当前位置:文档之家› (完整版)分式的运算及题型讲解

(完整版)分式的运算及题型讲解

(完整版)分式的运算及题型讲解
(完整版)分式的运算及题型讲解

§17.2分式的运算

一、分式的乘除法

1、法则:

(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。(意思就是,分式相乘,分子与分子相乘,分母与分母相乘)。 用式子表示:bd ac d c b a =?

(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。

用式子表示: 2、应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;(2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。

二、分式的乘方

1、法则:根据乘方的意义和分式乘法法则,分式的乘方就是把将分子、分母分别乘方,然后再相除。

用式子表示:(其中n 为正整数,a ≠0)

2、注意事项:(1)乘方时,一定要把分式加上括号;(2)在一个算式中同时含有乘方、乘法、除法时,应先算乘方,再算乘除,有bc

ad c d b a d c b a =?=÷n n n b a b a =??? ??

多项式时应先因式分解,再约分;(3)最后结果要化到最简。

三、分式的加减法

(一)同分母分式的加减法

1、法则:同分母分式相加减,分母不变,把分子相加减。 用式子表示:

2、注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。

(二)异分母分式的加减法

1、法则:异分母分式相加减,先通分,转化为同分母分式后,再加减。用式子表示:bd bc ad bd

bc bd ad d c b a ±=±=±。 2、注意事项:(1)在异分母分式加减法中,要先通分,这是关键,把异分母分式的加减法变成同分母分式的加减法。(2)若分式加减运算中含有整式,应视其分母为1,然后进行通分。(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。

四、分式的混合运算

1、运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘除,最后算加减。遇到括号时,要先算括号里面的。

2、注意事项:(1)分式的混合运算关键是弄清运算顺序;(2)b c a b c b a ±=±

有理数的运算顺序和运算规律对分式运算同样适用,要灵活运用交换律、结合律和分配律;(3)分式运算结果必须化到最简,能约分的要约分,保证运算结果是最简分式或整式。

例计算:(1)()212242-?-÷+-a a a a ; (2)22

2---x x x ; (3)x

x x x x x 2421212-+÷??? ??

-+-+ 【分类解析】

一、分式运算的几种技巧

1、先约分后通分技巧例 计算2312+++x x x +4222--x x

x

分析:不难发现,两个分式均能约分,故先约分后再计算

解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21

+x +2+x x =21++x x

2、分离整数技巧例 计算233322+-+-x x x x -657522+-+-x x x x -341

2+-x x

分析:两个分式的分子、分母不能约分,如把分子突出分母,分离整数方法可使计算化简。

解:原式=231

)23(22+-++-x x x x -651)65(22+-++-x x x x -3412+-x x =1+2312+-x x -1-651

2+-x x -3412+-x x =)2)(1(1

--x x -)3)(2(1--x x -)3)(1(1--x x =)3)(2)(1()2()1(3--------x x x x x x =)3)(2)(1(----x x x x =-)3)(2)(1(---x x x x

3、裂项相消技巧例 计算)1(1+x x +)3)(1(2

++x x +)6)(3(3++x x 分析:此类题可利用)(1m n n +=m 1(n 1-m 1)裂项相消计算。

解:原式=(x 1-11+x )+22(11+x -31+x )+33(31+x -61+x ) =x 1-61+x =)6(6+x x

练习:

4、分组计算技巧例 计算21-a +12

+a -12-a -21+a

分析:通过观察发现原式中第一、四项分母乘积为a 2-4,第二项、第三项分母乘积为a 2

-1,采取分组计算简捷。 解:原式=(21-a -21+a )+(12

+a -12-a ) =44

2-a +142--a =)1)(4(1222--a a

练习:

5、分式求值问题全解

1)字母代入法

例1. b=a+1,c=a+2,d=a+3,求d

a d d c

b

c c b a b

d a a +++++++++的值. 【解析】 仔细观察已知条件,虽然出现的字母很多,但都可以用一个字母代替: a=a,b=a+1,c=a+2,d=a+3

所以可以用一个字母代替其它字母来实现代数式的化简

d

a d d c

b

c c b a b

d a a +++++++++ =3

332122113+++++++++++++++++++a a a a a a a a a a a a a a =3

2363233132++++++++++a a a a a a a a =

)2(32)1(31323+++++++++a a a a a a a =31311++

=3

5 【探讨】 当已知条件中不同的字母都可以用一个字母表示时,第一个要想到的方法就是字母带入法,因为最后的结果一定是由有理数或者某个字母表示,所以用这种方法能不能得到正确结果就在于自己的分式化简能力了。

2) 设值代入法

例2. 已知c

z b y a x ==,求证:22a x ca bc ab zx yz xy =++++ 【解析】这道题也可以用字母代入法,可以得到x a

b y =,x a

c z =,代入后分式的分子分母中有分式,化简麻烦。我们用一种新的代入方式,考虑到a x 、b y 、c z 连等,让它们都等于k 则 x=ak y=bk z=ck

代入得

ca

bc ab zx yz xy ++++=ca bc ab ckak bkck akbk ++++ =2k ca bc ab ca bc ab ++++ =22

2

a x k =

【探讨】 当遇到连等式,可以采用以下三种方式来运用这个条件

c

z b y a x == 则(1)x a

b y =,x a

c z = (2)设k c

z b y a x === 则x=ak y=bk z=ck (3)设k c z b y a x === 则k c b a z y x =++++ 其中0≠++c b a 3) 整式代入法

例3. 已知:113a b -=,求分式232a ab b a ab b

+---的值. 【解析】如果用字母代入法,要用b 代替a 本来就比较复杂,会增加我们化简的负担。 将条件化简成乘积形式,得 3=-ab

a b ,再将分式稍化简变为ab b a ab b a --+-)(3)(2,可以发现分子分母中只有(a-b)和ab 这两项,所以可以用ab 代替b-a

ab a b 3=-

4

3336)(3)(2232=--+-=--+-=---+ab ab ab ab ab b a ab b a b ab a b ab a 【探讨】用整式代入法,能够很大程度地化简代数式,比字母代入法更优越,但要善于观察代数式的组成部分,比如这题,代数式就含有ab 和a-b 这两项,刚好条件也适当变形能得到a-b 与ab 的关系,题目很快就解出来了。

4) 变形代入法

这类题是用代入法最需要技巧的,我们分以下五类题型来分析怎么变形再代入。 例4(方程变形). 已知a+b+c=0,a+2b+3c=0,且abc ≠0,求2ab bc ca b

++的值. 【解析】 对已知条件作形变往往要比对代数式做形变简单得多,因为代数式比条件复杂,而且给代数式做形变漫无目的,往往得不到想要的结果。

这道题已知条件是两个等式,三个字母,所以我们可以用一个字母表示其它字母,对已知条件变形得到方程组

a+b+c=0 b=-2c

==>

a+2b+3c=0 a=c

用c 代替a 、b 代入到分式中,能很快求解出来

2

ab bc ca b ++=4342222

22-=+--c c c c

例5(非负变形). 已知:22

86250a b a b +-++=,求22

222644a ab b a ab b ---+的值. 【解析】观察已知条件,有平方项,所以可以化成平方的形式

0)3()4(25682222=++-=++-+b a b a b a

其中0)4(2≥-a 0)3(2≥+b 所以2)4(-a =0 2)3(+b =0

得3,4-==b a

再带入原式很容易求出解。

例6(对应变形). 证明:若a+b+c=0,则222222222

1110.b c a c a b a b c ++=+-+-+- 【解析】这题可以用整式代入法,比如用-b-c 代替a ,但是代数式a 的符号和位置在三个分式中不同,如果用22)(c b a +=代入得到的分母截然不同,增大化简的难度。

如果将代数式三个分式的分母化成相同的形式,反而化简方便,比如:

用a=-b-c 代入222a c b -+中的a ,得到-2bc

用b=-a-c 代入222b a c -+中的b ,得到-2ac

用c=-a-b 代入222c b a -+中的c ,得到-2ab

原式=02212121=-++=-+-+-abc

c b a ab ac bc 例7(倒数变形). 已知,,,0.xy xz yz a b c abc x y x z y z ===≠+++且求证ab

ac bc abc x -+=2 【解析】已知条件是

y x xy +的形式,不能化简,如果颠倒分子分母,将a y x xy =+改写成 y

x xy y x a 111+=+=的形式,使得x 、y 相互独立,简化已知条件。 写出变化后的形式y x a 111+=,z x b 111+=,z

y c 111+= x

z x y x z y c 2)11()11(111-+++=+= =x

b a 211-+

所以

c

b a x 1112-+= =abc

ab ac bc -+ 则ab ac bc abc x -+=2,得证。 例8(归类变形). 已知a

c c b b a 111+=+=+,且a 、b 、c 互不相等,求证:1222=c b a 【解析】已知条件有三个字母,两个方程,若用a 表示b 、c ,能不能求出b 、c 的代数式都是问题。因此我们变形不要太过着急,如果从消元化简的方式不能变形,就考虑从结构化简的方式来变形。

这道题条件的形式不复杂,分为整式和分式,将整式归类,分式归类:

bc

c b b c b a -=-=-11,可以发现分式形式大致消失了, 剩下的是加减形式(a-b)、(b-c)和乘积形式bc

将能从已知条件得到的关系列出来

bc c b b a -=-,ac a c c b -=-,ab

b a a

c -=- 左边和左边相乘,右边和右边相乘得 222))()(())()((c b a b a a c c b a c c b b a ---=

---, 所以12

22=c b a 【结论】给已知条件变形是用代入法的前提,变形的目的是化简已知条件,可以从两个角度上来化简:

消元的角度:方程变形、非负变形------减少字母数量,方便化简

化简

结构的角度:对应、倒数、归类变形---调整关系式结构,方便化简

代入的方法多种多样,在此不可能一一列举出来,对大部分题目,观察代数式,对已知条件适当变形再代入是最适用的方法,当然也有例外,比如习题4,代数式并不是最简形式,可以先化简代数式再代用条件,事办功倍。

【练习】

1、已知22

22

23,2342a b c a bc b a ab c -+==--则 的值等于( ) (设值代入) A .12 B. 23 C. 35 D. 1924

2、若a 2+b 2=3ab,则(1+33322)(1)b b a b a b

÷+--的值等于( ) (整式代入) A .12 B. 0 C. 1 D. 23

3、已知:a+b+c=0,abc=8.求证:

111a b c ++<0. (非负变形) 4、已知:a +b +c =0. 求证:11111130.a b c b c a c a b ??????++++++= ? ? ??

????? (代数式归类变形) 5、已知abc=1,求证:1111=++++++++c ac c b bc b a ab a (对应变形)

分式经典题型分类练习题49496

第一讲 分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 ) 1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型

1.分式的基本性质:M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例3】已知:511=+y x ,求y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 1 1+. 【例4】已知:21=- x x ,求2 21 x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求 y x 241 -的值. 练习: 1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1) y x y x 5.008.02.003.0+- (2)b a b a 10 141534.0-+ 2.已知:31=+x x ,求1 242 ++x x x 的值. 3.已知: 311=-b a ,求a ab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求b a b a 532+-的值. 5.如果21<

分式的运算及题型讲解

分式的运算及题型讲解

§ 17.2分式的运算 一、分式的乘除法 1法则: (1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。(意思就是,分式相乘,分子与分子相乘,分母与分母相乘)。 a c ac b,d bd 用式子表示: (2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。 a . c a d ad —~ = ?-= --- b d b c bc 用式子表示: 2、应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数, 奇负偶正” ;(2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。 二、分式的乘方 1法则:根据乘方的意义和分式乘法法则,分式的乘方就是把将分子、分母分别乘方,然后再相除。 / ■-n n a \ a 1 = 用式子表示: lb丿b n(其中n为正整数,a M 0) 2、注意事项:(1)乘方时,一定要把分式加上括号;(2)在一

个算式中同时含有乘方、乘法、除法时,应先算乘方,再算乘除,有 多项式时应先因式分解,再约分;(3)最后结果要化到最简 三、分式的加减法 (一)同分母分式的加减法 1法则:同分母分式相加减,分母不变,把分子相加减 用式子表示: 2、注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。 (二)异分母分式的加减法 1、法则:异分母分式相加减,先通分,转化为同分母分式后, a c ad bc ad - bc ——土——= -- 土----- — 再加减。用式子表示:b d bd bd bd 。 2、注意事项:(1)在异分母分式加减法中,要先通分,这是关 键,把异分母分式的加减法变成同分母分式的加减法。(2)若分式加减运算中含有整式,应视其分母为1然后进行通分。(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。 四、分式的混合运算 1、运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘

八年级数学经典练习题(分式及分式方程)汇总

一、选择题 1. (广东珠海)若分式 b a a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的10 1 倍 D .不变 2. 计算-22+(-2)2-(- 12)-1的正确结果是( ) A 、2 B 、-2 C 、6 D 、10 3. (四川遂宁)下列分式是最简分式的( ) A. a 22 B . a 2 C . 2 2b a + D . 2 22ab a - 5.(丽江)计算10 ()(12 -+= . 6. (江苏徐州)0132--= . 7. (江苏镇江常州)计算:-(- 12)= ;︱-12︱= ; 01()2-= ;11 ()2 --= . 8. (云南保山)计算101 ()(12 -+= . 9. (北京)计算:?-++?--)2(2730cos 2)2 1(1π. 10. 计算:|-3|+20110×2-1. 11. (重庆江津区)下列式子是分式的是( ) A 、 2 x B 、 1x x + C 、2x y + D 、x π 12. (四川眉山)化简m m n m n -÷-2)(的结果是( ) A .﹣m ﹣1 B .﹣m+1 C .﹣mn+m D .﹣mn ﹣n 13.(南充)若分式1 2 x x -+的值为零,则x 的值是( ) A 、0 B 、1 C 、﹣1 D 、﹣2

14. (四川遂宁)下列分式是最简分式的( ) A. b a a 232 B . a a a 32- C . 2 2b a b a ++ D . 2 22b a ab a -- 15. (浙江丽水)计算111 a a a - --的结果为( ) A 、 1 1 a a +- B 、1 a a - C 、﹣1 D 、2 17. (天津)若分式21 1 x x -+的值为0,则x 的值等于 . 18. (郴州)当x= 时,分式 的值为0. 20. (北京)若分式 x 的值为0,则x 的值等于 . 21. (福建省漳州市)分式方程 2 11 x =+的解是( ) A 、﹣1 B 、0 C 、1 D 、3 2 22. (黑龙江省黑河)分式方程 11x x --= ()() 12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 23. (新疆建设兵团)方程2x +1 1-x =4的解为 . 24. (天水)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与 22 35 x x +-,且点A 、B 到原点的距离相等.则x = . 25. (海南)方程 2 +x x =3的解是 . (2)解分式方程一定注意要验根. 26. (湖北潜江、天门、仙桃、江汉油田)化简)2()24 2( 2+÷-+-m m m m 的结果是 A .0 B .1 C .—1 D .(m +2)2

分式的概念及基本性质分式的运算

分式的概念及基本性质-分式的运算

————————————————————————————————作者:————————————————————————————————日期: ?

分式的概念及基本性质分式的运算一. 知识精讲及例题分析 (一)知识梳理 1. 分式的概念 形如A B (A、B是整式,且B中含有字母,B≠0)的式子叫做分式。其中A叫分式的分子,B叫分式的分 母。 注: (1)分式的分母中必须含有字母 (2)分式的分母的值不能为零,否则分式无意义 2. 有理式的分类 有理式 整式 单项式 多项式分式 ? ? ? ? ? ? ? ? 3. 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 A B A M B M = ? ? , A B A M B M = ÷ ÷ (M为整式,且M≠0) 4. 分式的约分与通分 (1)约分:把一个分式的分子与分母的公因式约去,叫分式的约分。 步骤: ①分式的分子、分母都是单项式时 ②分子、分母是多项式时 (2)通分:把n个异分母的分式分别化为与原来的分式相等的同分母的分式,为进行分式加减奠定基础。 通分的关键是准确求出各个分式中分母的最简公分母,即各分母所有因式的最高次幂的积。 求最简公分母的步骤: ①各分母是单项式时 ②各分母是多项式时 5. 分式的运算 (1)乘除运算 (2)分式的乘方 (3)分式的加减运算 (4)分式的混合运算 【典型例题】 例1. 下列有理式中,哪些是整式,哪些是分式。 ab a 2 , 1 x , a 3 ,- - x x y , x+1 π , 1 4 () x y -, 1 y a b () +, 1 2 a- 例2.下列分式何时有意义 (1)x x - + 1 2 ??(2) 1 1 ||x- (3) 4 1 2 x x- (4) x x x 22 + 例3. 下列分式何时值为零

分式的典型练习题(打印版)

分式的典型练习题 1、若分式4 242--x x 的值为零,则x 等于 。若分式961|2|2+---x x x 的值为0,则x = 。 2、若分式231-+x x 的值为负数,则x 的取值范围是 ;分式5 12++x x 的值为负,则x 应满足 。 3、分式方程3-x x +1=3-x m 有增根,则m= ; 4、若关于x 的分式方程3232 -=--x m x x 无解,则m 的值为 。 5、已知a=25,25-=+b ,求2++b a a b 得值为_________。 6、若将分式a+b ab (a 、b 均为正数)中的字母a 、b 的值分别扩大为原来的2倍,则分式的值为( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .缩小为原来的14 7、把分式0.122 0.30.25x x -+的x 系数化为整数,那么0.122 0.30.25x x -+= . 8、不改变分式的值,使231 72x x x -+-+-的分子和分母中x 的最高次项的系数都是正数, 应该是( ) A. 231 72x x x ++- B. 231 72x x x --- C. 23172x x x +-+ D. 231 72x x x --+ 9、若分式212()() x x x +--的值为0,则x 的取值范围为 ( ) (A) 21x x =-=或 (B) 1x = (C) 2x ≠± (D) 2x ≠ 10、▲不论x 取何值,分式m x x +-21 2总有意义,求m 的取值范围。 11、(1)已知0132=+-x x ,求① 221x x +的值。 ② 求441 x x +的值 (2)已知31 =+x x ,求1242 ++x x x 的值。 12、▲若112323,2x xy y x y x xy y +--=--则分式=___ 13、已知21)2)(1(43-+-=---x B x A x x x 是恒等式,求A 和B 的值。

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式的运算及题型讲解

§ 17.2分式的运算 一、分式的乘除法 1、法则: (1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母 的积作为积的分母。(意思就是,分式相乘,分子与分子相乘,分母 与分母相乘)。 a ?c ac 用式子表示:F?d bd (2) 除法法则:分式除以分式,把除式的分子、分母颠倒位置 后,再与被除式相乘。 a?d 翌 b c bc (1)分式中的符号法则与有理数乘除法 中的符号法则相同,即“同号得正,异号得 负,多个负号出现看个数, 奇负偶正” ;(2)当分子分母是多项式时,应先进行因式分解,以便 约分;(3)分式乘除法的结果要化简到最简的形式。 二、分式的乘方 1、法则:根据乘方的意义和分式乘法法则,分式的乘方就是把 将分子、分母分别乘方,然后再相除。 n n a a 用式子表示:b 『(其中n 为正整数,a z 0) 2、注意事项:(1)乘方时,一定要把分式加上括号;(2)在一 个算 用式子表示: 2、应用法则时要注意:

式中同时含有乘方、乘法、除法时,应先算乘方,再算乘除,有 多项式时应先因式分解,再约分;(3)最后结果要化到最简 三、分式的加减法 (一)同分母分式的加减法 1、法则:同分母分式相加减,分母不变,把分子相加减 用式子表示: 2、注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。 (二)异分母分式的加减法 1、法则:异分母分式相加减,先通分,转化为同分母分式后, a c ad be ad be 再加减。用式子表示:b d bd bd bd 。 2、注意事项:(1)在异分母分式加减法中,要先通分,这是关 键,把异分母分式的加减法变成同分母分式的加减法。(2)若分式加减运算中含有整式,应视其分母为1,然后进行通分。(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。 四、分式的混合运算 1、运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘除,最后算加减。遇到括号时,要先算括号里面的。

分式及分式方程精典练习题分析

分式及分式方程精典练习题 一、填空题: ⒈当x 时,分式1 223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac b 25的最简公分母是 ; ⒊化简:2 42--x x = . ⒋当x 、y 满足关系式________时, )(2)(5y x x y --=-25 ⒌化简=-+-a b b b a a . ⒍分式方程3 13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3 1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务 9、已知关于x 的方程32 2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题: ⒈下列约分正确的是( ) A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、2 14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= ⒊下列分式中,计算正确的是( ) A 、32)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22 -=+-b a b a D 、x y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x y x y x y x +-=--+-

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

《分式》典型练习题

分式知识点和典型习题 (一)、分式定义及有关题型 题型一:考查分式的定义 1、下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 2、下列分式中,最简分式有( ) 32222 2222222 212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个 3、下列各式: 2b a -,x x 3+,πy +5,() 14 32 +x ,b a b a -+,)(1y x m -中,是分式的共有( ) A.1个 B.2个 C.3个 D.4个 题型二:考查分式有意义的条件 1、当x 有何值时,下列分式有意义 (1) 4 4+-x x (2) 2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 1、当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x

题型四:考查分式的值为正、负的条件 1、(1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2+-x x 为非负数. (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 1、不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 13132 21+- (2) b a b a +-04.003.02.0 (3)b a b a 10 141534.0-+ 题型二:分数的系数变号 2、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a ---

培优专题分式方程培优提高经典例题

分式方程专题 例1:去分母法解分式方程 1、 ()()113116=---+x x x 2、2 2416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元: 1、用换元法解分式方程:(1) 6151=+++x x x x (2)12221--=+--x x x x 变式练习: (11上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= 例3:分式方程的(增)根的意义 1、 若分式方程: 024122=+-+-x x a 有增根,求a 的值。 2、关于x 的分式方程131=---x x a x 无解,则a=_________。 变式练习:当m 为 时,分式方程 ()01163=-+--+x x m x x x 有根。

例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t . 问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍; ⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算) 课堂总练习 1关于x 的分式方程 1131=-+-x x m 的解为正数,则m 的取值范围是 2.关于x 的方程 223242mx x x x +=--+会产生增根,则m 为____________ 3.若关于x 的方程 2111 x m x x ++=--产生增根,则 m =____________; 4.k 取何值时,方程x x k x x x x +=+-+211 2会产生增根? 5.当a 为何值时,关于x 的方程223242 ax x x x +=--+无解?

分式方程典型例题

三人行教育陈老师教案——分式方程典型例题 题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验. 例1.解方程(1) 2223-=---x x x (2) 11 4 112=---+x x x 专练一、解分式方程 (1)14-x =1; (2)3 5 13+=+x x ; (3) 30120021200=--x x (4)255 522-++x x x =1 (5) 2124111x x x +=+--. (6) 222746 1x x x x x +=+-- (7)11322x x x -+=--- (8)512552x x x =--- 题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根. 例2、 若方程x x x --=+-34 731有增根,则增根为 . 例3.若关于x 的方程3 1 3292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少? 专练习二: 1.若方程 33 23-+=-x x x 有增根,则增根为 . 2.当m 为何值时,解方程115122-=-++x m x x 会产生增根?

题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解. 例4、 若方程x m x x -=--223无解,求m 的值. 思考:已知关于x 的方程 m x m x =-+3 无解,求m 的值. 题型四:解含有字母的分式方程时,注意字母的限制. 例5、.若关于x 的方程 81=+x ax 的解为41 =x ,则a = 例6、.关于x 的方程 12 -=-+x m x 的解大于零, 求m 的取值范围. 注:解的正负情况:先化为整式方程,求整式方程的解 ①若解为正???>去掉增根正的解0x ;②若解为负? ??<去掉增根负的解0 x 解: 专练三: 1.若分式方程 5 2 )1()(2-=--x a a x 的解为3=x ,则a = . 3.已知关于x 的方程3 23-=--x m x x 解为正数,求m 的取值范围. 4.若方程k x x +=+233有负数根,求k 的取值范围. .

初二数学分式典型例题复习和考点总结

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义 2、当分子为零且分母不为零时,分式值为零。 【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)4 2||2--x x

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? ( 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 】 知识点睛中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±±=±= , 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 ) 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111 a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 222 1(1)()4111(1)a a a a a a a a a ---+÷ ?=-=--++- 【答案】4- 【例3】 ! 【例4】 先化简,再求值: 22144 (1)1a a a a a -+-÷ --,其中1a =- 【考点】分式的化简求值 例题精讲

分式加减法经典习题

分式的加减法 分式的加减法: (1)23+34=34?+ 34 ?= (2)ab ab 610-= (3)1a +1b =ab +ab = (4)b a 21+21ab = 因为最简公分母是___________,所以 b a 21+2 1ab = =_____________________ =_____________________ =_____________________-. 提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂 的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab ,它们的最简公分母是 (5)y x -1+y x +1 因为最简公分母是___________,所以 y x -1+y x +1 = (6)1()x x y -+y x +1 因为最简公分母是___________,所以 1()x x y -+y x +1 = 练习A : (1) a a 21+= (2) b c a c -= (3)a c b a c b ++- (4)b a b b a a +++=

(5)a b b b a a -+-= (6)x x -++1111 =

(7)231x +x 43; 因为最简公分母是_____,所以 231x +x 43 =2134x ?+34 x = + = (8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y ++1 x =+ (9)231x +xy 125; 因为最简公分母是___________ = (10) 24a b a b -;

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析 一、错用分式得基本性质 例1化简 错解:原式 分析:分式得基本性质就是“分式得分子与分母都乘以(或除以)同一个不等于零得整式,分式得值不变”,而此题分子乘以3,分母乘以2,违反了分式得基本性质. 正解:原式 二、错在颠倒运算顺序 例2计算 错解:原式 分析:乘除就是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误、 正解:原式 三、错在约分 例1 当为何值时,分式有意义? [错解]原式。 由得、 ∴时,分式有意义、 [解析]上述解法错在约分这一步,由于约去了分子、分母得公因式,扩大了未知数得取值范围,而导致错误。 [正解]由得且。 ∴当且,分式有意义、 四、错在以偏概全 例2 为何值时,分式有意义? [错解]当,得、 ∴当,原分式有意义. [解析]上述解法中只考虑得分母,没有注意整个分母,犯了以偏概全得错误。 [正解],得, 由,得. ∴当且时,原分式有意义、 五、错在计算去分母 例3 计算、 [错解]原式 =。 [解析]上述解法把分式通分与解方程混淆了,分式计算就是等值代换,不能去分母,、[正解]原式 。 六、错在只考虑分子没有顾及分母 例4 当为何值时,分式得值为零. [错解]由,得。 ∴当或时,原分式得值为零。 [解析]当时,分式得分母,分式无意义,谈不上有值存在,出错得原因就是忽视了分母不能为零得条件。

[正解]由由,得. 由,得且。 ∴当时,原分式得值为零. 典例分析 类型一:分式及其基本性质? 1、当x为任意实数时,下列分式一定有意义得就是()? A、B、C、D. 2。若分式得值等于零,则x=_______;3 ?、求分式得最简公分母。 【变式1】(1)已知分式得值就是零,那么x得值就是( ) A。-1B、0 C.1D、±1?(2)当x________时,分式没有意义、?【变式2】下列各式从左到右得变形正确得就是()? A、 B. C. D. 类型二:分式得运算技巧 (一) 通分约分 4、化简分式: 【变式1】顺次相加法计算: 【变式2】整体通分法计算: (二)裂项或拆项或分组运算?5。巧用裂项法 计算: 【变式1】分组通分法 计算: 【变式2】巧用拆项法计算: 类型三:条件分式求值得常用技巧 6.参数法已知,.?【变式1】整体代入法已知,求得值. 【变式2】倒数法:在求代数式得值时,有时出现条件或所求分式不易变形,但当分式得分子、分母颠倒后,变形就非常得容易,这样得问题适合通常采用倒数法.?已知:,求得值.?【变式3】主元法:当已知条件为两个三元一次方程,而所求得分式得分子与分母就是齐次式时,通常我们把三元瞧作两元,即把其中一元瞧作已知数来表示其它两元,代入分式求出分式得值、?已知:,求得值. 类型四:解分式方程得方法 解分式方程得基本思想就是去分母,课本介绍了在方程两边同乘以最简公分母得去分母得方法,现再介绍几种灵活去分母得技巧. (一)与异分母相关得分式方程7 ?、解方程=?【变式1】换元法解方程: 8。解方程 (二)与同分母相关得分式方程? 【变式1】解方程【变式2】解方程?类型五:分式(方程)得应用 9.甲、乙两个小商贩每次都去同一批发商场买进白糖。甲进货得策略就是:每次买1000元钱得糖;乙进货得策略就是每次买1000斤糖,最近她俩同去买进了两次价格不同得糖,问两人中谁得平均价格低一些? 【变式1】甲开汽车,乙骑自行车,从相距180千米得A地同时出发到B、若汽车得速度

因式分解及分式的计算练习题(题型全)

分式计算练习二 周案序 总案序 审核签字 一.填 空: 1.x 时,分式 4 2-x x 有意义; 当x 时,分式122 3+-x x 无意义; 2.当x= 时,分式 2 152x x --的值为零;当x 时,分式x x --11 2的值等于零. 3.如果b a =2,则2 222b a b ab a ++-= 4.分式ab c 32、bc a 3、ac b 25的最简公分母是 ; 5.若分式2 31 -+x x 的值为负数,则x 的取值范围是 . 6.已知2009=x 、2010=y ,则()??? ? ??-+?+4422y x y x y x = . 二.选 择: 1.在 31x+21y , xy 1 ,a +51 ,—4xy , 2x x , πx 中,分式的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 2.如果把 y x y 322-中的x 和y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍 3.下列各式:()x x x x y x x x 2 225 ,1,2 ,34 ,151+---π其中分式共有( )个。 A 、2 B 、3 C 、4 D 、5 4.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式B A 无意义 C 、当A=0时,分式B A 的值为0(A 、 B 为整式) D 、分数一定是分式 5.下列各式正确的是( ) A 、1 1++= ++b a x b x a B 、22 x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --=

分式方程(经典题型)

分式方程应用题分类解析 分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题. 一、营销类应用性问题 例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元? 分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式. 步骤:①这个问题涉及到的量有 ②等量关系是 ③设 ⑤列方程为 二、工程类应用性问题 例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的 3 2 ,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天? ⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由。 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组. 步骤:①这个问题涉及到的量有 ②等量关系是 ③设 ④列表为 ⑤列方程为 三、行程中的应用性问题 例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度. 分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等. 步骤:①这个问题涉及到的量有 ②等量关系是 ③设 ⑤列方程为 四、轮船顺逆水应用问题 例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。 分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即 顺水航行速度千米30=逆水航行速度 千米 20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速 度、逆水航行速度可用未知数表示,问题可解决. 步骤:①这个问题涉及到的量有 ②等量关系是 ③设 ⑤列方程为

相关主题
文本预览
相关文档 最新文档