映射的概念
- 格式:ppt
- 大小:375.00 KB
- 文档页数:13
映射基础知识一、映射1.映射概念定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,么称f为从X到Y的映射, 记作f:x→y,其中y称为元素x(在映射/下)的像,并记作f(x),即y=f(x),而元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记作D,即D=X;X中所有元素的像所组成的集合称为映射f的值域,记作R或f(X),即R=f(X)=f(x)lx∈X从上述映射的定义中,需要注意的是:(1)构成一个映射必须具备以下三个要素:集合X,即定义域D=X;集合Y,即值域的范围:R,Cy;对应法则f,使对每个x∈X,有唯一确定的y=f(x)与之对应(2)对每个x∈X,元素x的像y是唯一的;而对每个y∈R,元素y的原像不一定是唯一的;映射f的值域R是Y的一个子集,即Rcy,不一定R=y2.逆映射与复合映射设f是X到Y的单射,则由定义,对每个y∈R,有唯一的x∈X,适合f(x)=y.于是,我们可定义一个从R到X的新映射g,即g:R→X,对每个y∈R,规定g(y)=x,这x满足f(x)=y个映射g称为f的逆映射,记作f, 其定义域D=R,值域R=X.按上述定义,只有单射才存在逆映射.所以在例1、例2、例3中,只有例3中的映射f才存在逆映射f,这个就是反正弦函数的主值f'(x)=arcsin x, x [-1 1],其定义域D=[-1,1],值域R=-设有两个映射g:X→y1, f:2→z,其中Y1CY2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个x∈X映成fg(x)]∈Z.显然,这个对应法则确定了一个从X到Z的映射,这个映射称为映射g和f构成的复合映射,记作fg,即fg:→z,(fg)(x)=fg(x)],x∈X.由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域R必须包含在f的定义域内,即RCD否则,不能构成复合映射.由此可以知道,映射g和f的复合是有顺序的,fg有意义并不表示gf也有意义即使fg与gf都有意义,复合映射fg与gf也未必相同。
函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。
(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。
2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。
(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。
显然值域是集合B的子集。
3、构成函数的三要素:定义域,值域,对应法则。
值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。
4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。
注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。
•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。
映射的知识点总结一、映射的定义在数学中,映射被定义为一种从一个集合到另一个集合的元素之间的关系。
设A和B是两个集合,如果存在一个规则f,使得对A中的每一个元素a,都有一个唯一确定的元素b∈B与之对应,则称f是从A到B的一个映射,记作f:A→B。
在这里,A称为定义域,B称为值域,f(a)称为元素a的像,b称为元素a的原像。
映射的定义也可以用集合的语言来描述。
即映射是一个集合到另一个集合的元素之间的规则,使得集合中的每一个元素有且只有一个唯一确定的对应元素。
这种描述映射的方式更加直观,容易理解。
二、映射的性质1. 单射如果映射f:A→B的不同元素a1、a2∈A,若f(a1)≠f(a2),则称f是单射。
直观地说,单射表示A中的不同元素映射后得到的像也是不同的,即不会出现多个元素映射到一个元素上。
2. 满射如果映射f:A→B的任意元素b∈B,都存在一个元素a∈A,使得f(a)=b,即值域与B相等,则称f是满射。
满射表示在映射中,值域中的每一个元素都有至少一个原像。
3. 双射如果映射f:A→B既是单射又是满射,则称f是双射。
双射表示映射是一种一一对应的关系,每一个元素都有唯一的对应元素。
4. 逆映射设f:A→B是一个双射,那么存在一个映射f^-1:B→A,使得对于任意元素b∈B,f^-1(b)是唯一与b对应的元素,称f^-1是f的逆映射。
5. 复合映射设f:A→B和g:B→C是两个映射,其中f的值域是g的定义域,那么可以定义f和g的复合映射为g∘f:A→C,它的定义规则是(g∘f)(a)=g(f(a))。
6. 映射的像和原像对于映射f:A→B,其中元素b∈B,称元素b在映射f下的像为f^-1(b)={a∈A|f(a)=b},即元素b对应的所有原像所构成的集合。
而元素a∈A,称元素a在映射f下的原像为f(a)。
三、映射的分类根据映射的性质,可以将映射分为不同的类型。
1. 根据值域的大小,映射可以分为有限映射和无限映射。