映射的概念
- 格式:ppt
- 大小:225.50 KB
- 文档页数:23
映射基础知识一、映射1.映射概念定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,么称f为从X到Y的映射, 记作f:x→y,其中y称为元素x(在映射/下)的像,并记作f(x),即y=f(x),而元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记作D,即D=X;X中所有元素的像所组成的集合称为映射f的值域,记作R或f(X),即R=f(X)=f(x)lx∈X从上述映射的定义中,需要注意的是:(1)构成一个映射必须具备以下三个要素:集合X,即定义域D=X;集合Y,即值域的范围:R,Cy;对应法则f,使对每个x∈X,有唯一确定的y=f(x)与之对应(2)对每个x∈X,元素x的像y是唯一的;而对每个y∈R,元素y的原像不一定是唯一的;映射f的值域R是Y的一个子集,即Rcy,不一定R=y2.逆映射与复合映射设f是X到Y的单射,则由定义,对每个y∈R,有唯一的x∈X,适合f(x)=y.于是,我们可定义一个从R到X的新映射g,即g:R→X,对每个y∈R,规定g(y)=x,这x满足f(x)=y个映射g称为f的逆映射,记作f, 其定义域D=R,值域R=X.按上述定义,只有单射才存在逆映射.所以在例1、例2、例3中,只有例3中的映射f才存在逆映射f,这个就是反正弦函数的主值f'(x)=arcsin x, x [-1 1],其定义域D=[-1,1],值域R=-设有两个映射g:X→y1, f:2→z,其中Y1CY2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个x∈X映成fg(x)]∈Z.显然,这个对应法则确定了一个从X到Z的映射,这个映射称为映射g和f构成的复合映射,记作fg,即fg:→z,(fg)(x)=fg(x)],x∈X.由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域R必须包含在f的定义域内,即RCD否则,不能构成复合映射.由此可以知道,映射g和f的复合是有顺序的,fg有意义并不表示gf也有意义即使fg与gf都有意义,复合映射fg与gf也未必相同。
映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
映射教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念.(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.2.在概念形成过程中,培养学生的观察,比较和归纳的能力.3.通过映射概念的学习,逐步提高学生对知识的探究能力.教学建议教材分析(1)知识结构映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与认识.①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合中的唯一这点要求的理解;映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.教法建议??(1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:,.这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.教学设计方案2.1 映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.(3)通过映射概念的学习,逐步提高学生的探究能力.教学重点难点::映射概念的形成与认识.教学用具:实物投影仪教学方法:启发讨论式教学过程:一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)(板书)一.映射1.定义:一般地,设两个集合,如果按照某种对应法则,对于集合中的任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合及到的对应法则)叫做集合到集合的映射,记作.定义给出之后,教师应及时强调映射是特殊的对应,故是三部分构成的一个整体,从映射的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即中元素对应中元素,则叫的象,叫的原象.(板书)2.象与原象可以用前面的例子具体说明谁是谁的象,谁是谁的原象.提问3:下面请同学根据自己对映射的理解举几个映射的例子,看对映射是否真正认识了.(开始时只要是映射即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)(1) ,,,.(2) .(3) 除以3的余数.(4) {高一1班同学}, {入学是数学考试成绩},对自己的考试成绩.在学生作出判断之后,引导学生发现映射的性质(教师适当提出研究方向由学生说,再由老师概括)(板书)3.对概念的认识(1) 与是不同的,即与上有序的.(2)象的集合是集合B的子集.(3)集合A,B可以是数集,也可以是点集或其它集合.在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出)如:(1)(2) {数轴上的点},实数与数轴上相应的点对应.(3) {中国,日本,韩国}, {北京,东京,汉城},相应国家的首都.引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.那么满足以上条件的映射又是一种特殊的映射,称之为一一映射.(板书)4.一一映射(1)定义:设A,B是两个集合,是集合A到集合B的映射,如果在这个映射下对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个映射叫做A到B上的一一映射.给出定义后,可再返回到刚才的例子,让学生比较它与映射的区别,从而进一步明确“一一”的含义.然后再安排一个例题.例1 下列各表表示集合A(元素a)到集合B(元素b)的一个映射,判断这些映射是不是A到B上的一一映射.其中只有第三个表可以表示一一映射,由此例点明一一映射的特点(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.(板书)5.求象与原象.例2 (1)从R到的映射,则R中的-1在中的象是_____;中的4在R中的原象是_____.(2)在给定的映射下,则点在下的象是_____,点在下的原象是______.(3) 是集合A到集合B的映射,,则A 中元素的象是_____,B中象0的原象是______, B中象-6的原象是______.由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.三、小结1.映射是特殊的对应2.一一映射是特殊的映射.3.掌握求象与原象的方法.四、作业:略五、板书设计探究活动(1) {整数}, {偶数},,试问与中的元素个数哪个多?为什么?如果我们建立一个由到的映射对应法则乘以2,那么这个映射是一一映射吗?答案:两个集合中的元素一样多,它们之间可以形成一一映射.(2)设,,问最多可以建立多少种集合到集合的不同映射?若将集合改为呢?结论是什么?如果将集合改为,结论怎样?若集合改为,改为,结论怎样?从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有个元素,集合B中含有个元素,那么最多可以建立多少种集合到集合的不同映射?答案:若集合A含有m个元素,集合B含有n个元素,则不同的映射有个.。
映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f—1下的原象,即f —1(b)=a ,所以, f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A图Ⅰ-1-2-1}.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接 B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C 例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y c ar d 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→… ①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())(( ②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()( ③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。
明目标、知重点 1.了解映射的概念,能够判定一些简单的对应是不是映射.2.通过对映射特殊化的分析,揭示出映射与函数之间的内在联系.1.映射的概念一般地,设A、B是两个非空集合,如果按某种对应法则f,对于A中的每一个元素,在B 中都有唯一的元素与之对应,那么,这样的单值对应叫做从集合A到集合B的映射,记作:f:A→B.2.映射与函数的关系由映射的概念可以看出,映射是函数概念的推广,特殊在函数概念中,A、B为两个非空数集.[情境导学]大家想一想,如果我们都没有名字,这个世界将会怎样?一个人可以有小名,有笔名,有外号,有学名,是一人多名,也可能是多人一名,但为了便于管理,政府部门规定,每人只能有一个法定的名字,这样,每个人都有了唯一确定的身份证上的名字,人与名字的关系是集合到集合的一种确定的对应.在数学里,把这种集合到集合的确定性的对应说成映射.探究点一映射的概念思考1在初中我们已经学过对应法则,生活中还有很多在两个集合之间建立单值对应的例子,你能举出几个?答对于任何一个实数a,数轴上都有唯一的点P和它对应;对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;对于任意一个三角形,都有唯一确定的面积和它对应;某影院的某场电影的每一张电影票有唯一确定的座位和它对应.思考2两变量的函数关系实质上是一种对应法则,其对应有何特点?答函数是建立在两个非空数集间的一种对应.思考3函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的两集合中的元素之间的对应法则,即映射.那么,你能给映射下个定义吗?答一般地,设A、B是两个非空集合,如果按某种对应法则f,对于A中的每一个元素,在B中都有唯一的元素与之对应,那么,这样的单值对应叫做从集合A到集合B的映射.记作f:A→B.思考4映射与函数有什么区别与联系?答映射是函数的推广,函数是一种特殊的映射,函数是映射,但映射不一定是函数.例1下图所示的对应中,哪些是从A到B的映射?解根据映射的定义,可以知道上述图中,(4)的对应是A到B的映射,(1)、(2)、(3)的对应不是A到B的映射.反思与感悟对于映射f:A→B,A中元素与B中元素的对应法则,可以是:一对一,多对一,但不能一对多.跟踪训练1下图表示集合A到集合B的映射的是______.答案(1)(4)探究点二映射概念的应用例2已知(x,y)在映射f的作用下的象是(x+y,xy).(1)求(1,-2)在f作用下的象;(2)若在f作用下的象是(2,1),求它的原象.解(1)因为1-2=-1,1×(-2)=-2,所以,(1,-2)在f作用下的象是(-1,-2).⎧⎧⎪x+y=2⎪x=1(2)设它的原象是(x,y),则有:⎨,解得:⎨.⎪xy=1⎪⎩⎩y=1所以,原象是(1,1).反思与感悟由映射的定义可知:集合B可以有剩余的元素在A中没有原象,但集合A中每一个元素在B中都有象,不能有剩余的元素.跟踪训练2已知(x,y)在映射f的作用下的象是(x+y,x-y).(1)求(2,-2)在f作用下的象;(2)若在f作用下的象是(3,-1),求它的原象.解(1)因为x=2,y=-2,所以x+y=0,x-y=4,从而得(2,-2)在f作用下的象为(0,4).⎧⎧⎪x+y=3,⎪x=1,(2)由⎨得⎨即所求的原象为(1,2).⎪x-y=-1,⎪⎩⎩y=2.探究点三映射与函数的关系例3给出下列四个对应法则:①A=N*,B=Z,f:x→y=2x-3;②A={1,2,3,4,5,6},B={y|y∈N*,y≤5},f:x→y=|x-1|;③A={x|x≥2},B={y|y=x2-4x+3},f:x→y=x-3;④A=N,B={y∈N*|y=2x-1,x∈N*},f:x→y=2x-1.上述四个对应中是函数的有________.(填序号)答案①③反思与感悟判断两个集合之间的对应是否构成函数,首先应判断能否构成映射,且构成映射的两个集合之间对应必须是非空数集之间的对应.跟踪训练3设集合A={2,4,6,8,10},B={1,9,25,49,81,100},下面的函数关系式能构成A 到B的映射的有________.(填序号)①y=(2x-1)2;②y=(2x-3)2;③y=2x-1;④y=(x-1)2.答案④解析函数的定义域为A,对应的值域为B,只有④y=(x-1)2满足x=2,4,6,8,10时,对应的函数值分别为1,9,25,49,81.只有集合B中的元素100剩余,满足映射的定义中对A中的每一个元素在B中都有唯一的元素与之对应.1.从集合A到集合B的对应:+①A=R,B=R,f:求绝对值;②A=R,B=R,f:开平方根;③A={平面内的点},B={平面内的圆},f:在平面内以A中的点为圆心画圆.其中是映射的个数是________.答案0解析①中,集合A的元素0在集合B中找不到对应的元素,所以①不是映射;②中,集合A中的元素4在集合B中有两个元素2和-2与之对应且负数没有平方根,不满足映射的定义;③中,由于圆的半径没有限制,所以一个圆心对应着无数个圆,所以③也不是映射.2.集合A和集合B都是实数集R,映射f:A→B是把集合A中的元素x对应到集合B中元素x3-x+1,则映射f下象1的原象所组成的集合是________.答案{0,-1,1}解析由x3-x+1=1,得x=0,-1,1.3.已知A={x,y,z},B={2,3},从A到B建立映射f,使得f(x)+f(y)+f(z)=7,则满足条件的映射有________个.答案3解析∵f(x)=f(y)=2,f(z)=3;f(x)=f(z)=2,f(y)=3;f(y)=f(z)=2,f(x)=3,所以满足条件的映射有3个.4.设集合A={x|1≤x≤2},B={x|1≤x≤4},则下述对应法则f中,不能构成从A到B的映射的是________.(填序号)①f:x→y=x2;②f:x→y=3x-2;③f:x→y=-x+4;④f:x→y=4-x2.答案④解析对于④,当x=2时,由对应法则y=4-x2得y=0,在集合B中没有元素与之对应,所以④不能构成从A到B的映射.[呈重点、现规律]1.映射中的两个集合A和B可以是数集、点集或由图形组成的集合等,映射是有方向的,A到B的映射与B到A的映射往往是不一样的.2.对应、映射、函数三个概念既有区别又有联系,在了解映射概念的基础上,深刻理解函数是一种特殊的映射,而映射又是一种特殊的对应.3.判断一个对应是否是映射,主要看第一个集合A中的每一个元素在对应法则下是否都有对应元素,若有,再看对应元素是否唯一,若唯一则这个对应就是映射.一、基础过关1.设f:A→B是从集合A到集合B的映射,则下面说法正确的是________.(填序号)①A中的每一个元素在B中必有元素与之对应;②B中每一个元素在A中必有元素与之对应;③A中的一个元素在B中可以有多个元素与之对应;④A中不同元素在B中对应的元素可能相同.答案①④解析根据映射的定义,只有①④符合.2.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},则下列能表示从P到Q的映射的是________.(填序号)1①f:x→y=x;21②f:x→y=x;32③f:x→y=x;3④f:x→y=x.答案①②④解析如果从P到Q能表示一个映射,根据映射的定义,对P中的任一元素,按照对应法28则f在Q中有唯一元素和它对应,③中,当x=4时,y=×4=Q.333.下列集合A到集合B的对应中,不能构成映射的是________.(填序号)答案①②③解析①、②中的元素2没有对应的元素;③中1的对应元素有两个;只有④满足映射的定义.4.下列集合A,B及对应法则能构成函数的是________.(填序号)①A=B=R,f(x)=|x|;1②A =B =R ,f (x )=;x③A ={1,2,3},B ={4,5,6,7},f (x )=x +3;④A ={x |x >0},B ={1},f (x )=x 0.答案①③④解析在②中f (0)无意义,即A 中的数0在B 中找不到和它对应的数.5.给出下列两个集合之间的对应法则,回答问题:①A ={你们班的同学},B ={体重},f :每个同学对应自己的体重;②M ={1,2,3,4},N ={2,4,6,8},f :n =2m ,n ∈N ,m ∈M ;③M =R ,N ={x |x ≥0},f :y =x 4;④A ={中国,日本,美国,英国},B ={北京,东京,华盛顿,伦敦},f :对于集合A 中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中映射的个数为______,函数的个数为______.答案42解析①、②、③、④都是映射;②、③是函数.6.集合A ={1,2,3},B ={3,4},从A 到B 的映射f 满足f (3)=3,则这样的映射共有________个.答案4解析由于要求f (3)=3,因此只需考虑剩下两个元素的对应元素的问题,总共有如图所示的4种可能.7.设f :A →B 是集合A 到集合B 的映射,其中A ={正实数},B =R ,f :x →x 2-2x -1,求A 中元素1+2在B 中的对应元素和B 中元素-1在A 中的对应元素.解当x =1+2时,x 2-2x -1=(1+2)2-2×(1+2)-1=0,所以1+2的对应元素是0.当x 2-2x -1=-1时,x =0或x =2.因为0A ,所以-1的对应元素是2.8.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 235⎫+1),求A 中元素2在B 中的对应元素和B 中元素⎛⎝2,4⎭在A 中的对应元素.解将x =2代入对应法则,可求出其在B 中的对应元素(2+1,3).⎧由⎨5x +1=,⎩423x +1=,21得x =.235⎫1,在A 中对应元素为.所以2在B 中的对应元素为(2+1,3),⎛⎝24⎭2二、能力提升9.设A =Z ,B ={x |x =2n -1,n ∈Z },C =R ,且从A 到B 的映射是x →2x -1,从B 到C1的映射是y →,则经过两次映射,A 中元素1在C 中对应的元素为________.2y +11答案3解析A 中元素1在B 中对应的元素为2×1-1=1,11而1在C 中对应的元素为=.2×1+1310.设f ,g 都是由A 到A 的映射,其对应法则如下表:映射f 的对应法则如下:A 中元素对应元素映射g 的对应法则如下:A 中元素对应元素则f [g 1]的值为________.答案1解析∵g (1)=4,∴f [g 1]=f (4)=1.11.已知f 是从集合M 到N 的映射,其中M ={a ,b ,c },N ={-3,0,3},则满足f (a )+f (b )+f (c )=0的映射f 的个数是________.答案7f (a )=3,⎧⎪解析⎨f (b )=0,⎪⎩f (c )=-3,f (a )=-3,⎧⎪⎨f (b )=3,⎪⎩f (c )=0,1423314213243241f (a )=-3,⎧⎪⎨f (b )=0,⎪⎩f (c )=3,f (a )=3,⎧⎪⎨f (b )=-3,⎪⎩f (c )=0,f (a )=0,⎧⎪⎨f (b )=3,⎪⎩f (c )=-3,f (a )=0,⎧⎪⎨f (b )=-3,⎪⎩f (c )=3,f (a )=f (b )=f (c )=0.12.已知A={1,2,3,m},B={4,7,n4,n2+3n},其中m,n∈N*.若x∈A,y∈B,有对应法则f:x→y=px+q是从集合A到集合B的一个映射,且f(1)=4,f(2)=7,试求p,q,m,n的值.解由f(1)=4,f(2)=7,⎧⎧⎪p+q=4⎪p=3列方程组:⎨⎨.⎪2p+q=7⎪⎩⎩q=1故对应法则为f:x→y=3x+1.由此判断出A中元素3的对应值是n4或n2+3n.若n4=10,因为n∈N*,不可能成立,所以n2+3n=10,解得n=2(舍去不满足要求的负值).又当集合A 中的元素m的对应元素是n4时,即3m+1=16,解得m=5.当集合A中的元素m的对应元素是n2+3n时,即3m+1=10,解得m=3.由元素互异性知,舍去m=3.故p=3,q=1,m =5,n=2.三、探究与拓展13.在下列对应法则中,哪些对应法则是集合A到集合B的映射?哪些不是?(1)A={0,1,2,3},B={1,2,3,4},对应法则f:“加1”;(2)A=(0,+∞),B=R,对应法则f:“求平方根”;(3)A=N,B=N,对应法则f:“3倍”;(4)A=R,B=R,对应法则f:“求绝对值”;(5)A=R,B=R,对应法则f:“求倒数”.解(1)中集合A中的每一个元素通过对应法则f作用后,在集合B中都有唯一的一个元素与之对应,显然,对应法则f是A到B的映射.(2)中集合A中的每一个元素通过对应法则f作用后,在集合B中都有两个元素与之对应,显然对应法则f不是A到B的映射.(3)中集合A中的每一个元素通过对应法则f作用后,在集合B中都有唯一的元素与之对应,故对应法则f是从A到B的映射.(4)中集合A中的每一个元素通过对应法则f作用后,在集合B中都有唯一的元素与之对应,故对应法则f是从A到B的映射.1(5)当x=0∈A时,无意义,故对应法则f不是从A到B的映射.x。
映射的意思语文
映射指的是将一个事物或概念通过图像、图表或其他方式呈现出来,以便更好地理解和分析。
在现代科技发展的背景下,映射技术得到了广泛的应用,尤其是在地图制作、数据可视化、网络安全等领域。
在地图制作方面,映射技术可以根据实际情况进行三维建模和数据分析,制作出更加真实、准确的地图。
在数据可视化方面,映射技术可以帮助我们更好地理解数据的含义和趋势,从而做出更加明智的决策。
在网络安全方面,映射技术可以帮助我们识别和分析网络攻击,从而更好地保护网络安全。
除了在技术领域的应用之外,映射还有着更广泛的意义。
人们可以通过映射来了解不同文化之间的差异,理解历史和文化发展的脉络。
同时,映射也可以帮助我们探索更深刻的哲学和人类思维的问题,例如人类意识和思维的本质等等。
可以说,映射技术不仅是一种工具,更是一种思维方式和方法论。
通过映射,我们可以更好地理解和分析事物,从而探索更深刻的问题和发现更多的可能性。
- 1 -。
映射重要知识点总结一、映射的定义1.1 映射的概念映射是一种将一个集合中的元素对应到另一个集合中的元素的规则。
具体来说,如果从集合A到集合B的每个元素a都能找到集合B中的唯一元素b与之对应,那么我们就说存在从集合A到集合B的一个映射。
我们通常用f: A → B来表示这个映射,其中f表示映射的规则,A称为定义域,B称为值域,而对应的元素对(a, b)称为映射对。
1.2 映射的表示方式映射可以用图、公式、表格等形式来表示。
在图中,我们可以用箭头连接集合A和集合B 的元素,表示它们之间的对应关系;在公式中,我们可以用f(x) = y来表示映射的规则,其中x表示集合A中的元素,y表示集合B中的元素;在表格中,我们可以将集合A的元素和对应的集合B的元素按一定顺序排列,表示它们之间的对应关系。
1.3 映射的例子为了更好地理解映射的概念,我们可以举几个具体的例子。
比如说,将一个学生的学号与他的成绩对应起来,就是一个映射;将一个人的身高与体重对应起来,也是一个映射;将一个城市的名称与它的人口数量对应起来,同样也是一个映射。
二、映射的性质2.1 单射、满射和双射在研究映射的性质时,我们通常关注三个重要的性质,即单射、满射和双射。
- 单射:如果一个映射f: A → B满足对任意的x1, x2∈A,只要x1≠x2就有f(x1)≠f(x2),那么我们就说这个映射是单射。
单射也可以表述为:对于集合A中的任意两个不同的元素,它们在集合B中的像也是不同的。
- 满射:如果一个映射f: A → B满足对于集合B中的任意元素y,都能在集合A中找到一个元素x与之对应,那么我们就说这个映射是满射。
- 双射:如果一个映射既是单射又是满射,那么我们就说这个映射是双射。
2.2 映射的复合在实际问题中,有时我们会遇到多个映射的复合。
设有两个映射f: A → B和g: B → C,我们可以定义它们的复合映射g∘f: A → C为:对于A中的任意元素x,它在C中对应的像为(g∘f)(x) = g(f(x))。
一、映射的概念一、映射的概念设A、B是两个集合,如果按某个确定的对应关系f,对于集合A中的任意一个元素,在集合B中都有唯一确定的元素和它对应,那么这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作:→。
:f A B二、像与原像的概念给定一个集合A到集合B的映射,且,∈∈,如果元素a和元素b对应,a Ab B那么我们把元素b叫做元素a的像,元素a叫做元素b的原像。
三、映射这个概念,有三个特征:①集合A、B及对应法则f是确定的,是一个系统;②对应法则有“方向性”。
即强调从集合A到集合B的对应,它与从B到A 的对应关系一般是不同的;③对于映射f:A→B来说,则应满足(i)集合A中每一个元素,在集合B中都有象,并且象是唯一的;(ii)集合A中不同元素,在集合B中对应的象可以是同一个;(iii)不要求集合B中的每一个元素在集合A中都有原象。
例如:(1)的对应是一对多,(2)的对应是一对一,(3)的对应是多对一;(4)也是一对一,但在B中有的元素没有得到对应,其中,图(2)(3)(4)这3个对应,都是集合A到集合B的映射,(1)不是集合A到集合B的映射,这是因为A中元素9在B中有两个元素3和-3与之对应,不符合定义。
四、一一映射①定义:一般地,设A,B是两个集合,f:A B是集合A到集合B的映射,如果在这个映射下,对于集合A中的不同的元素,在集合B中有不同的象,而且B中每一个元素都有原象,那么这个映射叫做A到B的一一映射。
②一一映射概念的理解1°对于集合A中的不同元素,在集合B中有不同的象,也就是说不允许“多对一”。
2°集合B中的每一个元素都是集合A的某个元素的象,也就是说,集合B中的每一个元素都有原象,B中不允许有剩余的元素。
题型讲解:例1:给出下列关于从集合A到集合B的映射的论述,其中正确的有_________.(1)B中任何一个元素在A中必有原象;(2)A中不同元素在B中的象也不同(3)A中任何一个元素在B中的象是唯一的;(4)A中任何一个元素在B中可以有不同的象;(5)B中某一元素在A中的原象可能不止一个;(6)集合A与B一定是数集;(7)记号Bf→:的含义是一样的.B:与Af→A例2: (1) N A =,R B =,1212:+-=→x x y x f ,A x ∈,y B ∈.在f 的作用下,1311的原象是多少?14的象是多少? (2)设集合==B N A ,{偶数},映射B A f →:把集合A 中的元素a 映射到集合B 中的元素a a -2,则在映射f 下,象20的原象是多少?(3)B A f →:是从A 到B 的映射,其中R A =,{}R y x y x B ∈=,),(,)1,1(:2++→x x x f ,则A 中元素2的象是多少?B 中元素)2,2(的原象是多少?例3:设集合{}{}R y R x y x B R y R x y x A ∈∈=∈∈=,),(,,),(,),(),(:xy y x y x f +→.(1)求)3 ,2(-在f 作用下的象;(2)求)3 ,2(-的原象.例4:下列集合A 到集合B 的对应中,判断哪些是A 到B 的映射? 判断哪些是A 到B 的一一映射?(1)Z B N A ==,,对应法则:f B y A x x y x ∈∈-=→,,.(2)+=R A ,+=R B ,xy x f 1:=→,A x ∈,B y ∈. (3){}900≤≤=ααA ,{}10≤≤=x x B ,对应法则:f 取正弦.(4)+=N A ,{}1,0=B ,对应法则:f 除以2得的余数.(5){}4,1,1,4--=A ,{}2,1,1,2--=B ,对应法则:f B y A x x y x ∈∈=→,,2. (6){}三角形平面内边长不同的等边=A ,{}平面内半径不同的圆=B ,对应法则:f 作等边三角形的内切圆.随堂演练:1、给定集合P={x|0≤x ≤2},Q={y|0≤y ≤4},下列从P 到Q 的对应关系f 中,不.是.映射的为( ) 25 :2 B : C : D :2 2x A f x y x f x y x f x y x f x y →=→=→=→=、、、、2、已知:A={x |0≤x ≤2},B={y |-1≤y ≤3},下列映射表示从A 到B 的一一映射是( )A.f:x →y=-x+3B.f:x →y=2(x -1)2-1C.f:x →y=x 2-1D.f:x →y=x -13、下列对应是从集合A 到集合B 的映射的是( )A .A=R ,B={x|x >0且x ∈R},x ∈A ,f :x →|x|B .A=N ,B=N +,x ∈A ,f :x →|x -1|C .A={x|x >0且x ∈R},B=R ,x ∈A ,f :x →x 2D .A=Q ,B=Q ,f :x →1x4、已知映射f:A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的象,且对任意的a ∈A ,在B 中和它对应的元素是|a|,则集合B 中的元素的个数是( )A .4B .5C .6D .75、设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是( )A .2B .3C .4D .5 6、若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B ⋂= ( )(A ){}1,2 (B ){}0,1 (C ){}0,3 (D ){}37、在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( )(A ))1,3(- (B ))3,1( (C ))3,1(-- (D ))1,3(8、映射f:(x,y)→(x+y,x -y),则(3,5)的原象是 。
映射的加法与乘法映射是数学中的一个重要概念,它描述了两个集合之间的对应关系。
在数学中,我们常常利用映射来进行加法和乘法运算。
本文将从映射的角度来探讨加法和乘法的概念与应用。
一、映射的基本概念映射是指一个集合中的元素与另一个集合中的元素之间的对应关系。
我们可以用箭头图表示映射,箭头的起点表示原集合的元素,箭头的终点表示目标集合的元素。
例如,如果我们有两个集合A={1,2,3}和B={a,b,c},并且存在一个映射f:A→B,那么我们可以用箭头图表示为:1→a,2→b,3→c。
二、映射的加法在映射的加法中,我们将两个映射进行了结合,得到了一个新的映射。
具体来说,如果我们有两个映射f:A→B和g:A→C,其中A是原集合,B和C是目标集合,那么我们可以定义一个新的映射h:A→B×C,其中B×C表示B和C的笛卡尔积。
新的映射h的定义为:h(a)=(f(a),g(a)),其中a是A中的元素。
这样,我们就将两个映射的结果合并成了一个新的映射。
三、映射的乘法在映射的乘法中,我们将两个映射进行了组合,得到了一个新的映射。
具体来说,如果我们有两个映射f:A→B和g:B→C,其中A、B 和C分别是原集合、中间集合和目标集合,那么我们可以定义一个新的映射h:A→C,其中h(a)=g(f(a)),其中a是A中的元素。
这样,我们就将两个映射的结果组合成了一个新的映射。
四、映射的应用映射在数学中有着广泛的应用。
在加法中,我们常常利用映射来描述两个集合中的元素的对应关系。
例如,在集合A={1,2,3}和集合B={a,b,c}中,我们可以定义一个映射f:A→B,使得f(1)=a,f(2)=b,f(3)=c。
这样,我们就可以通过映射f来描述A中的元素与B中的元素之间的对应关系。
在乘法中,映射也有着重要的应用。
例如,在集合A={1,2,3}和集合B={a,b,c}中,我们可以定义两个映射f:A→B和g:B→C,其中C是另一个目标集合。
双射满射映射关系
双射、满射和映射关系是集合论和数学中的基本概念,它们描述了函数或映射的不同特性。
具体如下:
1.映射:映射是指两个集合之间的一种对应关系。
如果按照某种规则,集合X
中的每个元素都能在集合Y中找到唯一的元素与之对应,那么这个规则就是从集合X到集合Y的一个映射。
2.单射:如果映射f满足对于集合X中的任意两个不同元素x1和x2,它们的像
f(x1)和f(x2)也是不同的,即f的逆像具有唯一性,则称f为单射。
3.满射:如果映射f满足对于集合Y中的任意元素y,都存在集合X中的元素x
使得f(x)=y,即Y中的每个元素都有原像,则称f为满射。
4.双射:如果一个映射既是单射又是满射,则称这个映射为双射,也叫做一一
对应。
双射意味着集合X中的每个元素在集合Y中有唯一的对应元素,同时集合Y中的每个元素在集合X中也有唯一的对应元素。
综上所述,这些概念是函数理论的基础,对于理解数学中的函数、序列、级数等有着重要的意义。
在实际应用中,如编程、数据分析等领域,这些概念也经常被用来描述数据之间的关系和转换。