二次微分方程的通解

  • 格式:doc
  • 大小:171.00 KB
  • 文档页数:8

下载文档原格式

  / 19
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 二阶常系数齐次线性微分方程

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐

次线性微分方程的解法

教学重点:二阶常系数齐次线性微分方程的解法

教学过程:

一、二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程: 方程

y ''+py '+qy =0

称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.

如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.

我们看看, 能否适当选取r , 使y =e

rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程

y ''+py '+qy =0

(r 2+pr +q )e rx =0.

由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx

就是微分方程的解.

特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2

422,1q p p r -±+-= 求出.

特征方程的根与通解的关系:

(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.

这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又

x r r x r x r e e e y y )(212121-==不是常数. 因此方程的通解为

x r x r e C e C y 2121+=.

(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微

分方程的两个线性无关的解.

这是因为, x r e y 11=是方程的解, 又

x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''

0)()2(121111=++++=q pr r xe p r e x r x r ,

所以x

r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为

x r x r xe C e C y 1121+=.

(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x

是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx

sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x

都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ),

y 2=e (α-i β)x =e αx

(cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2

1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i

x e x -=βα. 故e αx cos βx 、y 2=e αx

sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx

sin βx 是方程的线性无关解. 因此方程的通解为

y =e αx

(C 1cos βx +C 2sin βx ). 求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:

第一步 写出微分方程的特征方程

r 2

+pr +q =0

第二步 求出特征方程的两个根r 1、r 2.

第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.

例1 求微分方程y ''-2y '-3y =0的通解.

解 所给微分方程的特征方程为

r 2-2r -3=0, 即(r +1)(r -3)=0.

其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为

y =C 1e -x +C 2e 3x . 例2 求方程y ''+2y '+y =0满足初始条件y |x =0=4、y '| x =0=-2的特解.

解所给方程的特征方程为

r2+2r+1=0,即(r+1)2=0.

其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为

y=(C1+C2x)e-x.

将条件y|x=0=4代入通解,得C1=4,从而

y=(4+C2x)e-x.

将上式对x求导,得

y'=(C2-4-C2x)e-x.

再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为

x=(4+2x)e-x.

例 3 求微分方程y''-2y'+5y= 0的通解.

解所给方程的特征方程为

r2-2r+5=0.

特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,

因此所求通解为

y=e x(C1cos2x+C2sin2x).

n阶常系数齐次线性微分方程:方程

y(n) +p1y(n-1)+p2 y(n-2) +⋅⋅⋅+p n-1y'+p n y=0,

称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n-1,p n都是常数.

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.

引入微分算子D,及微分算子的n次多项式:

L(D)=D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n,

则n阶常系数齐次线性微分方程可记作

(D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n)y=0或L(D)y=0.

注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',⋅⋅⋅,D n y=y(n).

分析:令y=e rx,则

L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n)e rx=L(r)e rx.

因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.

n阶常系数齐次线性微分方程的特征方程:

L(r)=r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n=0

称为微分方程L(D)y=0的特征方程.

特征方程的根与通解中项的对应:

单实根r对应于一项:Ce rx;