营养化和叶绿素A计算公式
- 格式:xls
- 大小:32.00 KB
- 文档页数:2
华南师范大学实验报告学生姓名刘璐学号20082501055专业年级、班级课程名称实验项目水生生态系统初级生产力的测定——叶绿素法实验类型验证设计综合实验时间2011年 3 月28 日实验指导老师实验评分水生生态系统初级生产力的测定——叶绿素法一、实验目的以叶绿素法为例学习测定水体生产力的原理和方法二、实验原理叶绿素a是植物光合作用的重要光和色素。
在一定的光照强度下,叶绿素a的含量与光合作用强度之间存在密切关系,因此叶绿素a的含量是水生生态系统初级生产力的重要指标。
同时叶绿素a的含量的测定,也可用于水体富营养化水平的评价,是水质检测的常规项目。
浮游植物叶绿素的测定方法常用分光光度法。
初级生产力Ps=C a·Q(Q=3.7)三、方法和步骤1、水体透明度的观测:透明度盘2、水样采集与保存:采集华南师范大学情人湖的表层水样(1m以内)注入水样瓶中。
马上带回实验室进行抽滤。
3、抽滤:在抽滤器上装好乙酸纤维滤膜,倒入定量体积(500mL)的水样进行抽滤。
水样抽完后,继续抽1-2min,以减少滤膜上的水分。
4、提取:将载有浮游植物样品的滤膜放入研钵中,加入少量碳酸镁粉末及2-3mL90%丙酮,充分研磨,提取叶绿素a 。
将研磨后的匀浆物移入离心管中,用离心机(3000r/min)离心10min。
将上清液移入10mL的容量瓶中。
再用2-3mL90%丙酮,继续研磨提取,离心10min,并将上清液转入容量瓶中。
重复1-2次后,在用90%丙酮定容为10mL,摇匀。
5、光密度测定:将上清液在分光光度计上,用1cm光程的比色皿,分别读取750nm、663nm、645nm、630nm波长的吸光度,并以90%丙酮作空白吸光度测定,对样品吸光度进行校正。
其中,750nm的光密度用作校正样品的浑浊度,而663nm、645nm、630nm吸光度则用以测定叶绿素a 。
6、计算1)叶绿素a含量的计算按如下公式计算:叶绿素a(mg/L)=[11.64×(D663-D750)-2.16×(D645-D750)+0.10×(D630-D750)]·V1V·δ式中,D为吸光度;V1为提取液定容后的体积(V1=10mL);V为抽滤水样体积(V=0.5L);δ为比色皿光程(δ=10mm)。
河流富营养化评价标准能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。
而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。
河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。
基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的营养状态评价的关键指标。
透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为0.54 m, 3~6月为汛前期 ,平均透明度为1.76m,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认为透明度适用于河道型水库春季敏感时期的营养状态评价 ,此时水体透明度受泥沙含量影响作用较少 ,大小主要取决于藻类数量的差异。
浅析地表水叶绿素a的测定地表水是指地球表面流动或静止的水体,是人类生活和生产所必需的重要资源之一。
地表水的质量直接关系到人类的健康和生存环境,其中叶绿素a是一种能够反映水体叶绿素含量的重要指标。
本文将对地表水叶绿素a的测定进行浅析,以期为相关工作者提供一定的参考。
一、地表水叶绿素a的概述叶绿素a是光合作用中最主要的光合色素,也是植物和浮游植物的绿色素。
它是一种重要的生物标志物,是测定水质的重要指标之一。
叶绿素a的含量可以反映水体的营养盐含量、浊度和有机物质等。
一般情况下,水体中含有叶绿素a的浓度越高,其水质也就越差。
测定地表水中叶绿素a的含量对于评价水质具有重要意义。
二、地表水叶绿素a的测定方法1. 比色法比色法是测定叶绿素a含量的常用方法之一,可以根据样品的吸光度值来计算出叶绿素a的浓度。
具体测定步骤为:首先将样品经过预处理后,用特定的波长的光源辐射,测出样品的吸光度值,然后根据已知的标准曲线来计算叶绿素a的浓度。
2. 高效液相色谱法高效液相色谱法是一种精密准确的测定方法,通过色谱柱的分离和检测系统的测定,可以快速准确地测定出叶绿素a的含量。
这种方法的优点是测定结果准确可靠,可以应用于对于叶绿素a的精确测定。
3. 荧光法荧光法是一种快速灵敏的测定方法,通过叶绿素a在光照下的荧光特性来快速准确地测定其含量。
这种方法的优点是操作简便,结果迅速,适用于对叶绿素a含量的快速筛查。
三、地表水叶绿素a的影响因素1. 光照条件光照条件是影响叶绿素a含量的重要因素之一,充足的光照可以促进叶绿素a的生物合成,有利于提高其含量。
2. 营养盐含量水体中的营养盐含量是影响叶绿素a含量的关键因素之一,过高或过低的营养盐含量都会影响叶绿素a的生物合成。
3. 温度水体中的温度也会对叶绿素a的含量产生一定的影响,适宜的温度条件有利于叶绿素a的稳定合成和积累。
4. pH值水体的酸碱度也会对叶绿素a的含量产生一定的影响,过高或过低的pH值都会影响叶绿素a的生物合成和稳定性。
实验八水体富营养化程度的评价富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。
局部海区可变成“死海”,或出现“赤潮”。
植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。
每人每天带进污水中的氮约50 g。
生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。
许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。
表8-1 水体富营养化程度划分富营养化程度初级生产率/mg O2·m·日总磷/ µg·L无机氮/ µg·L 极贫0~136 <0.005 <0.200贫-中0.005~0.010 0.200~0.400中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500富410~547 >0.100 >1.500一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。
2. 评价水体的富营养化状况。
二、仪器和试剂1. 仪器(1)可见分光光度计。
(2)移液管:1 mL、2 mL、10 mL。
(3)容量瓶:100 mL、250 mL。
(4)锥型瓶:250 mL。
实验三富营养化湖中藻量的测定(叶绿素a法)一、实验目的富营养化湖由于水体受到污染,尤以氮磷为甚,致使其中的藻类旺盛生长。
此类水体中代表藻类的叶绿素a浓度常大于10微克/升。
本实验通过测定不同水体中藻类叶绿素a浓度,以考查其富营养化情况。
二、器材与用品1、分光光度计(波长选择大于750nm,精度为0.5-2nm)。
2、比色杯(1cm;4cm)。
3、台式离心机(3500r/min)4、离心管(15ml具刻度和塞子);冰箱5、匀浆器或小研钵。
6、蔡氏滤器;滤膜(0.45微克,直径47mm)。
7、真空泵(最大压力不超过300kpa)。
8、MgCO3悬液:lg MgCO3细粉悬于100ml蒸馏水中。
9、90%的丙酮溶液:90份丙酮+10份蒸馏水。
10、水样:两种不同污染程度的湖水水样各2L.三、方法和步骤1、按浮游植物采样方法,湖泊、水库采样500ml,池塘300ml。
采样点及采水时间同“浮游植物”。
2、清洗玻璃仪器:整个实验中所使用的玻璃仪器应全部用洗涤剂清洗干净,尤其应避免酸性条件下而引起的叶绿素a分解。
3、过滤水样;在蔡氏滤器上装好滤膜,每种测定水样取50-500ml减压过滤。
待水样剩余若干毫升之前加入0.2ml MgCO3悬液、摇匀直至抽干水样。
加入MgCO3可增进藻细胞滞留在滤膜上,同时还可防止提取过程中叶绿素a被分解。
如过滤后的载藻滤膜不能马上进行提取处理,应将其置于干燥器内,放冷(4℃)暗处保存,放置时间最多不能超过48小时。
4、提取;将滤膜放于匀浆器或小研钵内,加2-3ml90%的丙酮溶液,匀浆,以破碎藻细胞。
然后用移液管将匀浆液移入刻度离心管中,用5ml90%丙酮冲洗2次,最后向离心管中补加90%丙酮,使管内总体积为10ml。
塞紧塞子并在管子外部罩上遮光物,充分振荡,放冰箱避光提取18-24小时。
5、离心:提取完毕后,置离心管于台式离心机上3500r/min,离心10min,取出离心管,用移液管将上清液移入刻度离心管中,塞上塞子,3500r/min在离心10min。
湖泊营养级划分-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度展开:湖泊是地球上广泛存在的水体之一,是由江河流入的水在地形低洼处所形成的一种天然水文地形。
湖泊往往是生态系统的重要组成部分,不仅为众多生物提供了生存的场所,还在地球的水循环过程中发挥重要作用。
然而,随着人类活动的不断增加,湖泊的营养级问题日益突出。
营养级是指水体中的营养物质含量和其比例的等级划分。
湖泊的营养级划分是确定水体富营养化程度的一种方法,也是评估湖泊水质和生态系统健康状况的重要指标之一。
营养级的划分主要依据水中的氮、磷等化学物质含量以及水体中悬浮、溶解的有机物质的浓度等参数,通过对这些指标的测量和分析,可以判断湖泊水质的优劣,并采取相应的管理和保护措施。
湖泊营养级的划分方法主要有两种:一种是根据水体中总氮和总磷的浓度进行划分,另一种是根据叶绿素a的浓度进行划分。
前者通常采用氮磷比值法,通过计算氮磷比值的大小来评估湖泊的富营养化程度。
氮磷比值小于10被认为是富营养化状态,而大于10则表示湖泊水体相对较为清洁。
后者则是通过叶绿素a的浓度来判断湖泊水体中藻类的生长状况,从而评估水质的优劣。
湖泊营养级的划分对于湖泊管理和保护具有重要的意义。
一方面,它可以为湖泊的环境评估和监测提供科学的依据,帮助我们了解湖泊富营养化的原因和特点,及时采取相应的措施进行调控。
另一方面,它也可以为湖泊生态系统的保护提供指导,促进湖泊的生态恢复和生物多样性的维护。
综上所述,湖泊营养级的划分是评估湖泊水质和生态系统健康状况的重要手段,对于湖泊管理和保护具有重要的意义。
通过对湖泊营养级的划分,我们可以更好地了解和掌握湖泊富营养化的情况,并采取适当的措施进行治理,以保护湖泊的生态环境。
1.2文章结构文章结构部分的内容可以包括以下内容:2. 正文2.1 营养级的定义和意义在讨论湖泊营养级划分之前,我们首先需要明确营养级的定义和其在生态系统中的意义。
实验五富营养化湖中叶绿素含量的测定姓名:叶素芬学号:22320102201142 同组人:徐凯芳班级:10环科实验日期:2012.11.29一.实验目的1.掌握叶绿素的测定原理及方法2.评价水体的富营养化状况二.实验方法原理1.关于水体富营养化富营养化:富营养化是指生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其它浮游生物迅速繁殖,水体溶氧量下降,鱼类及其它生物大量死亡的现象。
大量水华死亡的水生生物沉积到湖底,被微生物分解,消耗大量的溶解氧,使水体溶解氧含量急剧降低,水质恶化,以致影响到鱼类的生存,大大加速了水体的富营养化过程。
水体出现富营养化现象时,由于浮游生物大量繁殖,往往使水体呈现蓝色、红色、棕色、乳白色等,这种现象在江河湖泊中叫水华(水花),在海中叫赤潮。
3.关于叶绿素含量的测定许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小。
测定水体中叶绿素的含量,可将色素用丙酮萃取,根据叶绿素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL,式中:α为比例常数。
当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。
各种有色物质在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。
如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和,这就是吸光度的加和性。
欲测定叶绿体色素混合提取液中叶绿素a、b、c的含量,只需测定该提取液在三个特定波长(663、645、630nm)下的吸光度A,并根据叶绿素a、b、c在该波长下的吸光系数即可求出其浓度。
附表:表1:湖泊富营养化的叶绿素a评价标准指标类型贫营养型中营养型富营养型叶绿素a浓度(μg/L)﹤4 4-10 10-150三.实验试剂和仪器1.试剂:MgCO3悬液(已配制),90%的丙酮溶液(已配制) MgCO3粉末水样(采样时间:2012年11月29日采样地点:厦门大学校本部芙蓉湖)2.仪器:V-1100D可见分光光度计(厂家:MAPADA),比色杯(2cm,2个),马头牌架盘药物天平BP-II型(上海医用激光仪器厂)TG16-WS台式高速离心机(湖南湘异仪器开发有限公司),TMTD-8222 三用恒温水箱(上海精宏实验设备有限公司,MIKRO22R台式冷冻离心机(厂家:HETTICH)塑料离心管(6支),刻度离心管(1支),量筒(100mL,1支,10mL,1支),具塞试管(25mL,1支),移液管(1mL,1支),药匙(1把),黑色塑料薄膜,橡皮筋,烧杯(500mL,1个),胶头滴管(数根)、洗瓶(1个)四.实验步骤1.清洗玻璃仪器(已由老师完成)悬液,将水样分别装2、离心水样:用量筒取水样210mL倒入烧杯中,用1mL移液管移取1.00mL MgCO3入6支大的塑料离心管中,每支离心管加入35mL。
水污染生物学实验一. 实验目的1. 了解水体富营养化评价方法,并通过对单一因子指标的测定,对模拟水体的富营养化程度进行评价。
2. 回顾水体单一污染因子测定方法,包括透明度(SD)、总磷(TP)、总氮(TN) 和高锰酸盐指数(CODMn)。
3. 掌握叶绿素Chla、TN、TP的测定方法,熟悉实验程序,了解各种仪器的工作原理和操作方法。
二.实验原理1. 叶绿素a的测定原理叶绿素a存在于所有植物中,约占有机物干重的1%~2%,是水体初级生产力和估算水体中浮游植物浓度的重要指标,对叶绿素a进行测定,可以了解水体的生产力和富营养化水平。
叶绿素不溶于水,但溶于乙醇、丙酮、乙醚等有机溶剂。
叶绿素a和b,分别在蓝紫光区和红光区对光谱有两个吸收峰。
因此,可以应用有机溶剂提取叶绿素,在特定波长下进行比色测定。
2.TN的测定原理--碱性过硫酸钾消解紫外分光光度法总氮:指可溶性及悬浮颗粒中的含氮量。
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm处,分别测出吸光度A220及A275按公式求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
3. TP的测定原理总磷是指水体中各种形态的磷的总量,是反映水体所受污染程度和湖库水体富营养化程度的重要指标之一。
本实验采用过硫酸钾高温高压消解法进行预处理,使其中的含磷有机物转化成可溶的磷酸盐,同时也使偏磷酸盐和焦磷酸盐都转化成正磷酸盐,然后于波长700nm处测定吸光度,从标准曲线上查出含磷量。
三.实验仪器紫外分光光度计,高压蒸汽消毒器,10ml、25ml、50ml具塞玻璃磨口比色管,抽滤器,离心机。
水体叶绿素a评价标准1. 引言水体叶绿素a是一种用于评估水体植物生长和水质的重要指标。
本文将探讨水体叶绿素a的评价标准,包括其定义、计算方法、丰度等方面。
叶绿素a的评价标准在环境保护和水资源管理方面具有重要意义。
2. 叶绿素a的定义和作用叶绿素a是一种生物色素,广泛存在于水生植物、藻类和一些细菌中。
它起着光合作用的关键角色,是植物进行光合作用的主要色素。
通过测量水体中的叶绿素a含量,可以评估水体中植物的生长状态和养分状况。
3. 叶绿素a的计算方法为了评估水体中叶绿素a的含量,通常采用光谱分析技术。
基于叶绿素a在不同波长下的吸光度差异,可以利用光谱数据计算叶绿素a的浓度。
其中常用的计算方法包括离线测量和在线测量两种,每种方法都有其优缺点。
3.1 离线测量方法离线测量方法是指在实验室中从水样中提取叶绿素a并进行测量的方法。
常用的离线测量方法包括高效液相色谱法(HPLC)、光谱仪法等。
这些方法可以精确地测量叶绿素a的含量,但需要收集水样、加工样品并进行复杂的分析过程。
3.2 在线测量方法在线测量方法是指在野外或水体中直接对水样进行测量的方法。
常用的在线测量方法包括多光谱成像、荧光测量仪等。
这些方法可以实时、连续地监测水体中叶绿素a的含量,但测量精度可能相对较低。
4. 叶绿素a丰度的评价标准根据水体中叶绿素a的含量,可以对水体质量进行评价。
下面是常用的叶绿素a丰度评价标准:4.1 优秀•叶绿素a浓度低于0.5 μg/L•水体透明度高,无明显浑浊现象•水质清澈,没有异味4.2 良好•叶绿素a浓度在0.5-3 μg/L之间•水体透明度适中,轻微浑浊•水质基本正常,略有异味4.3 一般•叶绿素a浓度在3-10 μg/L之间•水体透明度较差,明显浑浊•水质较差,有异味和腐败现象4.4 不良•叶绿素a浓度高于10 μg/L•水体透明度非常差,浑浊不清•水质极差,出现藻华和富营养化现象5. 叶绿素a评价标准的应用水体叶绿素a评价标准在环境保护和水资源管理中具有重要的应用价值。