121212121212(4)(4)4()161OA OBy y x x x x x xk kx x x x x x---+⋅====-.∴OA OB⊥.11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C的参数方程为,{sin ,x y θθ== (θ为参数).1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.2.因为点 Q 是曲线 C 上的一个动点,则点 Q的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为2cos 4d πα⎛⎫++ ⎪==6πα⎛⎫=++ ⎪⎝⎭所以当cos 16πα⎛⎫+=- ⎪⎝⎭时,d.。
圆锥曲线小题狂练一1若直线l :y =kx +1与曲线c :x =12+y 只有一个公共点,则实数k 的取值范围是 .2 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是 A .2 B .3 C.115D.37163、曲线[]214(2,2)y x x =+-∈-与直线(2)4y k x =-+有两个公共点时,k 的取值范围是( )A 、5(0,)12 B 、11(,)43C 、5(,)12+∞ D 、53(,)1244、如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23D .35 若直线x+y ﹣m=0与曲线有公共点,则m 所的取值范围是( ) A . B .C .D .6 已知圆和圆的公共弦长为,则实数a 的值为 _________ .7已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,垂足为.则四边形ABCD 的面积的取值范围是 _________ .8不论k 为何实数,直线l :y=kx+1恒过的定点坐标为 _________ 、若该直线与圆x 2+y2﹣2ax+a 2﹣2a ﹣4=0恒有交点,则实数a 的取值范围是 _________ .9 若关于x 的方程:有两个不相等的实数解,则实数k 的取值范围:_________ .10已知两点M (﹣2,0)、N (2,0),点P 为坐标平面内的动点,满足=0,则动点P (x ,y )的轨迹方程为( )A . y 2=8xB . y 2=﹣8xC . y 2=4xD . y 2=﹣4x11双曲线﹣=1(mn≠0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.B.C.D.12.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1 B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)13 已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.414若抛物线y2=2px上恒有关于直线x+y﹣1=0对称的两点A,B,则p的取值范围是()A.(﹣,0)B.(0,)C.(0,)D.(﹣∞,0)∪(,+∞)15已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2的值等于()A.﹣2 B.﹣1 C.0D.116在平面直角坐标系xOy中,已知点A(l,2),若P是拋物线y2=2x上一动点,则P到y 轴的距离与P到点A的距离之和的最小值为()A.B.C.﹣D.17抛物线y2=2px(p>0)的准线交x轴于点C,焦点为F.A、B是抛物线上的两点.己知A.B,C三点共线,且|AF|、|AB|、|BF|成等差数列,直线AB的斜率为k,则有()A.B.C.D.18已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点p在C上,∠F1pF2=60°,则P到x 轴的距离为()A.B.C.D.19已知双曲线9y2﹣m2x2=1(m>0)的一个顶点到它的一条渐近线的距离为,则m=()A.1B.2C.3D.420已知双曲线中心在原点且一个焦点为F(,0),直线y=x﹣1与其相交于M、N两点,MN中点的横坐标为﹣,则此双曲线的方程是()A.﹣=1 B.﹣=1C.﹣=1D.﹣=121设双曲线的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()A.B.2C.D.22 F1,F2为双曲线的左右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,满足,则此双曲线的渐近线方程是()A.y=±2x B.C.D.23点P为双曲线C1:和圆C2:x2+y2=a2+b2的一个交点,且2∠PF1F2=∠PF2F1,其中F1,F2为双曲线C1的两个焦点,则双曲线C1的离心率为()A.B.C.D.224 过双曲线﹣=1(a>0,b>0)左焦点F1的直线与以右焦点F2为圆心、为半径的圆相切于A点,且=2b,则双曲线的离心率为()A.B.2C.D.21已知以F为焦点的抛物线y2=4x上的两点A、B满足,则弦AB的中点到准线的距离为____2函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=_________3过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=_________.4已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是_________.5过点M(2,﹣2p)作抛物线x2=2py(p>0)的两条切线,切点分别为A,B,若线段AB 的中点纵坐标为6,则p的值是_________.6 在直角坐标系xOy中,点B与点A(﹣1,0)关于原点O对称.点P(x0,y0)在抛物线y2=4x上,且直线AP与BP的斜率之积等于2,则x0=_________.7过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|•|EF|的最小值是____8 设抛物线y2=4x的焦点为F,其准线与x轴的交点为Q,过点F作直线l交抛物线于A、B两点,若∠AQB=90°,则直线l的方程为_________.9 点F为抛物线C:y2=2px(p>0)的焦点,过F的直线交抛物线C于A、B两点,过A、B分别作抛物线C的准线的垂线段,垂足分别为M、N,若|MF|=3,|NF|=4,则|MN|=_________.10 已知动圆的圆心C在抛物线x2=2py(p>0)上,该圆经过点A(0,p),且与x轴交于两点M、N,则sin∠MCN的最大值为_________.11椭圆的焦点F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是____12.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为_________.13设P为椭圆上任意一点,O为坐标原点,F为椭圆的左焦点,点M满足,则=_________.14.已知A,B,P为椭圆+=1(m,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积k PA•k PB=﹣2,则该椭圆的离心率为_________.15.椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P,使得c•PF2=a•PF1则该椭圆离心率的取值范围是_________.16若椭圆的一个焦点将焦点弦分成长为m,n的两段,则=_________.17.在△ABC中,,则过点C,以A,H为两焦点的椭圆的离心率为18.已知椭圆的左顶点为A,上顶点为B,右焦点为F.设线段AB的中点为M,若,则该椭圆离心率的取值范围为_________.20.已知椭圆+=1的左右焦点分别为F1与F2,点P在直线l:x﹣y+8+2=0上.当∠F1PF2取最大值时,的比值为_________.21 设F1,F2分别是椭圆的左、右焦点.若点P在椭圆上,且,则向量与向量的夹角的大小为_________.22双曲线C:的左、右焦点分别为F1、F2,P是C右支上一动点,点Q的坐标是(1,4),则|PF1|+|PQ|的最小值为_________.23双曲线﹣y2=1的两个焦点为F1,F2,P是双曲线上的点,当△F1PF2的面积为2时,丨﹣丨的值为_________.24双曲线(a>0,b>0)的一条渐近线的倾斜角为,离心率为e,则的最小值为___25我们把离心率之差的绝对值小于的两条双曲线称为“相近双曲线”.已知双曲线与双曲线是“相近双曲线”,则的取值范围是_________.26已知双曲线的焦点F到一条渐近线的距离为,点O为坐标原点,则此双曲线的离心率为_________.27已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为_________.28已知A、B、P是双曲线上不同的三点,且A、B两点关于原点O对称,若直线PA,PB的斜率乘积,则该双曲线的离心率e=_________.29已知点P在双曲线x2﹣y2=a2(a>0)的右支上,A1,A2分别是双曲线的左、右顶点,且∠A2PA1=2∠PA1A2,则∠PA1A2=_________.30已知双曲线的左项点为A,右焦点为F,设P为第一象限内曲线上的任意一点,若∠PFA=λ•∠FAP,则λ的值为_________.31已知P是双曲线上的动点,F1、F2分别是其左、右焦点,O为坐标原点,则的取值范围是_________.32如图,从双曲线的左焦点F1引圆x2+y2=9的切线,切点为T,延长F1T交双曲线右支于P点.设M为线段F1P的中点,O为坐标原点,则|F1t|=_________;|MO|﹣|MT|=_________.33如图,双曲线C的中心在原点,虚轴两端点分别为B1、B2,左顶点和左焦点分别为A、F,若,则双曲线C的离心率为_________.。
圆锥曲线小题练习021.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM=2MF,则直线OM 的斜率的最大值为(A)3(B )23(C)2(D )12.椭圆()222210x y a b a b+=>>的一个焦点为F ,该椭圆上有一点A ,满足OAF ∆是等边三角形(O为坐标原点),则椭圆的离心率是( )A1 B.21 D.23.若抛物线24x y =上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A .34B .32C .1D .2 4.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于),(),,(2211y x B y x A ,则2121x x y y 为( )A 、4B 、-4C 、2p D 、2p -5.如图,1F ,2F 是双曲线1C :1322=-y x 与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点.若|F 1F 2|=|F 1A |,则2C 的离心率是( ).A .31B .32 C.15D .52 6.若抛物线mx y =2的焦点是双曲线1322=-y x 的一个焦点,则实数m 等于( ) A.4± B.4 C.8± D.87.过抛物线22y px =焦点的直线交抛物线于A B 、,O 为坐标原点,则OA OB ⋅的值A .234p B .234p - C .23p D . 23p -8.已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线与抛物线x y 42=的准线分别交于A 、B两点,O 为坐标原点,AOB ∆的面积为3,则双曲线的离心率=e ( )A.21 B.27 C. 2 D. 39.设抛物线24y x =的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A 、B ,使0AF BF ⋅=,则直线AB 的斜率k =( )A2 B 22C3D3310.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 作直线l x ⊥轴交双曲线C 的渐近线于点,A B .若以AB 为直径的圆恰过点2F ,则该双曲线的离心率为 A .2 B .3 C .2 D .511.已知椭圆方程,椭圆上点M 到该椭圆一个焦点F 1的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( ) A.2 B.4 C.8 D.12.已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为( )A .02=±yx B .02=±y x C .03=±y x D .03=±y x13.已知双曲线C :﹣=1,若存在过右焦点F 的直线与双曲线C 相交于A ,B 两点且=3,则双曲线离心率的最小值为( ) A .B .C .2D .214.过椭圆22221(0)x y a b a b +=>>左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若01260F PF ∠= ,则椭圆的离心率为( )A .22B .33C .12D .1315.已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离( ) A .2 B .3 C .5 D .7 16.已知P是抛物线xy 42=上的一个动点,则点P到直线1243:1=+-y x l 和02:2=+x l 的距离之和的最小值是( )A.1 B.2 C.3 D.417.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :22213x y a +=1的左焦点为F(-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为( ) A .34B .1C .2D .4 18.设12F F 是椭圆2222:1(0)x yE a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为A .34 B .23 C .12D .4519.椭圆22186x y +=上存在n 个不同的点12,,...,n P P P ,椭圆的右焦点为F 。
1.如图,曲线22:1(0,0)x y E m n m n+=>>与正方形L(1)求m n +的值; (2)设直线:l y x b =+交曲线E 于A ,B ,交L 于C ,D ,是否存在这AB 成等差数列?若存在,求出实数b样的曲线E ,使得CA ,的取值范围;若不存在,请说明理由.2.已知点1(0,)2F ,直线l :12y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为H ,且满足()0HF PH PF ⋅+=. (1)求动点P 的轨迹C 的方程;(2)过点F 作直线'l 与轨迹C 交于A ,B 两点,M 为直线l 上一点,且满足MA MB ⊥,若MAB ∆的面积为'l 的方程.3.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C . (1)求曲线C 的方程;(2)若()11,A x y ,()22,B x y 为曲线C ,且⊥m n ,试问AOB △的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.4.(12分)已知抛物线()2:20C y px p =>的焦点F 与椭圆22:12x T y +=的一个焦点重合,点()0,2M x 在抛物线上,过焦点F 的直线l 交抛物线于A,B 两点.(1)求抛物线C 的标准方程以及MF 的值.(2)记抛物线的准线l x '与轴交于点H ,试问是否存在常数R λ∈,使得AF FB λ= ,且22854HA HB +=都成立.若存在,求出λ的值;若不存在,请说明理由.5.设抛物线)0(42>=m mx y 的准线与x 轴交于1F ,抛物线的焦点2F ,以21,F F 为焦点,离心率21=e 的椭圆与抛物线的一个交点为)362,32(E ;自1F 引直线交抛物线于Q P ,两个不同的点,设F F 11λ=.(1)求抛物线的方程椭圆的方程; (2)若)1,21[∈λ,求||PQ 的取值范围.6. 已知抛物线的焦点为,为轴上的点.2:4E x y =F (),0P a x(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.7.设点A 为圆C :224x y +=上的动点,点A 在x 轴上的投影为Q ,动点M 满足2MQ AQ =,动点M 的轨迹为E .(1)求E 的方程;(2)设E 与y 轴正半轴的交点为B ,过点B 的直线l 的斜率为k (0k ≠),l 与E 交于另一点为P ,若以点B 为圆心,以线段BP 长为半径的圆与E 有4个公共点,求k 的取值范围.8.已知椭圆()2222:10x y E a b a b+=>>的左焦点1F 与抛物线24y x =-的焦点重合,椭圆E的离心率为,过点()3,04M m m ⎛⎫> ⎪⎝⎭作斜率不为0的直线,交椭圆E 于,A B 两点,点5,04P ⎛⎫⎪⎝⎭,且PA PB ⋅ 为定值.(1)求椭圆E 的方程; (2)求OAB △面积的最大值.9.已知椭圆1C ,抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从1C ,2C 上分别取两个点,将其坐标记录于下表中:12(2)若直线():0l y kx m k =+≠与椭圆1C 交于不同的两点,M N ,且线段MN 的垂直平分线过定点1,08G ⎛⎫⎪⎝⎭,求实数的取值范围. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;0a ≠P l E l P 1l 2l 1l 2l E A B C D FAB ∆FCD ∆a(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.11. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q . (1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.12. 如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点12,F F 的动直线12,l l 相交于P 点,与椭圆E 分别交于,A B 与,C D 不同四点,直线,,,OA OB OC OD 的斜率1234,,,k k k k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =CD =(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在定点,M N ,使得PM PN +为定值?若存在,求出,M N 点坐标并求出此定值;若不存在,说明理由.13.(本小题满分12分)已知椭圆C: 12222=+by a x (a>b>0)的离心率为22,过右焦点F 且与长轴垂直的直线被椭圆截得的线段长为2,0为坐标原点. (1)求椭圆C 的标准方程;(2)设经过点M(0,2)作直线l 交椭圆C 于A 、B 两点,求△AOB 面积的最大值及相应的直线l 的方程.1.【答案】(1)16m n +=;(2【解析】(1,得()28160n m x mx m mn +-+-=,有()()2644160m m n m mn ∆=-+-=,···········2分 化简的()4640mn m n mn +-=.又0m >,0n >,所以0mn >从而有16m n +=;···········4分 (2)由2AB CA BD =+,AB =···········5分 ,得()2220n m x bmx mb mn +++-=, 由2224440nmb n m m n ∆=-++>可得216b m n <+=,且122bmx x n m-+=+,212mb mn x x n m -=+,···········7分···········8分 323=,···········10分符合216b m n <+=,故当实数b 时,存在直线和曲线E ,使得CA ,AB ,BD 成等差数列.···········12分 2.解:(1)设(,)P x y ,则1(,)2H x -,1(,1),(0,),2HF x PH y ∴=-=--1(,)2PF x y =-- ,(,2)PH PF x y +=-- ,()0HF PH PF += ,220x y ∴-=,即轨迹C 的方程为22x y =.(II )法一:显然直线l '的斜率存在,设l '的方程为12y kx =+,由2122y kx x y ⎧=+⎪⎨⎪=⎩,消去y 可得:2210x kx --=, 设1122(,),(,)A x y B x y ,1(,)2M t -,121221x x kx x +=⎧∴⎨⋅=-⎩,112211(,),(,)22MA x t y MB x t y =-+=-+ MA MB ⊥ ,0MA MB ∴= ,即121211()()()()022x t x t y y --+++=2121212()(1)(1)0x x x x t t kx kx ∴-+++++=,22212210kt t k k ∴--+-++=,即2220t kt k -+=∴2()0t k -=,t k ∴=,即1(,)2M k -,∴212|||2(1)AB x x k =-==+,∴1(,)2M k -到直线l '的距离2d ==,3221||(1)2MABS AB d k ∆==+=,解得1k =±, ∴直线l '的方程为102x y +-=或102x y -+=. 法2:(Ⅱ)设1122(,),(,)A x y B x y ,AB 的中点为()00,y x E则211121212120212222()()2()2AB x y y y x x x x y y x k x x x y ⎧=-⎪⇒-+=-⇒==⎨-=⎪⎩ 直线'l 的方程为012y x x =+, 过点A,B 分别作1111B 于,于l BB A l AA ⊥⊥,因为,⊥MA MB E 为AB 的中点,所以在Rt AMB 中,11111||||(||||)(||||)222==+=+EM AB AF BF AA BB 故EM 是直角梯形11A B BA 的中位线,可得⊥EM l ,从而01(,)2M x -点M 到直线'l的距离为:2d ==因为E 点在直线'l 上,所以有20012y x =+,从而21200||1212(1)AB y y y x =++=+=+由2011||2(22MAB S AB d x ==⨯+= 01x =± 所以直线'l 的方程为12y x =+或12y x =-+.3.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M , ∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=.···········7分 当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=, 则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,···········10分 ∴2224m k =+,12m21m==,综上所述,AOB △的面积为定值.···········12分5.解:(1)设椭圆的标准方程为)0(12222>>=+b a by ax ,由题意得⎪⎪⎩⎪⎪⎨⎧=-==+211924942222a b a ac b a ,解得⎪⎩⎪⎨⎧==3422b a∴椭圆的方程为13422=+y x ∴点2F 的坐标为)0,1(,∴1=m ,∴抛物线的方程是x y 42=(2)由题意得直线PQ 的斜率存在,设其方程为)0)(1(≠+=k x k y ,由⎩⎨⎧=+=xy x k y 4)1(2消去x 整理得0442=+-k y ky ()∵直线PQ 与抛物线交于两点, ∴016162>-∆k ,设),(),,(2211y x Q y x P ,则421=y y ①,ky y 421=+②, ∵Q F P F 11λ=,)0,1(1-F ∴),1(),1(2211y x y x +=+λ ∴21y y λ=,③由①②③消去21,y y 得22)1(4+=λλk . ∴||PQ 22221221222121616)11(4))[(11())(11(kk ky y y y ky y k-+=-++=-+=441616kk -=,即=2||PQ 441616k k -,将22)1(4+=λλk 代入上式得,=2||PQ 16)21(16)12(16)4(222224-++=-++=-+λλλλλλλ,∵λλλ1)(+=f 在)1,21[∈λ上单调递减,∴)21()()1(f f f ≤<λ,即2512≤+<λλ, ∴<041716)21(2≤-++λλ, ∴217||0≤<PQ ,即||PQ 的取值范围为]217,0(. 6.解:(1)设切点为则. ∴点处的切线方程为. ∵过点,∴,解得或. 当时,切线的方程为或. (2)设直线的方程为,代入得, ①,得, ②由题意得,直线的方程为, 同理可得,即, ③ ②×③得,∴.④设,,则,.∴.点到的距离为,200,3x Q x ⎛⎫⎪⎝⎭002x x l x yk ===Q ()200042x x y x x -=-l P ()200042x x a x -=-02x a =00x =0a ≠l 0y =20ax y a --=1l ()y k x a =-24x y =2440x kx ka -+=216160k ka ∆=->()0k k a ->2l ()y k x a =--()0k k a --->()0k k a +>()2220k k a ->22a k <()11,A x y ()22,B x y 224x x k +=224x x ka=AB =FAB d =∴的面积为同理的面积为由已知得,化简得, ⑤欲使⑤有解:则,∴.又,得,∴. 综上,的取值范围为或或.7.解:(1)设点(,)M x y ,由2MQ AQ =,得(,2)A x y ,由于点A 在圆C :224x y +=上,则2244x y +=,即点M 的轨迹E 的方程为2214x y +=. (2)由(1)知,E的方程为2214x y +=, 因为E 与y 轴的正半轴的交点为B ,所以(0,1)B ,所以故B 且斜率为k 的直线l 的方程为1y kx =+(0k ≠).由221,1,4y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=, 设11(,)B x y ,22(,)P x y ,因此10x =,22814kx k =-+,12|||BP x x =-=由于圆与椭圆的公共点有4个,由对称性可设在y 轴左侧的椭圆上有两个不同的公共点P ,T ,满足||||BP BP =,此时直线BP 斜率0k >,FAB ∆41S =+FCD ∆41S =-4141+=-()2221a k -=22a <a <22212a k k=-<21k ≠21a ≠a 1a <<-11a -<<1a <<设直线BT 的斜率为1k ,且10k >,1k k ≠,则||BT ==10-=,即221(14(14k k +=+所以222222111()(18)0k k k k k k -++-=, 由于12k k ≠,因此222211180k k k k ++-=,故22122111198188(81)k k k k +==+--. 因为20k >,所以21810k ->,因此22119188(81)8k k =+>-,又因为0k >,所以k >, 又因为1k k ≠,所以2222180k k k k ++-≠,所以428210k k --≠,又因为0k >,解得2k ≠,所以)k ∈+∞ , 综上所述,k的取值范围为(,()-∞+∞ .8.(本小题满分12分)【答案】(1)2212x y +=;(2). 【解析】(1)设1(,0)F c ,∵抛物线24y x =﹣的焦点坐标为(1,0)-,且椭圆E 的左焦点1F 与抛物线24y x =﹣的焦点重合,∴1c =,···········2分 又椭圆Ea =···········3分 于是有2221b ac ==﹣.故椭圆E 的标准方程为:2212x y +=.···········4分 (2)设11,A x y (),22,B x y (),直线的方程为:x ty m =+, 由2222x ty m x y =+⎧⎨+=⎩整理得2222220t y tmy m +++=()﹣ 12222tm y y t -+=+,212222m y y t -=+,···········6分 115(,)4PA x y =- ,225(,)4PB x y =- , 121255()()44PA PB x x y y ⋅=--+ 2212125525(1)()()4216t y y tm t y y m m =++-++-+222225(2)(2)5722216m m t m m m t -+-+-=+--+.···········8分 要使PA PB ⋅ 为定值,则22522212m m m -+--=,解得1m =或23m =(舍), ···········9分当1m =时,2122|)2t AB y y t +==+﹣,···········10分点O 到直线AB的距离d =,···········11分OAB △面积1s ==. ∴当0t =,OAB △··········12分 9.【答案】(1)1C :22143x y +=.22:4C y x =;(2),⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭. 【解析】(1)设抛物线()22:20C y px p =≠,则有()220y p x x =≠,据此验证4个点知(3,-,()4,4-在抛物线上,易求22:4C y x =.·········2分 设()2222:10x y C a b a b +=>>,把点()2,0-,⎭代入得: 222412614⎧=+⎪⎪⎨⎪⎪⎩=a ab ,解得2243==⎧⎨⎩a b ,所以1C 的方程为22143x y +=.·········5分 (2)设()11,M x y ,()22,N x y ,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=, 所以()()()22284344120km k m ∆=-+->,即2243m k <+.① 由根与系数关系得122834km x x k+=-+,则122634m y y k +=+,·········7分 所以线段MN 的中点P 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.·········8分 又线段MN 的垂直平分线的方程为118y x k ⎛⎫=-- ⎪⎝⎭,·········9 由点P 在直线上,得22314134348m km k k k ⎛⎫=--- ⎪++⎝⎭, 即24830k km ++=,所以()21438m k k =-+,·········10分 由①得()2222434364k k k +<+,所以2120k >,即k <或k >,所以实数的取值范围是,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.·········12分 10.(1)依题意: PF 1 + PF 2 − F 1F 2 2=r ,则 PF 1 + PF 2 − F 1F 2 =4−2 3,即2a −2c =4−2 3又c a = 32,联立解得:a =2,c = 3,故b =1,所以椭圆的方程为x 24+y 2=1 (2)设, 联立直线和椭圆的方程得:, 当时有: 由得:,即, 整理得:,所以, 化简整理得:,代入得:, 解之得:或, 点到直线的距离, 设,易得或,则, 当时;当时,, 若,则;若,则,当时, 综上所述:,故点到直线的距离没有最大值.11.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-.(2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716. 12.解:(Ⅰ)当1l 与x 轴重合时,1230k k k k +=+=,即34k k =-2l ∴垂直于x轴,得2AB a ==,223b CD a ==得a b =,∴椭圆E 的方程为:22132x y +=. (Ⅱ)焦点12,F F 坐标分别为()()1,0,1,0-当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0当直线1l 、2l 斜率存在时,设斜率分别为12,m m ,设()()1122,,,A x y B x y , 由()2211321x y y m x ⎧+=⎪⎨⎪=+⎩得:()2222111236360m x m x m +++-= 由求根公式并化简得:211221623m x x m +=-+或2112213623m x x m -⋅=+ 121212112112121212111422y y x x x x m k k m m x x x x x x m ⎛⎫⎛⎫++++=+=+=+=- ⎪ ⎪-⎝⎭⎝⎭ 同理:2342242m k k m +=--.1234k k k k +=+ ,()()1212212212442022m m m m m m m m -=-⇒⋅+-=--,由题意知:210m m -≠,1220m m ∴⋅+=. 设(),P x y ,则+2=01+1y y x x ⋅-,即()22112y x x +=≠± 当直线1l 或2l 斜率不存在时,P 点坐标为()1,0-或()1,0,也满足此方程,所以点P 在椭圆()22112y x x +=≠±上,存在点()0,1M -和()0,1N ,使得PM PN +为定值,定值为。
圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x y +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b-=与椭圆22221x y m b +=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( ) AB. C.29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(0 30.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF 的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43.若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP(O 为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为( )A .)+∞B .)+∞C .D .44.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2 )A B C .4 D .846.已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+47.已知双曲线)0,0(12222>>=-b a by a x 的左顶点、右焦点分别为A 、F,点B (0,b ),-=+,则该双曲线离心率e 的值为( )A .213+ B C .215- D .248.直线l 是双曲线22221(0,0)x y a b a b-=>>的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .2D .49.从双曲线)0,0(12222>>=-b a by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为 A .a b MT MO ->- B .a b MT MO -=- C .a b MT MO -<-D .不确定.50.点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( ) A .3B .21+C .13+D .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A .1322或B .23或2C .12或2 D .2332或 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= 。
圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。
圆锥曲线最值的练习题一、椭圆最值问题1. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$($a >b > 0$),求椭圆上点到原点的最大距离。
2. 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 上任一点到直线 $x + y + 1 = 0$ 的距离的最大值是多少?3. 椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上任一点到点 $P(4, 0)$ 的距离的最小值是多少?二、双曲线最值问题4. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,求双曲线上任一点到中心的最大距离。
5. 双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 上任一点到直线 $2x 3y + 6 = 0$ 的距离的最小值是多少?6. 双曲线 $\frac{y^2}{4} \frac{x^2}{5} = 1$ 上任一点到点$A(2, 0)$ 的距离的最大值是多少?三、抛物线最值问题7. 已知抛物线 $y^2 = 4ax$,求抛物线上任一点到焦点的距离的最小值。
8. 抛物线 $x^2 = 8y$ 上任一点到直线 $y = 2x + 1$ 的距离的最大值是多少?9. 抛物线 $y^2 = 12x$ 上任一点到点 $B(3, 0)$ 的距离的最小值是多少?四、综合应用题10. 已知椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$,求椭圆上点到直线 $3x + 4y 10 = 0$ 的距离的最大值。
11. 双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 上任一点到直线 $x y + 2 = 0$ 的距离的最小值是多少?12. 抛物线 $y^2 = 8x$ 上任一点到点 $C(2, 0)$ 的距离的最大值是多少?13. 已知椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 和抛物线$y^2 = 4x$,求两曲线上的点到直线 $x + y 3 = 0$ 的距离之和的最小值。
圆锥曲线小题专练1.若圆(x −3)2+(y −5)2=r 2(r >0)上有且只有四个点到直线5x +12y =10的距离等于1,则半径r 的取值范围是( )A .(4,6)B .(6,+∞)C .(0,4)D .[4,6]2.已知点P 在圆x 2+y 2=4上,A(−2,0),B(2,0),M 为BP 中点,则sin∠BAM 的最大值为( )A .12B .13 C .√1010D .143.若圆x 2+y 2−2ax +2by +1=0的圆心在第一象限,则直线ax +y −b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是( )A .k >2B .-3<k <2C .k <-3或k >2D .以上都不对5.由曲线x 2+y 2=2|x|+2|y|围成的图形面积为( ) A .2π+4 B .2π+8 C .4π+4 D .4π+86.直线l 是圆x 2+y 2=4在(−√3,1)处的切线,点P 是圆x 2−4x +y 2=0上的动点,则点P 到直线l 的距离的最小值等于( ) A .1 B .√2 C .√3 D .27.已知点M(−1,0),N(1,0),若直线y =k(x −2)上至少存在三个点P ,使得ΔMNP 是直角三角形,则实数k 的取值范围是 A .[−√22,0)∪(0,√22] B .[−12,0)∪(0,12]C .[−13,0)∪(0,13]D .[−√33,0)∪(0,√33]8.已知圆C:(x −2)2+y 2=4,直线l 1:y =√3x 和l 2:y =kx −1被圆C 所截得的弦的长度之比为1:2,则k 的值为A .12 B .√33C .1D .√39.已知两点M(−1,0),N(1,0),若直线3x −4y +m =0上存在点P 满足PM⃑⃑⃑⃑⃑⃑ ⋅PN ⃑⃑⃑⃑⃑⃑ =0,则实数m 的取值范围是( )A .(−∞,−5]∪[5,+∞)B .(−∞,−25]∪[25,+∞)C .[−5,5]D .[−25,25] 10.已知圆C:x 2+y 2−8x +15=0,直线y =kx +2上至少存在一点P ,使得以P 为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是( ) A .[−35,1] B .[−54,1] C .[−43,0] D .[−53,0]11.曲线y =√1−x 2与曲线y=|x |的交点个数为 A .1个 B .2个 C .3个 D .4个12.圆x 2+y 2−4x −4y −10=0上的点到直线x +y −14=0的最大距离与最小距离的差是( ).A .36B .18C .6√2D .5√2 13.设F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A .(0,√22] B .(0,√33] C .[√22,1) D .[√33,1) 14.已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 是椭圆上位于第一象限内的点,延长PF 2交椭圆于点Q ,若PF 1⊥PQ ,且|PF 1|=|PQ |,则椭圆的离心率为( )A .√6-√3B .2−√2C .√3−√2D .√2−1 15.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足|PA |=m |PF |,若m 取得最大值时,点P 恰好在以A,F 为焦点的椭圆上,则椭圆的离心率为( )A .√3−1B .√2−1C .√5−12D .√2−1216.椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,下顶点为B ,左焦点为F ,若ΔABF 外接圆的圆心在直线y =x 的右下方,则此椭圆的离心率的取值范围是( ) A .(12,1) B .(0,√22) C .(0,12) D .(√22,1)17.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A,B ,P 是椭圆上异于A,B 的一点,若直线PA 的斜率k PA 与直线PB 的斜率k PB 乘积k PA ·k PB =−14,则椭圆C 的离心率为( )A .14B .12C .34D .√3218.如图,AB 是椭圆C 长轴长的两个顶点,M 是C 上一点,tan∠AMB =−1,tan∠MAB =13,则椭圆的离心率为( )A .√33B .√63C .√306D .√42619.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,A 为椭圆上一点,∠F 1AF 2=π2,连接AF 2交y 轴于M 点,若3|OM |=|OF 2|,则该椭圆的离心率为( )A .13B .√33C .58D .√10420.过点P (3,1)且倾斜角为3π4的直线与椭圆x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,若AP⃑⃑⃑⃑⃑ =PB ⃑⃑⃑⃑⃑ ,则该椭圆的离心率为( ) A .12 B .√22 C .√63 D .√3321.已知椭圆C 的中心在原点,焦点F 1,F 2在坐标轴上,点P 为椭圆C 上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆C 的离心率为( ) A .√22B .12C .√24D .1422.已知椭圆C :x 236+y 227=1的右焦点为F ,点P(1,3),若点Q 是椭圆C 上的动点,则ΔPQF 周长的最大值为A .2√13B .17C .30D .17+√1323.已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1、F 2,过F 1的直线l 交椭圆A 、B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值为( ) A .1 B .√2 C .√3 D .224.已知F 1,F 2为椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,B 为C 的短轴的一个端点,直线BF 1与C 的另一个交点为A ,若ΔBAF 2为等腰三角形,则|AF 1||AF 2|=( )A .13 B .12C .23D .325.已知椭圆x 2a 2+y 2b 2=1 (a >0,b >0)上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈[π12,π4],则该椭圆的离心率e 的取值范围是( ) A .[√22,√63] B .[√22,√33] C .[12,√33] D .[√23,√63] 26.已知椭圆C :x 2m +y 2m−4=1(m >4)的右焦点为F ,点A (一2,2)为椭圆C 内一点。
椭圆1.长半轴长为4,短半轴长为1,且焦点在x 轴上的椭圆标准方程是( )(A )1422=+y x (B )1422=+y x(C )11622=+y x(D )11622=+y x2.椭圆1251622=+y x 的焦点坐标是( )(A )(0,3),(0,-3) (B )(3,0),(-3,0) (C )(0,5),(0,-5)(D )(4,0),(-4,0)3.若椭圆13610022=+y x 上一点P 到其焦点F 1的距离为6,则P 到另一焦点F 2的距离为( ) (A )4 (B )194 (C )94 (D )14 4.已知F 1、F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( ) (A )椭圆 (B )直线 (C )圆 (D )线段5.如果方程x 2+ky 2=1表示焦点在x 轴上的椭圆,那么实数k 的取值范围是( ) (A )k <1 (B )k >1 (C )0<k <1 (D )k >1,或k <0 6.经过点M (3,-2),N (-23,1)的椭圆的标准方程是____________. 7.设a 、b 、c 分别表示离心率为21的椭圆的长半轴长、短半轴长、半焦距,则a 、b 、c 的大小关系是____________.8.设P 是椭圆14522=+y x 上一点,若以点P 和焦点F 1、F 2为顶点的三角形的面积为1,则点P 的坐标为____________.9.过椭圆4x 2+2y 2=1的一个焦点F 1的弦AB 与另一个焦点F 2围成的△ABF 2的周长是____________.10.已知∆ABC 的周长为20,B (-4,0),C (4,0),则点A 的轨迹方程是____________.11.设椭圆)0(1:2222>>=+b a by a x C 的两个焦点为F 1、F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,314||,34||21==PF PF ,求椭圆C 的方程.12.已知椭圆164100:221=+y x C ,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.13.求出直线y =x +1与椭圆12422=+y x 的公共点A ,B 的坐标,并求线段AB 中点的坐标.双曲线1.双曲线117822=-x y 的焦点坐标为( )(A )(±5,0)(B )(±3,0)(C )(0,±3)(D )(0,±5)2.顶点在x 轴上,两顶点间的距离为8,离心率45=e 的双曲线为( ) (A )191622=-y x(B )1251622=-y x(C )116922=-y x(D )1162522=-y x 3.经过点M (3,-1),且实轴与虚轴长相等的双曲线的标准方程是( )(A )y 2-x 2=8 (B )x 2-y 2=±8 (C )x 2-y 2=4 (D )x 2-y 2=84.与椭圆125+1622=y x 有共同焦点,且过点)10,2(-P 的双曲线是( )(A )14522=-x y(B )14522=-y x(C )13522=-x y(D )13522=-x y5.设双曲线122=-m y x 的离心率e >2,则实数m 的取值范围是( )(A )(0,3)(B )(3,+∞)(C )(0,1)(D )(1,+∞)6.双曲线4x 2-9y 2=36的焦点坐标____________,离心率____________,渐近线方程是7.双曲线1222=-x y 的两个焦点坐标分别是____________.8.经过点(-7,-62)和(27,-3)的双曲线的标准方程是____________.9.双曲线191622=-y x 上的一点P ,到点(5,0)的距离为15,则该点到点(-5,0)的距离为____________.10.椭圆14222=+a y x 与双曲线12222=-y ax 有相同的焦点,则a 等于____________.11.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,求双曲线的方程.12.已知方程121:22=-++my m x C .(1)若C 表示焦点在x 轴上的椭圆,求实数m 的取值范围; (2)若C 表示焦点在x 轴上的双曲线,求实数m 的取值范围.13.设F 1,F 2为双曲线1169:22=-x y C 的两个焦点,点M 为双曲线上一点,且∠F 1MF 2=60°,求△MF 1F 2的面积.抛物线1.顶点在原点,焦点是(0,5)的抛物线的方程是( ) (A )y 2=20x(B )x 2=20y(C )x y 2012=(D )y x 2012=2.抛物线x 2=-8y 的焦点坐标是( ) (A )(-4,0) (B )(0,-4) (C )(-2,0) (D )(0,-2) 3.若抛物线y 2=8x 上有一点P 到它的焦点距离为20,则P 点的坐标为( ) (A )(18,12) (B )(18,-12) (C )(18,12),或(18,-12) (D )(12,18),或(-12,18)4.点M 到点F (0,2)的距离与它到直线l :y +2=0的距离相等,则动点M 的轨迹方程为 ( )(A )8y 2+x =0 (B )x 2-8y =0 (C )x 2+8y =0 (D )8y 2-x =0 5.方程2x 2-5x +2=0的两根可分别作为( ) (A )一椭圆和一双曲线的离心率 (B )两抛物线的离心率 (C )一椭圆和一抛物线的离心率 (D )两椭圆的离心率6.焦点为(0,-1)的抛物线的标准方程是____________.7.准线为x -2=0的抛物线的标准方程是____________. 8.抛物线y =4x 2的准线方程为____________.9.已知抛物线y 2=2px (p >0),若点A (-2,3)到其焦点的距离是5,则p =____________. 10.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使该抛物线的方程为y 2=10x 的条件是______.(要求填写合适条件的序号) 11.抛物线的顶点在原点,焦点在直线x -2y -4=0上,求抛物线的标准方程.12.求以抛物线y 2=8x 的顶点为中心,焦点为右焦点且渐近线为x y 3±=的双曲线方程.13.求出直线2x -y -3=0与抛物线y 2=8x 的公共点A ,B 的坐标,并求|AB |.14.设P 是抛物线221x y =上任意一点,A (0,4),求|P A |的最小值.圆锥曲线综合练习1.过点P (2,4)作直线l ,使l 与抛物线y 2=8x 只有一个公共点,这样的直线l 有( ) (A )1条 (B )2条 (C )3条 (D )4条2.一个正三角形的顶点都在抛物线y 2=4x 上,其中一个顶点在坐标原点,则这个三角形的面积是( ) (A )348(B )324(C )3916(D )3463.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线有( ) (A )1条(B )2条(C )3条(D )4条4.已知椭圆12222=+by a x (a >b >0)上总存在点P ,使021=⋅PF PF ,其中F 1,F 2是椭圆的焦点,那么该椭圆的离心率的取值范围是( ) (A )]21,12[-(B ))12,0(-(C )]22,21[(D ))1,22[5.已知双曲线)0,0(12222>>=-b a by a x 的左焦点F 1,左、右顶点分别为A 1,A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )(A )相切 (B )相交 (C )相离 (D )以上情况都有可能6.直线y =x +1与抛物线y 2=4x 的公共点坐标为____________.7.若直线y =kx +1与椭圆1522=+my x 恒有公共点,则m 的取值范围是____________.8.设P 是等轴双曲线x 2-y 2=a 2(a >0)右支上一点,F 1,F 2是左右焦点,若21;F F PF ⋅ =0, |PF 1|=6,则该双曲线的方程是____________.9.过椭圆192522=+y x 的焦点,倾斜角为45°的弦AB 的长是____________.10.若过双曲线12222=-b y a x (a >0,b >0)的右焦点F ,作渐近线x aby =的垂线与双曲线左、右两支都相交,则此双曲线的离心率e 的取值范围是____________.11.中心在原点,一个焦点为)50,0(F 的椭圆C ,被直线y =3x -2截得的弦的中点的横坐标为0.5,求椭圆C 的方程.12.已知双曲线C :3x 2-y 2=1,过点M (0,-1)的直线l 与双曲线C 交于A ,B 两点.(1)若|AB |=10,求直线l 的方程;(2)若点A ,B 在y 轴的同一侧,求直线l 的斜率的取值范围.13.正方形ABCD 在坐标平面内,已知其一边AB 在直线y =x +4上,另外两点C ,D 在抛物线y 2=x 上,求正方形ABCD 的面积.。
圆锥曲线练习题一、选择题1.P 是椭圆1121622=+y x 上一点,P 到两焦点1F 、2F 距离之差为2,则△21F PF 是( )(A )锐角三角形 (B)直角三角形 (C )钝角三角形 (D) 等腰直角三角形2.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值是( )(A )12 (B )1或–2 (C )1或12(D )13.已知椭圆)0(12222>>=+b a by a x ,过椭圆的右焦点作x 轴的垂线交椭圆于A 、B 两点,若︒=∠90AOB ,则椭圆的离心率为 ( )(A )215- (B )21(C )213- (D )234.一动圆与两圆:122=+y x 和012822=+-+x y x 都外切,则动圆圆心的轨迹方程为( )(A )抛物线 (B )圆 (C )椭圆 (D )双曲线的一支5.如果双曲线136y 64x 22=-上一点P 到它的右焦点的距离是8,那么P 到它的左准线距离是( )(A )965 (B )865 (C )856 (D )8366. 双曲线19422=+-y x 的渐近线方程是 ( ) (A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±7.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )(A )23(B )23 (C )26(D )332 8.抛物线)0(2≠=a ax y 的准线方程是 ( )(A )4a x -= (B ) 4ax = (C ) 4a x = (D ) 4a x -=9.设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线斜率为 ( )(A)2± (B)34±(C)21± (D )43± 10.一个正三角形的两个顶点在抛物线)0(22>=p px y 上,另一个顶点原点,则该三角形的边长是( )(A )p 32 (B )p 34 (C )p 36 (D) p 3811.若抛物线)0(2≠-=a ax y 的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )(A )-4 (B )2 (C )-8 (D)812.曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-m my m x 的 ( ) (A )焦距相等 (B )离心率相等 (C )焦点相同 (D )准线相同二、填空题 13.已知椭圆)00(122>>=+n m n y m x ,的一个焦点为F(0,2),对应准线为y=4,则=n m14. 已知抛物线顶点在原点,焦点在x 轴上,抛物线上一点),3(m M -到焦点的距离等于5,则m = 15.在抛物线x y 162=内,通过点(2,1)且被此点平分的弦所在直线的方程是 16..以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号)三、解答题17、已知双曲线的渐近线方程为x y 21±=,焦距为10,求双曲线的方程. 18、在椭圆191622=+y x 内,有一内接ABC ∆,它的一边BC 与长轴重合,点A 在椭圆上运动,求ABC ∆的重心P 的轨迹.19、(文做)已知点P 到两点)3,0(、)3,0(-的距离之和等于4,设点P 的轨迹为C , (1) 写出C 的方程(2) 若一直线与C 相交于A 、B 两点,且AB 中点坐标为)21,21(M ,求直线AB 的方程.19、(理做)已知点P 到两点)3,0(、)3,0(-的距离之和等于4,设点P 的轨迹为C ,且直线1+=kx y 与C 交于A 、B 两点.(1) 写出C 的方程(2) 若⊥,求k 的值,并求此时AB 的值.20、已知双曲线)0,0(12222>>=-b a bya x 的斜率大于0的渐近线l 交双曲线的右准线于P ,又)0,(c F 为双曲线的右焦点. (1) 证明:直线PF 与直线l 垂直(2)若3=PF 且l 的方程为x y 43=,求双曲线方程21.设抛物线42)0(22-=>=x y p px y 被直线 截得的弦AB 的长为53.(1)求抛物线方程(2)设直线AB 上有一点Q ,使得A 、Q 、B 到抛物线的准线的距离成等差数列,求Q 的坐标. 22、已知F 是抛物线)0(22>=p px y 的焦点,点)2,4(A 为抛物线内一定点,点P 为抛物线上一动点,且PF PA +的最小值为8.(1) 求抛物线的方程(2)若O 为坐标原点,问是否存在点M ,使过点M 的动直线与抛物线交于C B 、两点,且0=∙OC OB ,若存在,求动点M 的坐标,若不存在,说明理由.设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.21.已知椭圆22221x y a b +=()0a b >>的离心率e =.连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点,A B .已知点A 的坐标为(),0a -.(ⅰ)若AB =,求直线l 的倾斜角;(ⅱ)点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=uu r uu u r.求0y 的值.22.已知椭圆222:1x C y m +=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标;(2)若3m =,求PA的最大值与最小值; (3)若PA的最小值为MA,求实数m 的取值范围.20. ))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a b y a x 上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为51.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A 、B 两点,O 为坐标原点,C 为双曲线上一点,满足→→→+=---------OB OA OC λ,求λ的值.19.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为,右焦点为(),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (I )求椭圆G 的方程;(II )求PAB ∆的面积.。
全国名校2024届高三年级专项(圆锥曲线小题)练习卷 一、单选题4条二、多选题PF上的切点为的内切圆在边1)的左右焦点,O为坐标原点,以FO 在第二象限),射线1F A与双曲线的另一条渐近,则双曲线的离心率为.参考答案离心率为5的双曲线2C以A,∵,C D 分别是线段AB 的两个三等分点,∴()1,0C x -,10,2y D ⎛⎫⎪⎝⎭y易知△PEH ≅△2PEF ,即112OE F H a ==, 故可得cos cos F OE FOE ∠=-∠【名师点评】关键点名师点评:解决本题关键是利用双曲线的定义以及三角形内切圆的相关性质,结合图形详细分析得出相应关系,运算整理17.BCD【详细分析】由C在准线上,OC=点纵坐标,由此得直线AB方程,从而求得由双曲线方程和圆D 方程可知,3,4,5a b c ===, 所以左焦点为0()5,D -,右焦点2(5,0)F ;对于A ,由于P 在双曲线左支上,根据焦半径公式可知对于B ,由过点M 的直线与双曲线有一个公共点可知,直线的斜率一定存在,设直线斜率为k ,则直线l 的方程为2(1)y k x -=-,所以||3PF PF PF ''+==由余弦定理可得2(2)|c PF =11.23.AC【详细分析】对于A ,利用椭圆与=y kx 得到8AF BF +=;对于B ,利用A 中的结论及基本不等式.对于B ,()1418AF BF AF BF ⎛+=+ ⎝419BF AF ⎛⎫25.32【详细分析】由抛物线与圆的对称性可得由抛物线的定义求得2 d=26.4【详细分析】先由AB AD ⊥,CB CD ⊥判断出表示出圆的方程,将()0,b 代入椭圆及圆的方程,可求出【答案详解】由题意得()0,A b ,(0,C -【名师点评】关键点名师点评:由此得到A,B,C,27.328.2【详细分析】由题干条件得到1F 1OB OF c ==,由焦点到渐近线距离及勾股定理得到故答案为:2。
动点在定直线上10题
1.已知椭圆C :()222210x y a b a b +=>>,若点()12,2P ,()20,2P ,(3P -,(4P 中恰有三点在椭圆C 上.
(1)求C 的方程;
(2)点F 是C 的左焦点,过点()4,0M -且与x 轴不重合的直线l 与C 交于不同的两点A ,B ,求证:ABF △内切圆的圆心在定直线上.
2.在平面直角坐标系xOy 中,已知椭圆2222
:
=1(0) x y C a b a b +>>的长轴长为4,且经过点()b ,其中e
为椭圆C 的离心率.(1)求椭圆C 的标准方程;
(2)设椭圆C 的左、右顶点分别为,A B ,直线l 过C 的右焦点F ,且交C 于,M N 两点,若直线AM 与BN 交于点T ,求证:点T 在定直线上.
3.已知椭圆C :()222210x y a b a b +=>>的左、右顶点分别为1A ,2A ,离心率为2,点
2P ⎛ ⎝⎭
在椭圆C 上.
(1)求椭圆C 的方程.
(2)若过点()2,0B 且斜率不为0的直线与椭圆C 交于M ,N 两点,已知直线1A M 与2A N 相交于点G ,试判断点G 是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.
4.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.
(1)求点P 的轨迹T 的方程.
(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.。
圆锥曲线基础练习题及答案一、选择题:x2y2??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516A.2B. C.D.72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为x2y2x2y2x2y2x2y2??1B.??1 C.??1或??1 D.以上都不对A.9162516251616253.动点P到点M及点N的距离之差为2,则点P的轨迹是A.双曲线 B.双曲线的一支 C.两条射线D.一条射线4.抛物线y2?10x的焦点到准线的距离是51 B.C. D.1025.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A.A.,那么k?三、解答题11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点?12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。
13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
22214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.2y21 经过坐标原点的直线l与椭圆?1相交于A、B两2点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角.16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程.参考答案1.D 点P到椭圆的两个焦点的距离之和为2a?10,10?3?72.C a?2b?18,a?b?9,2c?6,c?3,c2?a2?b2?9,a?b?1 x2y2x2y2??1或??1 得a?5,b?4,?251616253.D PM?PN?2,而MN?2,?P在线段MN的延长线上4.B p?10,p?5,而焦点到准线的距离是p5.C 点P到其焦点的距离等于点P到其准线x?? 2的距离,得xP?7,yp??x2y2??1,a?1;.1,或2当m?1时,1my2x2a2?b231212??1,e??1?m?,m?,a??4,a?当0?m?1时,11a244mmx2y21设双曲线的方程为x2?4y2??,,焦距2c?10,c2?25.205当??0时,x2??y24?1,4?25,??20;x21,?25,20 当??0时,??4?48.??0,?0,k?1,或k??49.x??y23p32p?6,p?3,x22y2x25??1,c2??1?4,k?1 10.1焦点在y轴上,则51k k三、解答题11.解:由??y?kx?222?2x?3y?6,得2x2?32?6,即x2?12kx?6?0??144k2?24?72k2?48当??72k?48?0,即k?时,直线和曲线有两个公共点;或k??33 时,直线和曲线有一个公共点;或k??3 当??72k?48? 0,即k?2当??72k?48?0,即2时,直线和曲线没有公共点。
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
1.已知双曲线x 24-y 2
b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双
曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )
A.x 24-3y 24=1
B.x 24-4y 23=1
C.x 24-y 24=1
D.x 24-y 2
12
=1 2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )
A.
30
3
B .6
C .12
D .7 3
3.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4,则
该椭圆的离心率为( )
A.13 B .12 C.23
D.3
4
4.双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,
点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.
5.已知椭圆E 的中心在坐标原点,离心率为1
2,E 的右焦点与抛物线C :y 2=8x 的焦点
重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )
A .3
B .6
C .9
D .12
6. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )
A .2
B .22
C .2 3
D .4
7.已知方程x 2m 2+n -y 2
3m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取
值范围是( )
A .(-1,3)
B .(-1,3)
C .(0,3)
D .(0,3)
8.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →
,则|QF |=( )
A.72 B .3 C.5
2
D .2
9.经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B .x 22-y 2=1C.y 2113-x 211=1 D.y 211-x 2
113
=1 10.知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )
A .±3
B .±1
C .±3
4
D .±33
11.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2
b 2=1(a >b >0)的左焦点,A ,B 分别为C 的
左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )
A.13
B.12
C.2
3
D.3
4
12已知双曲线x 2a 2-y 2
b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别
交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )
A .y =±3x
B .y =±22x
C .y =±(3+1)x
D .y =±(3-1)x
13.已知F 1,F 2是双曲线E :x 2a 2-y 2
b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,
sin ∠MF 2F 1=1
3
,则E 的离心率为( )
A.2
B.3
2
C.3
D .2
14.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交
于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )
A.
2
2
B .2-3 C.5-2 D.6- 3
15.设F 为抛物线C :y 2=4x 的焦点,曲线y =k
x (k >0)与C 交于点P ,PF ⊥x 轴,则k
=( ) A.12 B .1 C.3
2
D .2
16.过点A (0,1)作直线,与双曲线x 2
-y 2
9
=1有且只有一个公共点,则符合条件的直线
的条数为( ) A .0 B .2 C .4 D .无数
17.椭圆y 2
+x 2
m
2=1(0<m <1)上存在点P 使得PF 1⊥PF 2,则m 的取值范围是( )
A.⎣⎡
⎭⎫22,1 B .⎝
⎛⎦⎤0,22 C.⎣⎡⎭⎫12,1 D.⎝⎛⎦
⎤0,1
2 18.设点P 是椭圆x 2a 2+y 2
b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左,右焦点,I 为
△PF 1F 2的内心,若S △IPF 1+S △IPF 2=2S △IF 1F 2,则该椭圆的离心率为( )
A.12 B .22 C.32
D.
3-1
2
19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3
2.双曲线x 2-y 2=1的渐近线与椭圆
C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )
A.x 28+y 22=1 B .x 212+y 26=1C.x 216+y 24=1 D.x 220+y 2
5
=1 620.双曲线M :x 2
-y 2
b
2=1的左、右焦点分别为F 1,F 2,记|F 1F 2|=2c ,以坐标原点O
为圆心,c 为半径的圆与双曲线M 在第一象限的交点为P ,若|PF 1|=c +2,则P 点的横坐标为________.
21.已知F 1,F 2为x 2a 2+y 2
16=1的左、右焦点,M 为椭圆上一点,则△MF 1F 2内切圆的周
长等于3π,若满足条件的点M 恰好有2个,则a 2=________.
22.如图,F 1,F 2是双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲
线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为________.
23.已知点A 是抛物线C :x 2=2py (p >0)上一点,O 为坐标原点,
若以点M (0,8)为圆心,|OA |的长为半径的圆交抛物线C 于A ,B 两点, 且△ABO 为等边三角形,则p 的值是( ) A.3
8
B .2
C .6 D.23
24.已知焦点在x 轴上的椭圆方程为x 24a +y 2
a 2+1=1,随着a 的增大该椭圆的形状( )
A .越接近于圆
B .越扁
C .先接近于圆后越扁
D .先越扁后接近于圆
25.已知F 1,F 2分别是双曲线x 2a 2-y 2
b 2=1(a >0,b >0)的左、右焦点,对于左支上任意
一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴),则此双曲线的离心率e 的取值范围是( )
A .(1,+∞)
B .(2,3]
C .(1,3]
D .(1,2]
426.抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则|MN |
|AB |
的最大值为( )
A.
33 B .1 C.233
D .2
27.设F 1,F 2是椭圆x 2
+y 2
b 2=1(0<b <1)的左、右焦点,过F 1的直线l 交椭圆于A ,B
两点,若|AF 1|=3|F 1B |,且AF 2⊥x 轴,则b 2=________.
28.过抛物线y 2=4x 焦点F 的直线交其于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________.。