2020-2021学年度初一数学整式的加减优生提升训练题2(附答案)
- 格式:doc
- 大小:1.15 MB
- 文档页数:29
2020-2021学年度初一数学整式的加减培优训练题(附答案)一、单选题 1.为了求2320081+2+2++2 的值,可令2320081+2+2++2S ,则2342009222+2+2+2S ,因此2009221S S -=-,所以23200820091+2+2++221.请仿照以上推理计算出2342019144444++++++的值是( )A .201941- B .202041-C .2019413D .20204132.在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,他们很快算出两数的乘积.例如:对于95×103,美索不达米亚人这样计算:第一步:(103+95)÷2=99;第二步:(103-95)÷2=4;第三步:查平方表,知99的平方是9801;第四步:查平方表,知4的平方是16;第五步:9801-16=9785=95×103. 请结合以上实例,设两因数分别为a 和 b,写出蕴含其中道理的整式运算( )A .22()()2a b a b ab +--=B .222()()2a b a b ab +-+=C .22()()22a b a b ab +-+= D .22()()22a b a b ab +--= 3.如图:由火柴棒拼出的一列图形,第n 个图形是由(1)n +个等边三角形拼成的,通过观察,分析发现:第8个图形中平行四边形的个数( ).A .16B .18C .20D .224.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )a b表示第a排第b列的5.如图,将1、2、3三个数按图中方式排列,若规定(,)数,则(5,4)与(51,30)表示的两个数的积是()A.6B.3C.2D.16.将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是()A.35 B.41 C.45 D.51二、填空题7.如图,等边三角形ABC的周长为30cm,P,Q两点分别从B,C两点同时出发,点P以6cm/s的速度按顺时针方向在三角形的边上运动,点Q以14cm/s的速度按逆时针方向在三角形的边上运动.设P,Q两点第一次在三角形ABC的顶点处相遇的时间为1t,第二次在三角形ABC顶点处相遇的时间为2t,则2t _______.8.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍________根,拼成第n个图形(n为整数)需要火柴棍________根(用含n的代数式表示).⨯的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,9.如图,一个99有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数,这个9位数是__________.10.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,⋯,依此规律,第n个图案有1499个黑棋子,则n=______.11.下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,则第⑥个图形中正多边形的个数为________12.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第10行从左边数第8个数是_________;数-1945是第_________行从左边数第_________个数.13.杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,解答下列问题:(1)图中给出了七行数字,根据构成规律,第8行中从右边数第4个数是_______; (2)利用不完全归纳法探索出第n 行中的所有数字之和为_________.14.设一列数1232018,,,...,a a a a 中任意三个相邻的数之和都是22,已知32a x =,1913a =,666a x =-,那么2018a =________.15.=_____.16.将正方体骰子(相对面上的点数分别为1和6,2和5,3和4)放置于水平桌面上,如图①,在图②中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则视作完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成2020次变换后,骰子朝上一面的点数是______.17.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖 块. 18.给定一列按规律排列的数:32-,1,710-,917,…,根据前4个数的规律,第三、解答题19.从2开始,连续的偶数相加,它们和的情况如下表:(1)当n=6时,S的值为__________.(2)根据上题的规律计算:26+28+30+…+60的值.20.[ 问题提出]一个边长为ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
2021年人教版七年级数学上册《第2章整式的加减》单元综合优生辅导提升训练(附答案)一.选择题(共15小题)1.下列式子:x2+1,+4,,,﹣5x,0,中,整式的个数是()A.6个B.5个C.4个D.3个2.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数()A.5个B.4个C.3个D.2个3.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个4.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个5.若单项式的系数、次数分别是a、b,则()A.a=,b=6B.a=﹣,b=6C.a=,b=7D.a=﹣,b=7 6.单项式﹣a2b的系数和次数分别是()A.0,﹣2B.1,3C.﹣1,2D.﹣1,37.单项式﹣2πxy2的系数和次数分别是()A.﹣2和4B.2π和3C.2和4D.﹣2π和38.单项式﹣5ab的系数与次数分别为()A.5,1B.﹣5,1C.5,2D.﹣5,29.多项式﹣5xy+xy2﹣1是()A.二次三项式B.三次三项式C.四次三项式D.五次三项式10.多项式6x4+2x2y3﹣3xy2﹣1的次数是()A.3B.4C.5D.611.对于多项式4x2﹣3,下列说法错误的是()A.系数为4B.次数为2C.常数项为﹣3D.次数最高项为4x212.多项式2x2﹣5x2y﹣y2﹣3的次数和三次项分别是()A.2和5x2y B.3和5x2y C.4和﹣5x2y D.3和﹣5x2y13.若8x m y与6x3y n的和是单项式,则m+n的值为()A.﹣4B.3C.4D.814.已知x3﹣m﹣n y2与2xy2是同类项,则m,n可以是()A.1,0B.﹣1,3C.﹣2,1D.﹣3,115.若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=3,n=0D.m=1,n=3二.填空题(共8小题)16.多项式3x3y﹣4xy2+2y次数是.17.若关于x、y的多项式2x2﹣2mxy﹣y2﹣xy﹣5是二次三项式,则m=.18.单项式﹣的系数是,次数是.19.已知关于x,y的代数式(a+4)x|a|y a+2是一个单项式,则a的值为.20.化简式子﹣[+(﹣1)]=.21.若a﹣b=2,b﹣c=3,则a﹣c=.22.若2a m﹣1b3与﹣3a2b n﹣1是同类项,则m+n=.23.若﹣x a y﹣2x2y c=bx2y总成立,则abc的值为.三.解答题(共5小题)24.把下列各式分别填在相应的大括号里:4,+2.单项式:{…};多项式:{…};整式:{…}.25.计算:(1)3a3+a2﹣2a3﹣a2;(2)(2x2﹣+3x)﹣3(x﹣x2+).26.先化简,再求值:5ab﹣2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣,b=2.27.已知下面5个式子:①x2﹣x+1,②abc+a﹣1,③x4++2,④5﹣x2,⑤﹣x2.回答下列问题:(1)上面5个式子中有个多项式,次数最高的多项式为(填序号),整式有个;(2)选择2个二次多项式,并进行加法运算.28.计算:先化简,再求值:3(﹣y2)﹣6(x+xy﹣y2),其中x=3,y=﹣1.参考答案一.选择题(共15小题)1.解:根据整式的定义,可以知道x2+1,,﹣5x,0属于整式,有4个,故选:C.2.解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.3.解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.4.解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.5.解:单项式的系数、次数分别是a、b,则a=﹣,b=6.故选:B.6.解:单项式﹣a2b的系数为﹣1,次数为2+1=3,故选:D.7.解:单项式﹣2πxy2的系数和次数分别是:﹣2π和3.故选:D.8.解:单项式﹣5ab的系数与次数分别为:﹣5,2.故选:D.9.解:多项式﹣5xy+xy2﹣1是三次三项式,故选:B.10.解:∵多项式的次数是多项式中次数最高的项的次数,∴多项式6x4+2x2y3﹣3xy2﹣1的次数是5.故选:C.11.解:多项式4x2﹣3,二次项系数为4,故选项A错误,符合题意;多项式4x2﹣3,次数为2,正确,不合题意;多项式4x2﹣3,常数项为﹣3,正确,不合题意;多项式4x2﹣3,次数最高项为4x2,正确,不合题意;故选:A.12.解:多项式2x2﹣5x2y﹣y2﹣3的次数和三次项分别为3,﹣5x2y,故选:D.13.解:∵8x m y与6x3y n的和是单项式,∴m=3,n=1,则m+n=3+1=4,故选:C.14.解:∵x3﹣m﹣n y2与2xy2是同类项,∴3﹣m﹣n=1,∴m+n=2,∴m,n可以是﹣1,3,故选:B.15.解:因为﹣2x6y与5x2m y n是同类项,所以2m=6,n=1,解得m=3,n=1,故选:B.二.填空题(共8小题)16.解:多项式3x3y﹣4xy2+2y次数是4,故答案为:4.17.解:∵关于x、y的多项式2x2﹣2mxy﹣y2﹣xy﹣5是二次三项式,∴﹣2mxy﹣xy=0,则﹣2m﹣1=0,解得:m=﹣.故答案为:﹣.18.解:单项式﹣的系数是﹣,次数是3,故答案为:﹣;3.19.解:∵关于x,y的代数式(a+4)x|a|y a+2是一个单项式,∴a+4≠0,|a|≠0,a+2≠0可得:a≠4,0,﹣2.故答案为:a≠4,0,﹣220.解:原式=﹣(﹣1)=1.故答案是:1.21.解:∵a﹣b=2,b﹣c=3,∴将两式相加得a﹣b+b﹣c=a﹣c=2+3=5.故答案为:5.22.解:∵2a m﹣1b3与﹣3a2b n﹣1是同类项,∴m﹣1=2,n﹣1=3,解得m=3,n=4,则m+n=3+4=7,故答案为:7.23.解:因为﹣x a y﹣2x2y c=bx2y总成立,所以a=2,b=﹣1﹣2=﹣3,c=1,所以abc=2×(﹣3)×1=﹣6.故答案为:﹣6.三.解答题(共5小题)24.解:单项式:{4,x2,•};多项式:{+b,πR2﹣πr2,2x﹣3,﹣x2+yz,•};整式:{4,x2,+b,πR2﹣πr2,2x﹣3,﹣x2+yz,•};故答案为:4,x2;+b,πR2﹣πr2,2x﹣3,﹣x2+yz;4,x2,+b,πR2﹣πr2,2x﹣3,﹣x2+yz.25.解:(1)原式=a3;(2)原式=2x2﹣+3x﹣3x+3x2﹣=5x2﹣2.26.解:原式=5ab﹣2(3ab﹣4ab2﹣ab)]﹣5ab2=5ab﹣6ab+8ab2+ab﹣5ab2=3ab2.当a=﹣,b=2,原式=3×(﹣)×22=﹣4.27.解:(1)上面5个式子中有3个多项式,分别是:①②④,次数最高的多项式为②,整式有4个,分别是①②④⑤;故答案为:3,②,4;(2)选择2个二次多项式:(x2﹣x+1)+(5﹣x2)=x2﹣x+1+5﹣x2=﹣x+6.28.解:原式=x﹣3y2﹣x﹣2xy+3y2=﹣2xy,当x=3,y=﹣1时,原式=﹣2×3×(﹣1)=6.。
人教版2020七年级数学上册第二章整式的加减能力提升训练题2(附答案详解)1.下列关于单项式的说法中,正确的是( )A .系数是,次数是2B .系数是,次数是2C .系数是,次数是D .系数是,次数是32.下列计算正确的是( )A .22523a a -=B .2222a a a -=-C .223235m m m +=D .2233a a +=3.在下列式子3ab ,-4x ,75abc -,π,2m n -,0.81,1y ,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个4.观察下列式:71=7,72=49,73=343,74=2041,75=16807,76=117649,…根据上述算式中的规律,你认为72018的末位数字是( )A .9B .7C .3D .15.在下列各式:①-3;②ab =ba ;③x ;④2m -1>0;⑤1x;⑥8(x 2+y 2)中,代数式的个数是( )A .1个B .2个C .3个D .4个 6.我们知,3的正整数次幂:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……,观察归纳,可得32007的个位数字是A .1B .3C .7D .97. 多项式ab 2+25的次数和项数分别为( )A .次数为5,项数为2B .次数为3,项数为2C .次数为5,项数为1D .次数为3,项数为38.设一列数中相邻的三个数依次为m ,n ,p ,且满足 2p m n =- ,若这列数为-1,3,-2,a ,-7,b,则b= ( ) A .118 B .128 C .178 D .1889.用一个正方形在四月份的日历上圈出4个数,这四个数字的和不可能是( ) A .104 B .24 C .108 D .2810.在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( )11.减去-3x 得236x x -+的式子为( )A .26x +B .236x x ++C .26x x -D .266x x -+ 12.若3k x -(k-2)x+1是二次三项式,则k 的值为( ) A .±3 B .-3 C .±2 D .-213.多项式52222368x y x y xy ---的次数是m ,常数项为n ,则m+n=________.14.若()42423x m x -+-是关于x 的四次二项式,则m =____________. 15.已知当x =-2时,多项式ax 3+bx +1的值为9,则当x =2时,多项式ax 3+bx +13的值为__.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.观察下列等式:21×2=21+2,32×3=32+3,43×4=43+4,…,设n 为自然数,则第n 个式子可表示为_______.18.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.19.单项式236a b -的系数是 ,次数是 .20.在公式s=12(a+b)h 中,已知a=3,b=7,s=15,则h=__________, 21.如图所示,图中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数是_________.22.代数式53xy π-的系数是_____. 23.单项式427m n -的系数是__,次数是__,多项式﹣45x 2y+23x 4y ﹣x+1最高次项是__ 24.单项式1的系数是____________.25.先化简,再求值:2222282(23)3(4)a b a b ab a b ab +---,其中2a =-,3b =.26.化简求值:(1)4x 2﹣(2x 2+x ﹣1)+(2﹣x 2﹣3x ),其中x=﹣12; (2)5(3x 2y ﹣xy 2)﹣(xy 2+3x 2y ),其中x=12,y=﹣1. 27.已知关于x 、y 的多项式x 2+ax +y -b 与bx 2-3x +6y -3 的差与字母x 无关,求代数式2(a 2-2ab -b 2)-3(3a 2-4ab -4b 2)的值。
人教版2020七年级数学上册第二章整式的加减培优提升训练题2(附答案详解) 1.下列运算正确的是( )A .43m m -=B .33323a a a -=-C .220a b ab -=D .2yx xy xy -= 2.若323m a b --与12n b a +是同类项,则m 、n 的值分别为( )A .1,1B .5,3C .5,1D .-1,-1 3.在式子1x ,a ,25x y +,0.9,132-,2a -,23x y -,13x + 中,单项式的个数是( )A .5个B .4个C .3个D .2个 4.若代数式6a x b 6与a 5b y 是同类项,则x ﹣y 的值是( )A .11B .﹣11C .1D .﹣15.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定 6.下列式子:2a 2b ,3xy -2y 2,2a b +,4,-m ,2x yz x +,ab c π-,其中多项式有( )A .2个B .3个C .4个D .5个7.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式 8.小雨写了几个多项式,其中是五次三项式的是( )A .y 5-1B .5x 2y 2-x+yC .3a 2b 2c-ab+1D .3a 5b-b+c9.用黑白两种颜色的正六边形地砖按如图所示的规律拼成若干图案,第n 个图案中,白色地砖共( )块.A .4n+2B .5n+2C .6n ﹣2D .6n10.下列说法正确的是()A .单项式x 3yz 4系数是1,次数是7B .x 2y+1是三次二项式C .单项式232a b π-的系数是12-,次数是6D .多项式223++x xy 是四次三项式 11.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60︒的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60︒的方向运动到O 上的点4A 处;…按此规律运动到点A 2018处,则点A 2018与点0A 间的距离是( )A .4B .23C .2D .012.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:_____.13.如果x 123a b +与32y 7a b -是同类项,那么合并的结果是________.14.下列图形由正六边形、正方形和等边三角形组成,自左向右,第1个图中有6个等边三角形;第2个图中有10个等边三角形;第3个图中有14个等边三角形组成;…按照此规律,第n 个图中等边三角形的个数为_____个.15.一个只含有字母a 的二次三项式,它的二次项系数,一次项系数均为﹣3,常数项为1,则这个多项式为______16.多项式2231x y xy -+的次数是__________,常数项是__________.17.-2x 2y 的系数是_____________.18.一辆客车上原有(6a ﹣2b )人,中途下车一半人数,又上车若干人,这时车上共有(12a ﹣5b )人.则中途上车的乘客是_____人.19.若与所得的差是单项式,则m = ______ n = ______.20.一列式子:-x ,2x 2,-3x 3,…,-9x 9,10x 10,……,按照这列数排列规律,你认为第n 个数为______21.若3a 2bc m 为七次单项式,则m 的值为___.22.如图1,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为_____.(用含a ,b 的代数式表示)23.设22132A x xy y =--,22242B x xy y =--,那么,2 1.5A B -=________. 24.观察图形,解答问题(1)按下表已填写的形式填写表中的空格; 图① 图②图③三个角上三个数的积 1×(-1)×2=-2(-3)×(-4)×(-5)=-60 三个角上三个数的和 1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商 (-2)+2=-1 (2)请用你发现的规律求出图④中的数x .25.化简:(1)12x ﹣20x+10x(2)2(2a ﹣3b )﹣3(2b ﹣3a )26.先化简,再求值:5ab-a 3b 2-ab+12a 3b 2-32ab-a 3b 2+2,其中a=-1,b=2. 27.计算某个整式减去多项式238ab bc a bc ac -+++时,一个同学误认为是加上此多项式,结果得到的答案是28ab bc ac -++.请你求出原题的正确答案.28.化简:﹣2x 2﹣5x +3﹣3x 2+6x ﹣1.29.阅读材料:计算1+2+22+23+24+…+22017+22018.解:设S =1+2+22+23+24+…+22017+22018,①将等式两边同时乘2,得2S =2+22+23+24+25+…+22018+22019,②由②-①,得2S -S =22019-1,即S =22019-1,即1+2+22+23+24+…+22017+22018=22019-1.请你仿照此法回答下列问题:(1)填空:1+2+22+23=________;(2)计算:1+2+22+23+24+…+29+210;(3)计算:1+13+(13)2+(13)3+(13)4+…+(13)n (其中n 为正整数). 30.已知多项式mx 5+nx 3+px ﹣7=y ,当x=﹣2时,y=5,当x=2时,求y 的值.31.已知2220a a +-=,求代数式()()()3232241a a a a +---的值.32.化简:(1)221232x xy x xy ⎛⎫---+⎪⎝⎭ (2)()()222222132a b ab a b ab +----33.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.()1你认为图2中大正方形的边长为________;小正方形(阴影部分)的边长为________.(用含a 、b 的代数式表示)()2仔细观察图2,请你写出下列三个代数式:2()a b +,2()a b -,ab 所表示的图形面积之间的相等关系,并选取适合a 、b 的数值加以验证.()3已知7a b +=,6ab =.求代数式()a b -的值.34.(1)化简:3a 3﹣(3a 2+b 2﹣5b )+a 2﹣5b+b 2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣2 335.先化简,再求值,x2- 3(2x2- 4 y) + 2(x2-y) ,其中| x + 2 | +(5 y -1)2 = 0.参考答案1.B【解析】A. 43m m m -= ,错误;B. 33323a a a -=- ,正确;C. 22a b ab 与 不是同类项,不能合并,故错误;D. 2yx xy xy -=-,错误,故选B.2.C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值.【详解】∵323m a b --与12n b a +是同类项,∴m -3=2,2=n+1,∴m=5,n=1.故选C.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.A【解析】【分析】根据单项式的定义进行解答即可.【详解】解:0.9,a,1 32-是单独的一个数,故是单项式;2a -,23x y -是数与字母的积,故是单项式. 所以A 选项是正确的.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.4.D【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得x、y的值,进而解答即可.【详解】因为代数式6a x b6与a5b y是同类项,可得:x=5,y=6,所以x-y=5-6=-1,故选D.【点睛】本题考查了同类项,关键是根据同类项是字母相同,且相同的字母的指数也相同解答.5.A【解析】【分析】设重叠部分的面积为x,由题意可得m=7﹣x,n=3﹣x,两式相减即可.【详解】解:设重叠部分的面积为x.由题意得,m=7﹣x,n=3﹣x,∴m﹣n=(7﹣x)﹣(3﹣x)=4,故选A.【点睛】利用面积分别列出两个等量关系是本题的关键.6.B【解析】2a2是单项式,3xy−2y2是多项式,a b2+是多项式,4是单项式,−m是单项式,x yz2x+不是多项式,ab cπ-是多项式.故选:B. 7.B 【解析】【分析】本题考查多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】根据多项式的定义,多项式3x3−2x2y2+x+3有4项,最高项的指数是4,因此是四次四项式. 故答案选B.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.8.C【解析】【分析】利用多项式的系数与次数的定义解答即可.【详解】A.中的多项式是五次二项式,B.中的多项式是四次三项式,D.中的多项式是六次三项式.故选C.【点睛】本题考查了多项式的次数和系数,几个单项式的和叫做多项式,一个多项式中,次数最高的项的次数,叫做这个多项式的次数.9.A【解析】【分析】根据已知图形得出每个图形都比其前一个图形多4个白色地砖,据此可得答案.【详解】∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2(块),故选A.【点睛】此题主要考查图形的变化类问题,重点考查了学生通过特例分析从而归纳总结出一般结论的能力.10.B【解析】【分析】分别利用单项式中的数字因数叫做单项式的系数,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:A、单项式x3yz4系数是1,次数是8,错误;B、x2y+1是三次二项式,正确;C、单项式-232a bπ的系数是-2π,次数是5,错误;D、多项式2x2+xy+3是二次三项式,错误;故选B.【点睛】此题主要考查了单项式与多项式,正确把握相关定义是解题关键.11.B【解析】试题解析:解:如图.∵⊙O的半径=2,由题意得,A0A1=4,A0A2=23,A0A3=2,A0A4=23,A0A5=2,A0A6=0,A0A7=4,…∵2018÷6=336…2,∴按此规律运动到点A2018处,A2018与A2重合,∴A0A2018=A0A2=23.故选B.点睛:本题考查了图形的变化类,正确的作出图形是解题的关键.12.﹣2x3(答案不唯一).【解析】【分析】根据单项式系数、次数的定义来求解即可.【详解】单项式的次数是指单项式中所有字母因数的指数和,所以符合条件单项式可为﹣2x3,故答案为﹣2x3(答案不唯一).【点睛】本题考查了单项式的概念和单项式的次数的概念,单项式的次数是指单项式中所有字母因数的指数和.熟记概念是解题关键.13.324a b-【解析】【分析】同类项是指所含字母相同,且相同字母的指数也相同的单项式.根据定义即可求出答案.【详解】根据定义可得:1322xy+=⎧⎨=⎩,解得:21xy=⎧⎨=⎩,则323232374a b a b a b-=-.【点睛】本题主要考查的是同类项的定义以及合并同类项的法则,属于基础题型.理解同类项的定义是解决这个问题的关键.14.4n+2【解析】【分析】根据题中等边三角形的个数找出规律,进而得到结论.【详解】解:∵第1个图由6=4+2个等边三角形组成,∵第二个图由10=4×2+2等边三角形组成,∵第三个图由14=3×4+2个等边三角形组成,∴第n个等边三角形的个数之和4n+2.故答案为:4n+2.【点睛】本题考查的是图形规律的变化类题目,根据图形找出规律是解答此题的关键.15.﹣3a2﹣3a+1.【解析】解:由题意得:该多项式为:﹣3a 2﹣3a +1.故答案为:﹣3a 2﹣3a +1.点睛:此题考查的是多项式的性质,根据条件及多项式的项及次数的定义可以得出所求的多项式.16.3, 1【解析】【分析】根据多项式的系数和项的定义得出即可.【详解】多项式2231x y xy -+的次数是3,常数项是1,故答案为:3,1【点睛】本题考查了多项式,掌握多项式中最高次项的次数叫多项式的次数,不含字母的项叫多项式的常数项是解题的关键.17.-2.【解析】解:-2x 2y 的系数是-2.故答案为:-2.18.(9a ﹣4b ).【解析】【分析】先求出中途下车后车上剩余的人数,然后用最后车上的人数减去中途下车后剩余的人数就是上车的人数.【详解】解:根据题意,中途下车后车上剩余的人数为: 12×(6a-2b )=3a-b , (12a-5b )-(3a-b )=12a-5b-3a+b=9a-4b .故答案为(9a-4b ).【点睛】本题主要考查了整式的加减,求出中途下车后剩余的人数是解题的关键,计算时要注意符号的处理,这是本题容易出错的地方.19.2 4【解析】【分析】根据差是单项式,可得同类项,根据合并同类项,可得答案.【详解】由3a2b n与-5a m b4所得的差是单项式,得与,故m=2,n=4,故答案为:2,4.【点睛】本题考查了合并同类项,系数相加字母及指数不变是解题关键.-20.()1n n nx【解析】【分析】从系数、指数分别进行分析即可.【详解】解:观察系数可知,每奇数项的符号均为“-”,系数数字以及指数均同于序号数,由此可得-.第n个数为()1n n nx【点睛】本题考察了数字规律的探索.21.4.【解析】【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为:4.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.5a ﹣9b【解析】【分析】剪下的上面一个小矩形的长为a ﹣b ,下面一个小矩形的长为a ﹣2b ,宽都是()132a b -,所以这两个小矩形拼成的新矩形的长为a ﹣b+a ﹣2b ,宽为()132a b -,然后计算这个新矩形的周长.【详解】新矩形的周长为 ()()()12[23]592a b a b a b a b .-+-+-=- 故答案为5a ﹣9b .【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a 和b 表示出剪下的两个小矩形的长与宽. 23.2225x y -+-【解析】【分析】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,然后去括号合并同类项即可. 【详解】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,得 2222123 1.52422x xy y x xy y -----()() 222262363x xy y x xy y =---++222262363x xy y x xy y =---++=2225x y -+-.故答案为:2225x y -+-.本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.24.(1)5;170;10;17(2)x =-30【解析】试题分析:(1)仔细观察图形和表格中的数据变化,发现规律并利用规律分别写出即可; (2)根据发现的规律直接写成即可.试题解析:(1)图②.()()60125-÷-=图③(﹣2)×17×(﹣5)=170 (﹣2)+17+(﹣5)=101701017÷=(2)()()589360⨯-⨯-=()()58912+-+-=-()3601230÷-=-所以x=﹣30.25.(1)2x (2)13a-12b【解析】试题分下:(1)直接合并同类型即可,即把系数相加,字母和字母的指数不变; (2)先去括号,然后合并同类项,去括号时一是要注意不要漏乘括号内的项,二是注意括号前是“-”时,去掉括号和“-”后括号内各项的符号都要变号.解:(1)12x ﹣20x+10x原式=(12-20+10)x=2x(2)2(2a ﹣3b )﹣3(2b ﹣3a )原式 =4a-6b-6b+9a=13a-12b26.52ab-32a 3b 2+2,3.【分析】原式去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】原式=35--ab 2ab ab ⎛⎫ ⎪⎝⎭+3232321--2a b a b a b ⎛⎫+ ⎪⎝⎭+2 =52ab-32a 3b 2+2. 当a=-1,b=2时,原式=52×(-1)×2-32×(-1)3×22+2 =-5+6+2=3.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.4368ab bc a ac -+--.【解析】【分析】设该整式为A ,根据题意求出A 的表达式,再进行正确的计算即可.【详解】设该整式为A ,∵A+(b ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ,∴A=(﹣2ab+bc+8ac)﹣(ab ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣3ab+2bc ﹣3a ,∴A ﹣(ab ﹣2bc+3a+bc+8ac )=(﹣3ab+2bc ﹣3a)﹣(ab ﹣2bc+3a+bc+8ac)=﹣3ab+2bc ﹣3a ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣4ab+3bc ﹣6a ﹣8ac .28.252x x -++.【解析】试题分析:先找出题目中的同类项,再根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.试题解析:解:原式=(﹣2﹣3)x2+(﹣5+6)x+(3﹣1)=﹣5x2+x+2.点睛:本题主要考查合并同类项的法则.关键是掌握系数相加作为系数,字母和字母的指数不变.合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.29.(1)15;(2) 211-1;(3) 32-12×(13)n【解析】【分析】(1)分别计算出各数,然后求和即可;(2)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(3)同理即可得到所求式子的值.【详解】(1)1+2+22+23=1+2+4+8=15.故答案为15.(2)设S=1+2+22+23+24+…+29+210,①等式两边同时乘2,得2S=2+22+23+24+…+210+211,②由②-①,得S=211-1,即1+2+22+23+24+…+21032=211-1.(3)设S=1+13+(13)2+(13)3+(13)4+…+(13)n,等式两边同时乘13,得13S=13+(13)2+(13)3+(13)4+…+(13)n+1,两式相减,得23S=1-(13)n+1,则S=32-32×(13)n+1=32-12×(13)n,即1+13+(13)2+(13)3+(13)4+…+(13)n=-12×(13)n.【点睛】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.30.-19【解析】先把x =﹣2时,y =5代入,整理得25m +23n +2p =-12①,把代入mx 5+nx 3+px ﹣7=y ,得y =25m +23•n +2p ﹣7②,然后把①代入②即可.【详解】当x=﹣2时,y=m×(﹣2)5+n•(﹣2)3+p (﹣2)﹣7=5,则﹣25m ﹣23n ﹣2p ﹣7=5,﹣25m ﹣23n ﹣2p=12,25m+23n+2p=-12①,当x=2时,y=25m+23•n+2p ﹣7②,把①代入②得:y=﹣12﹣7=﹣19.【点睛】本题考查了整体代入法求代数式的值,解答本题的关键是观察题目的特点,整体代入求解. 31.-2【解析】【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并后将已知等式变形代入计算即可求出值.【详解】2220a a +-=,222a a ∴+=,则原式222948224242a a a a a =--+=+-=-=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.32.(1)2332x -;(2)2ab -. 【解析】【分析】(1)先去括号后再合并同类项即可.(2)先去括号后再合并同类项即可.(1)原式2221323 3.22x xy x xy x =--+-=- (2)原式22222222232.a b ab a b ab ab =+-+--=-【点睛】考查整式的化简,掌握去括号法则以及合并同类项法则是解题的关键.33.(1)a +b ;a -b ;(2)(a +b )2=(a -b )2+4ab (3)a -b =5【解析】【分析】()1观察图形的出图2中大小正方形的边长;()2 由()1可得大正方形的面积2()a b +,减去阴影部分的小正方形的面积2()a b -,等于4块小长方形的面积4ab ,即22()()4a b a b ab +=-+; () 3由()2可以求出222()()474625a b a b ab -=+-=-⨯=,进一步开方得出答案即可.【详解】()1大正方形的边长为+a b ;小正方形的边长(阴影部分)为-a b ;()2 22()()4a b a b ab +=-+.例如:当5a =,2b =时,22()(52)49a b +=+=,()()2245245249a b ab -+=--⨯⨯=, 22()()4a b a b ab ∴+=-+.()3 22()()4a b a b ab +=-+,222()()474625a b a b ab ∴-=+-=-⨯=,5a b ∴-=或5a b -=-,a b >,5a b ∴-=.【点睛】本题主要考查列代数式,完全平方公式的实际应用,掌握图形与代数式的关系是解题的关键.34.(1)3a3﹣2a2;(2)﹣2x+3y2,﹣8 3【解析】【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【详解】(1)原式=3a3-3a2-b2+5b+a2-5b+b2,=3a3-2a2;(2)原式=x-2x+2y2-x+y2,=-2x+3y2,当x=2,y=-23时,原式=-2×2+3×(-23)2,=-4+43,=-83.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.35.-3x2+10y,-10.【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】原式=x2-6x2+12y+2x2-2y=-3x2+10y,∵|x+2|+(5y-1)2=0,∴x=-2,y=15,则原式=-12+2=-10.【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
人教版2020七年级数学上册第二章整式的加减优生提升测试卷(附答案详解) 1.下列各式中,合并同类项正确的是( )A .4x 2-x 2=4B .6a 2-5a 2=a 2C .3a 2-a =2aD .3xy -3y =x2.如图,从边长为(a +3)cm 的大正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为( )A .(4a +12)cmB .(4a +8)cmC .(2a +6)cmD .(2a +4)cm3.有一列数1a , 2a , 3a , 4a ,…, n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若1a =2,则2008a 值为( )A .2B .-1C .12D .2008 4.下列代数式中整式有( )1x , 2x +y , 13a 2b , x y π-, 54yx , 0.5 , a A .4个B .5个C .6个D .7个5.单项式223x y -的系数和次数分别是( )A .﹣2,3B .﹣2,2C .﹣23,3 D .﹣23,2 6.如图,用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,……,那么搭2014个这样的三角形需要火柴棒( )A .6042根B .6043根C .4028根D .4029根7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为A .3B .2C .0D .-18.下列说法正确的是 ( )9.下列运算正确的是( ) A .x 3+x 2=x 5B .x 3﹣x 2=xC .x 3÷x 2=xD .x 3•x 2=x 610.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,… 按照上述规律,第2017个单项式是( ) A .2017x 2017B .4034x 2017C .4033x 2017D .4035x 201711.小李有 a 2 本书,小张把自己的书给了小李 m 本后,他们两人书的数量相同,则小张原来有书_____本,这是一个_________次多项式.12.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第 n 个图 案中正方形的个数是 .13.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示: 挪动珠子数(颗) 2 3 4 5 6 … 所得分数(分) 511192941…按表中规律,当所得分数为71时,则挪动的珠子数为_____颗;当挪动n 颗珠子时(n 为大于1的整数),所得分数为_______(用含n 的代数式表示)。
2021-2022学年人教版七年级数学上册《第2章整式的加减》综合培优提升训练(附答案)1.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x62.长方形的一边为2a﹣3b,另一边比它小a﹣b,则此长方形的另一边为()A.3a﹣4b B.3a﹣2b C.a﹣2b D.a﹣4b3.已知﹣2x m﹣1y3与x n y m+n是同类项,那么(n﹣m)2021的值是()A.1B.﹣1C.22021D.04.下列各题中去括号正确的是()A.1﹣3(x+1)=1﹣3x﹣1B.C.D.5(x﹣2)﹣2(y﹣1)=5x﹣10﹣6y﹣25.已知关于x的多项式mx2﹣mx﹣2与3x2+mx+m的和是单项式,则代数式m2﹣4m+4的值是()A.25B.0C.2或﹣3D.25或06.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD 中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C1,图2中阴部分的周长为C2,则C1﹣C2的值()A.0B.a﹣b C.2a﹣2b D.2b﹣2a7.如果2x4n y6与﹣3x m﹣3y6是同类项,那么12n﹣3m+3的值是.8.单项式与﹣2x2y3m﹣n是同类项,则m+n=.9.计算4a+2a﹣a的结果等于.10.计算2a2+3a2﹣a2的结果等于.11.已知3x3m+5n+9与﹣x4m+6n﹣7是同类项,则m+n=.12.化简:2x2+1﹣3x+7﹣2x2+5x=.13.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)的值与字母x的取值无关,则代数式a2b的值为.14.已知A=x2﹣ax﹣1,B=2x2﹣ax﹣1,且多项式A﹣B的值与字母x取值无关,则a 的值为.15.若多项式x2﹣4kxy+5y2﹣xy+9不含有xy项,则k=.16.若多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,则k=.17.若a+b=4,a+c=,则(b﹣c)2﹣2(b﹣c)+=.18.若代数式3b﹣2a的值是5,则代数式2(a﹣b)﹣3(3b﹣2a)﹣b+1的值为.19.若mn=m﹣3,则mn+4m+8﹣5mn=.20.化简﹣3(a﹣2b+1)的结果为.21.﹣[a﹣(b﹣c)]去括号应得.22.=3x2﹣2x+5.23.先化简,再求值:﹣(2x﹣3y2)+(2x﹣2y2)﹣x,其中,.24.先化简,再求值:(4a2b﹣3ab2)﹣(﹣a2b+2ab2),其中a=1,b=2.25.先化简,再求值:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)+ab2,其中a=﹣,b=﹣1.(2)5x2﹣[2xy﹣3(xy+2)+5x2],其中|2x﹣1|+(3y+2)2=0.参考答案1.解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.2.解:∵长方形的一边为2a﹣3b,另一边比它小a﹣b,∴此长方形的另一边为:2a﹣3b﹣(a﹣b)=2a﹣3b﹣a+b=a﹣2b.故选:C.3.解:由题意得:,解得:,则(n﹣m)2021=(1﹣2)2021=﹣1,故选:B.4.解:A选项,原式=1﹣3x﹣3,故该选项不符合题意;B选项,原式=1﹣x+3,故该选项符合题意;C选项,原式=1﹣2x+1,故该选项不符合题意;D选项,原式=5x﹣10﹣2y+2,故该选项不符合题意;故选:B.5.解:∵关于x的多项式mx2﹣mx﹣2与3x2+mx+m的和是单项式,∴mx2﹣mx﹣2+3x2+mx+m=(m+3)x2+m﹣2,即m+3=0或m﹣2=0,解得:m=﹣3或m=2,当m=﹣3时,原式=(m﹣2)2=25;当m=2时,原式=0.故选:D.6.解:由题意知:C1=AD+CD﹣b+AD﹣a+a﹣b+a+AB﹣a,因为四边形ABCD是长方形,所以AB=CD∴C1=AD+CD﹣b+AD﹣a+a﹣b+a+AB﹣a=2AD+2AB﹣2b,同理,C2=AD﹣b+AB﹣a+a﹣b+a+BC﹣a+AB=2AD+2AB﹣2b,故C1﹣C2=0.故选:A.7.解:由同类项的意义可知,4n=m﹣3,即4n﹣m=﹣3,所以12n﹣3m+3=3(4n﹣m)+3=3×(﹣3)+3=﹣6,故答案为:﹣6.8.解:∵单项式与﹣2x2y3m﹣n是同类项,∴,解得,∴m+n=1﹣3=﹣2,故答案为:﹣2.9.解:4a+2a﹣a=(4+2﹣1)a=5a.故答案为:5a.10.解:原式=(2+3﹣1)a2=4a2,故答案为:4a2.11.解:∵3x3m+5n+9与﹣x4m+6n﹣7是同类项,∴3m+5n+9=4m+6n﹣7.整理,得m+n=7+9=16,∴m+n=16.故答案为:16.12.解:2x2+1﹣3x+7﹣2x2+5x=(2x2﹣2x2)+(﹣3x+5x)+(1+7)=2x+8.故答案为:2x+8.13.解:∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)的值与字母x的取值无关,∴(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x+5y+1=(2﹣2b)x2+(a+3)x+4y+7,∴2﹣2b=0,a+3=0,解得:b=1,a=﹣3,∴a2b=(﹣3)2=9.故答案为:9.14.解:A﹣B=(x2﹣ax﹣1)﹣(2x2﹣ax﹣1)=x2﹣ax﹣1﹣x2+ax+=﹣ax﹣,∵多项式A﹣B的值与字母x取值无关,∴﹣a=0,即a=0.故答案为:0.15.解:原式=x2﹣(4k+1)xy+5y2+9,∵合并后不含有xy的项,∴4k+1=0,解得:k=.故答案是:.16.解:x2+2kxy﹣5y2﹣2x﹣6xy+4=x2+(2kxy﹣6xy)﹣5y2﹣2x+4=x2+(2k﹣6)xy﹣5y2﹣2x+4,因为多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,所以2k﹣6=0,解得k=3.故答案为:3.17.解:∵a+b=4,a+c=,∴b﹣c=3,则原式=﹣7+=6.故答案为:6.18.解:原式=2a﹣2b﹣9b+6a﹣b+1=8a﹣12b+1=﹣4(3b﹣2a)+1由题意得:3b﹣2a=5,得到原式=﹣20+1=﹣19,故答案为:﹣1919.解:mn+4m+8﹣5mn=﹣4mn+4m+8,当mn=m﹣3时,原式=﹣4(m﹣3)+4m+8=﹣4m+12+4m+8=20,故答案为:20.20.解:原式=﹣3a+6b﹣3.故答案为:﹣3a+6b﹣3.21.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.22.解:∵2x2﹣x+1﹣(3x2﹣2x+5)=﹣x2+x﹣4.∴2x2﹣x+1﹣(﹣x2+x﹣4)=3x2﹣2x+5.故答案为:﹣x2+x﹣4.23.解:原式=﹣2x+3y2+2x﹣2y2﹣x=y2﹣x,当x=﹣,y=时,原式=()2﹣(﹣)==.24.解:(4a2b﹣3ab2)﹣(﹣a2b+2ab2)=4a2b﹣3ab2+a2b﹣2ab2=5a2b﹣5ab2,当a=1,b=2时,原式=5×12×2﹣5×1×22=10﹣20=﹣10.25.解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b+ab2=3a2b,∵,b=﹣1,∴原式==;(2)原式=5x2﹣(2xy﹣xy﹣6+5x2)=5x2﹣xy+6﹣5x2=﹣xy+6,∵|2x﹣1|+(3y+2)2=0,∴2x﹣1=0,3y+2=0,∴,,∴=.。
2020-2021学年人教新版七年级上册数学《第2章整式的加减》单元测试卷一.选择题1.代数式﹣(x﹣y),去括号后为()A.x﹣y B.x+y C.﹣x﹣y D.﹣x+y2.代数式的意义是()A.a除以b减c B.b减c除aC.b与c的差除a的商D.a除b与c的差的商3.当x=2时,代数式2x2+x﹣1的值为()A.4B.6C.8D.94.下列式子:x2+y2,2ab,,,6,b,其中单项式有()A.2个B.3个C.4个D.5个5.如果2x m﹣1y2与﹣x2y n是同类项,则n m的值是()A.4B.6C.8D.96.下列代数式:,2x+y,,,,0.5,a,其中整式有()A.4个B.5个C.6个D.7个7.单项式﹣的系数和次数分别是()A.﹣,7B.﹣,5C.﹣,6D.﹣,78.若14x5y n和﹣31x3m y12的和是单项式,则式子12m﹣2n的值是()A.﹣3B.﹣5C.﹣4D.﹣69.若a﹣2b=3,则2(a﹣2b)﹣a+2b﹣5的值是()A.﹣2B.2C.4D.﹣410.某药店在甲工厂以每包a元的价格买进了41盒口罩,又在乙工厂以每包b元(a<b)的价格买进了同样的59盒口罩.如果以每包元的价格全部卖出这种口罩,那么这家药店()A.亏损了B.盈利了C.不盈不亏D.盈亏不能确定二.填空题11.若多项式2x2﹣3mx2和2x3+5x2﹣1的和中不含x的二次项,则m=.12.若单项式﹣2x3y2m与x n+1y4的和还是单项式,则m+n=.13.若单项式4a m﹣5b2与﹣3ab n﹣2是同类项,则m+n=.14.单项式的系数是;次数是.多项式3x2y﹣xy3+5xy﹣1是次多项式.15.若2m2+2n=3,则2m2﹣(m2﹣n)+的值是.16.去括号:﹣3(a+3b)=.17.单项式的次数是.18.下列式子:x2+2,+4,,,﹣5x,0,整式的个数是个.19.已知a2+2a=6,则﹣3a2﹣6a+2的值为.20.某花店新开张,第一天销售盆栽m盆,第二天比第一天多销售7盆,第三天的销售量是第二天的3倍少13盆,则第三天销售了盆.(结果用含m的式子表示)三.解答题21.计算:(1)2+(﹣7)﹣(﹣5);(2)3a﹣4a﹣(﹣2a);(3);(4)(﹣5)×(﹣3)﹣(﹣80)÷(﹣4);(5).22.已知A=by2﹣ay﹣1,B=2y2+3ay﹣10y+3.(1)若多项式2A﹣B的值与字母y的取值无关,求a,b的值;(2)在(1)的条件下,求(2a2b+2ab2)﹣[2(a2b﹣1)+3a2b+2]的值.23.(1)已知a、b是有理數,且=3,a与b互为倒数,试求2a+ab的值.(2)|﹣|+|﹣|﹣|﹣|.24.综合题,求解下列各题:(1)两个单项式与﹣5m y﹣1n6是同类项,求解x和y;(2)两个单项式m|3x﹣2|n|y+1|与2m4n6﹣|2y﹣1|是同类项,求解x和y;(3)两个单项式mn ax+ab与是同类项,求解x.25.马小虎同学做一道数学题:“已知两个多项式A、B,试求A+B,其中B=﹣3a2+2a﹣5”.这位同学把“A+B”看成了“A﹣B”,他求出的答案是5a2﹣6a+6,那么A+B的正确答案是多少?26.用恰当的代数式表示:(1)a与b的平方的和;(2)任意奇数;(3)一个两位数为x,在它的左边放一个三位数y组成一个五位数,用代数式表示这个五位数;(4)商品的进价为m元,按40%的毛利率标价,实际销售时打8折,则最后的销售价为多少元?27.若(m+n)x2y n+1是关于x,y的五次单项式且系数为6,试求m,n的值.参考答案与试题解析一.选择题1.解:﹣(x﹣y)=﹣x+y.故选:D.2.解:代数式表示b与c的差除a的商.故选:C.3.解:把x=2代入2x2+x﹣1,得原式=2×22+×2﹣1=8+1﹣1=8,故选:C.4.解:x2+y2,2ab,,,6,b,其中单项式有:2ab,,6,b共4个.故选:C.5.解:∵2x m﹣1y2与﹣x2y n是同类项,∴m﹣1=2且n=2,解得:m=3,∴n m=23=8,故选:C.6.解:整式有2x+y,,,0.5,a,共有5个;故选:B.7.解:根据单项式系数、次数的定义,单项式﹣的系数和次数分别是﹣,5.故选:B.8.解:由题意,得3m=5,n=12,解得m=,n=12,12m﹣2n=,故选:C.9.解:∵a﹣2b=3,∴原式=2a﹣4b﹣a+2b﹣5=a﹣2b﹣5=3﹣5=﹣2,故选:A.10.解:∵a<b,∴(41+59)×﹣(41a+59b)=50a+50b﹣41a﹣59b=9a﹣9b=9(a﹣b)<0,∴这家药店亏损了.故选:A.二.填空题11.解:根据题意可得:2x2﹣3mx2+2x3+5x2﹣1=2x3+(7﹣3m)x2﹣1,∵多项式2x2﹣3mx2和2x3+5x2﹣1的和中不含x的二次项,∴7﹣3m=0,解得:m=.故答案为:.12.解:∵单项式﹣2x3y2m与x n+1y4的和是单项式,∴n+1=3且2m=4,解得:n=2,m=2,∴m+n=2+2=4,故答案为:4.13.解:∵单项式4a m﹣5b2与﹣3ab n﹣2是同类项,∴m﹣5=1且n﹣2=2,解得:m=6,n=4,∴m+n=6+4=10,故答案为:10.14.解:单项式的系数是:﹣;次数是:3.多项式3x2y﹣xy3+5xy﹣1是四次多项式.故答案为:﹣,3,四.15.解:2m2﹣(m2﹣n)+=2m2﹣m2+n+=m2+n+,∵2m2+2n=3,∴m2+n=.∴原式=+=2.故答案为:2.16.解:﹣3(a+3b)=﹣3a﹣9b.故答案为:﹣3a﹣9b.17.解:单项式的次数是3,故答案为:3.18.解:在x2+2,+4,,,﹣5x,0中,整式有x2+2,,﹣5x,0,共4个.故答案为:4.19.解:∵a2+2a=6,∴﹣3a2﹣6a+2=﹣3(a2+2a)+2=﹣18+2=﹣16,20.解:依题意有,第三天的销售量为3(m+7)﹣13=(3m+8)盆.故答案为:(3m+8).三.解答题21.解:(1)2+(﹣7)﹣(﹣5)=2+5﹣7=0;(2)3a﹣4a﹣(﹣2a)=3a+2a﹣4a=a;(3)=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣5)×(﹣3)﹣(﹣80)÷(﹣4)=15﹣20=﹣5;(5)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(﹣7)=﹣1+=.22.解:(1)∵2A﹣B=2(by2﹣ay﹣1)﹣(2y2+3ay﹣10y+3),=2by2﹣2ay﹣2﹣2y2﹣3ay+10y﹣3,=(2b﹣2)y2+(10﹣5a)y﹣5,又∵多项式2A﹣B的值与字母y的取值无关,∴2b﹣2=0,10﹣5a=0,∴b=1,a=2;(2)(2a2b+2ab2)﹣[2(a2b﹣1)+3a2b+2],=2a2b+2ab2﹣2a2b+2﹣3a2b﹣2,=2ab2﹣3a2b,当b=1,a=2时,原式=2×2×1﹣3×4×1=﹣8.23.解:(1)∵=3,∴a=9,∵a与b互为倒数,∴ab=1,∴2a+ab=2×9+×1=18+=18.(2)|﹣|+|﹣|﹣|﹣|=﹣+﹣﹣+=0.24.解:(1)∵两个单项式与﹣5m y﹣1n6是同类项,∴y﹣1=5,2x=6,解得x=3,y=6;(2)∵两个单项式m|3x﹣2|n|y+1|与2m4n6﹣|2y﹣1|是同类项,∴|3x﹣2|=4,|y+1|=6﹣|2y﹣1|,解得y=﹣2或y=2,x=2或x=;(3)∵两个单项式mn ax+ab与是同类项,①当a﹣2≠0,即a≠2时,;②当a﹣2=0且b2=0,即a=2,b=0时,x为任何实数;③当a﹣2≠0且b2≠0,即a=2,b≠0时,x无解.25.解:∵A﹣B=5a2﹣6a+6,B=﹣3a2+2a﹣5,∴A=A﹣B+B=(5a2﹣6a+6)+(﹣3a2+2a﹣5)=5a2﹣6a+6﹣3a2+2a﹣5=2a2﹣4a+1,∴A+B=(2a2﹣4a+1)+(﹣3a2+2a﹣5)=2a2﹣4a+1﹣3a2+2a﹣5=﹣a2﹣2a﹣4.A+B的正确答案是﹣a2﹣2a﹣4.26.解:(1)a与b的平方的和为a2+b2;(2)任意奇数为2n+1(n为整数);(3)用代数式表示这个五位数为100y+x;(4)商品的进价为m元,按40%的毛利率标价,实际销售时打8折,则最后的销售价为m×(1+40%)×0.8=1.12m元.27.解:∵(m+n)x2y n+1是关于x、y的五次单项式,且系数为6,∴m+n=6,2+n+1=5.解得:m=4,n=2.。
一、选择题1.下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 2.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj 3.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣15.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b6.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .57.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x --9.下列说法正确的是( ) A .0不是单项式 B .25R π的系数是5 C .322a 是5次单项式D .多项式2ax +的次数是210.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xy C .0与3- D .3与a 11.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣112.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b13.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,4614.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3aB .6a +bC .6aD .10a -b二、填空题16.已知等式:222 2233+=⨯,233 3388+=⨯,244441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 17.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.18.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④19.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.20.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.21.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).22.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 3.(0分)下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( )A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.4.(0分)如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.5.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(0分)已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.(0分)小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n + B .mn m n + C .2mn m n + D .m n n m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.8.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.(0分)一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.14.(0分)m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.17.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.20.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 三、解答题21.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.(0分)已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】 (1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.(0分)观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.24.(0分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.25.(0分)图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.26.(0分)一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.27.(0分)某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
(二)整式的加减一、单选题1.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A.11B.12C.13D.202.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.733.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.60604.我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是(4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是()A.(1,2,1,1,2) B.(2,2,2,3,3) C.(1,1,2,2,3) D.(1,2,1,2,2)5.观察下图和所给表格回答,当图形的周长为80时,梯形的个数为( )A.25B.26C.27D.286.观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左下角D .第503个正方形的右下角7.观察图形的变化规律,则第10个小房子用了( )颗石子.A .119B .121C .140D .1428.现有一列数:a 1,a 2,a 3,a 4,…,a n-1,a n (n 为正整数),规定a 1=2,a 2- a 1=4,326a a -=,…,12n n a a n --=(n≥2),若12311115041009n a a a a ++++=,则n 的值为( ). A .2015B .2016C.2017 D .20189.观察下列有序数对:(,5,,7,,9,234⎛⎛⎛⎫--- ⎪⎝⎭⎝⎭⎝⎭,……,根据你发现的规律,第100个有序数对是( ) A .201,u ⎛-⎝⎭B .201,100⎛⎫-⎪ ⎪⎝⎭C .199,100⎛⎫-⎪ ⎪⎝⎭D .199,100⎛⎫-⎪ ⎪⎝⎭10.下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n 个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2二、填空题11.按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是_____.12.若32a b+=时,代数式126a b ++=_________13.古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,…由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,….这样的数为正方形数).(1)请你写出一个既是三角形数又是正方形数的自然数______;(2)类似地,我们将k 边形数中第n 个数记为()(),3N n k k ≥.以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-根据以上信息,得出(),N n k =______.(用含有n 和k 的代数式表示) 14.根据以下图形变化的规律,第2019个图形中黑色正方形的数量是___.15.观察下面一列数:按照上述规律排下去,那么第8行从右边数第4个数是__.1-2,3-,45-,6,7-,8,9-10,11-,12,13-,14,15-,16⋯⋯16.毕业典礼的开幕式上需要采购花店的鲜花.花店提供甲、乙两种造型的花束数量若干,甲种花束由4枝红花、1枝黄花和1枝紫花搭配而成,乙种花束由4枝黄花和2枝紫花搭配而成.已知每枝红花、黄花和紫花的成本之比是3:2:1,甲、乙两种造型的花束数量之比是2:9.甲、乙两种花束成本价分别为每种造型的三种鲜花的成本之和,甲种花束的销售利润率是20%,乙种花束的销售利润率为10%,这次买卖,花店获得的利润率是___________.17.某机械厂的总工程师张青家距厂部很远,每天都由厂部小客车接送,厂车到接送停靠站接到张青立即返程,根据厂车的出车时间和速度,张青总能算准时间,通常是他到停靠站时,厂车正好到达,这样,双方均不必等候.有一次,张青因挂念厂里的科研课题,提前80分钟到停靠站后没有等汽车,而是迎着厂车来的方向走去,遇到厂车后,他乘车到达厂部,结果比平时早20分,则汽车的速度是张青步行速度的______倍. 三、解答题18.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去.问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少? 19.(问题提出)在由(1)m n m n ⨯⨯>个小正方形(边长为1)组成的矩形网格中,该矩形的一条对角线所穿过的小正方形个数与m ,n 有何关系? (问题探究)为探究规律,我们采用一般问题特殊化的策略,通过分类讨论,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:当m ,n 互质(m ,n 除1外无其他公因数)时,观察图1并完成下表:图1结论:当m ,n 互质时,在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与m ,n 之间的关系式是________. 探究二:当m ,n 不互质时,不妨设m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质),观察图2并完成下表:图2结论:当m ,n 不互质时,若m ka =,n kb =(a ,b ,k 为正整数,且a ,b 互质).在m n ⨯的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f 与a ,b ,k 之间的关系式是________. (模型应用)一个由边长为1的小正方形组成的长为630,宽为490的矩形网格中,该矩形的一条对角线所穿过的小正方形个数是________个.图3(模型拓展)如图3,在一个由48个棱长为1的小正方体组成的长方体中,经过顶点A ,B 的直线穿过的小正方体的个数是________个.20.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有个.第3个几何体中只有2个面涂色的小立方体共有个.(2)求出第100个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数和.图① 图① 图①21.如果一个两位数的个位数字是n,十位数字是m,那么我们可以把这个两位数简记为mn,即10=+.如果一个三位数的个位数字是c,十位数字是b,百位mn m n数字是a,那么我们可以把这个三位数简记为abc,即10010=++.abc a b c(1)若一个两位数mn满足75=+,请求出m,n的数量关系并写出这个两位mn m n数.(2)若规定:对任意一个三位数abc进行M运算,得到整数()32+M=+.若一个三位数5xy满足32132+1=32=+.如:()32M abc a b c()5132M xy=,求这个三位数.(3)已知一个三位数abc和一个两位数ac,若满足65=+,请求出所有符合abc ac c条件的三位数.。
第2章整式的加减一、选择题1.下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y22.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣3.若A和B都是4次多项式,则A+B一定是()A.4次单项式B.次数不低于4次的整式C.4次多项式D.次数不高于4次的整式4.如果单项式2a n b2c是七次单项式,那么n的值为()A.2B.3C.4D.55.下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c6.化简﹣5ab+4ab的结果是()A.9ab B.﹣9ab C.ab D.﹣ab7.下列运算正确的是()A.4x+3y=7xy B.3a2﹣2a2=1C.3x2y﹣3yx2=0D.2a3+4a3=6a68.若单项式3x2m y3与2x4y n是同类项,则m﹣n等于()A.0B.1C.﹣1D.﹣29.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?()A.3a+2b B.2a+3b C.3a+2a D.3b+2b10.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3B.0C.6D.911.小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案()A.8x2﹣5x+9B.7x2﹣8x+11C.10x2+x+5D.7x2+4x+312.某电影院共有座位n排,第一排有m个座位,后一排总是比前一排多一个座位,电影院一共有座位()A.mn +B.mn+n C.mn +D.mn +二、填空题13.单项式﹣3πx2y 的系数是,次数是.14.若一个数比x的2倍小3,则这个数可表示为.15.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.16.如果x2y n﹣1与2x m y是同类项,那么m=,n=.17.合并同类项:﹣9x3+7x2﹣3x2+6x3=.18.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款元.19.现规定=a﹣b+c﹣d,则的值为.20.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=.(用含n的代数式表示)所剪次数1234…n正三角形个471013…a n数三、解答题21.指出下列多项式分别是几次几项式,并把它们按字母a的升幂排列:(1)3a2+5﹣3a+a3;(2)2a3b﹣4b3+5a2.22.先去括号,再合并同类项:(1)﹣(2a2+5)﹣(3a2﹣2)﹣2(﹣4a2﹣1);(2)a﹣(2a﹣b)﹣(a+2b).23.先化简,再求值:12(a2b﹣ab2)+5(ab2﹣a2b)﹣4(a2b+3),其中a=,b=5.四、解答题24.窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是acm,计算:(1)窗户的面积;(2)窗户的外框的总长.25.如果用a表示人的脚印长度,用b表示身高,它们有如下关系:b=7a﹣3.07.(1)某人的脚印长度为24.5cm,则他的身高约是多少?(2)在某次案件中,抓获了两名可疑人员,甲的身高为1.87m,乙的身高为1.75m.若现场测量的脚印长度为26.9cm,请通过计算说明谁作案的可能性更高.参考答案与试题解析一、选择题1.下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.【解答】解:x2y中x的指数为2,y的指数为1.A、x的指数为1,y的指数为2;B、x的指数为1,y的指数为1;C、x的指数为2,y的指数为1;D、x的指数为2,y的指数为2.故选:C.2.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.3.若A和B都是4次多项式,则A+B一定是()A.4次单项式B.次数不低于4次的整式C.4次多项式D.次数不高于4次的整式【分析】若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选:D.4.如果单项式2a n b2c是七次单项式,那么n的值为()A.2B.3C.4D.5【分析】根据单项的次数的概念列出方程,解方程即可.【解答】解:∵单项式2a n b2c是七次单项式,∴n+2+1=7,解得,n=4,故选:C.5.下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c【分析】利用去括号法则计算各项得到结果,即可作出判断.【解答】解:A、a﹣(b+c)=a﹣b﹣c,本选项正确;B、a+(b﹣c)=a+b﹣c,本选项错误;C、a﹣(b+c)=a﹣b﹣c,本选项错误;D、a﹣(b+c)=a﹣b﹣c,本选项错误,故选:A.6.化简﹣5ab+4ab的结果是()A.9ab B.﹣9ab C.ab D.﹣ab【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:﹣5ab+4ab=(﹣5+4)ab=﹣ab.故选:D.7.下列运算正确的是()A.4x+3y=7xy B.3a2﹣2a2=1C.3x2y﹣3yx2=0D.2a3+4a3=6a6【分析】根据同类项和合并同类项法则逐个判断即可.【解答】解:A、4x和3y不能合并,故本选项错误;B、结果是a2,故本选项错误;C、结果是0,故本选项正确;D、结果是6a3,故本选项错误;故选:C.8.若单项式3x2m y3与2x4y n是同类项,则m﹣n等于()A.0B.1C.﹣1D.﹣2【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同,求得m,n的值,再代入计算即可.【解答】解:∵单项式3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得m=2,n=3,∴m﹣n=2﹣3=﹣1.故选:C.9.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?()A.3a+2b B.2a+3b C.3a+2a D.3b+2b【分析】知道每支圆珠和每支钢笔的价格,故能计算出买2支钢笔,3支圆珠笔所需的钱,再相加即可解得.【解答】解:依题意得:2b+3a.故选:A.10.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3B.0C.6D.9【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.11.小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案()A.8x2﹣5x+9B.7x2﹣8x+11C.10x2+x+5D.7x2+4x+3【分析】根据题意列出关系式,去括号合并即可确定出A﹣B.【解答】解:根据题意得:(9x2﹣2x+7)﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11.故选:B.12.某电影院共有座位n排,第一排有m个座位,后一排总是比前一排多一个座位,电影院一共有座位()A.mn+B.mn+n C.mn+D.mn+【分析】运用等差数列求和的公式解出n排增加的座位数,再加上nm即为电影院的总座位数.【解答】解:每排递增的座位数为:所以总座位数为:mn+,故选:C.二、填空题13.单项式﹣3πx2y的系数是﹣3π,次数是3.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣3πx2y的数字因数是﹣3π,所有字母指数的和=2+1=3,∴此单项式的系数是﹣3π,指数是3.故答案为:﹣3π,3.14.若一个数比x的2倍小3,则这个数可表示为2x﹣3.【分析】先根据x的2倍是2x,再根据比x的2倍小3即可列出式子.【解答】解:一个数比x的2倍小3,则这个数可表示为2x﹣3.故填:2x﹣3.15.若2x﹣3y﹣1=0,则5﹣4x+6y的值为3.【分析】首先利用已知得出2x﹣3y=1,再将原式变形进而求出答案.【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.16.如果x2y n﹣1与2x m y是同类项,那么m=2,n=2.【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:由题意得:m=2,n﹣1=1,∴m=2,n=2,故答案为:2,2.17.合并同类项:﹣9x3+7x2﹣3x2+6x3=﹣3x3+4x2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:﹣9x3+7x2﹣3x2+6x3=(6x3﹣9x3)+(7x2﹣3x2)=﹣3x3+4x2.故答案为:﹣3x3+4x2.18.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款(60m+90n)元.【分析】根据题意,可以用相应的代数式表示出李明一共付款的钱数.【解答】解:由题意可得,李明同学一共付款:30(2m+3n)=(60m+90n)元,故答案为:(60m+90n).19.现规定=a﹣b+c﹣d,则的值为﹣4x2+2xy+2.【分析】先根据新规定得出原式=(xy﹣3x2)﹣(﹣2xy﹣x2)+(﹣2x2﹣3)﹣(﹣5+xy),根据去括号法则去掉括号,再合并同类项即可.【解答】解:∵=a﹣b+c﹣d,∴=(xy﹣3x2)﹣(﹣2xy﹣x2)+(﹣2x2﹣3)﹣(﹣5+xy)=xy﹣3x2+2xy+x2﹣2x2﹣3+5﹣xy=﹣4x2+2xy+2,故答案为:﹣4x2+2xy+2.20.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n =3n+1.(用含n的代数式表示)所剪次数1234…n正三角形个471013…a n数【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.三、解答题21.指出下列多项式分别是几次几项式,并把它们按字母a的升幂排列:(1)3a2+5﹣3a+a3;(2)2a3b﹣4b3+5a2.【分析】(1)根据多项式的次数和项的定义得出多项式是三次四项式,再按字母a的升幂排列即可;(2)根据多项式的次数和项的定义得出多项式是四次三项式,再按字母a的升幂排列即可.【解答】解:(1)3a2+5﹣3a+a3是三次四项式,按字母a的升幂排列为:5﹣3a+3a2+a3;(2)2a3b﹣4b3+5a2是四次三项式,按字母a的升幂排列为:﹣4b3+5a2+2a3b.22.先去括号,再合并同类项:(1)﹣(2a2+5)﹣(3a2﹣2)﹣2(﹣4a2﹣1);(2)a﹣(2a﹣b)﹣(a+2b).【分析】(1)先去括号,再合并同类型即可(2)先去括号,再合并同类型即可【解答】(1)﹣(2a2+5)﹣(3a2﹣2)﹣2(﹣4a2﹣1)=﹣2a2﹣5﹣3a2+2+8a2+2=3a2﹣1.(2)a﹣(2a﹣b)﹣(a+2b)=a﹣2a+b﹣a﹣2b=﹣2a﹣b.23.先化简,再求值:12(a2b﹣ab2)+5(ab2﹣a2b)﹣4(a2b+3),其中a=,b=5.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=12a2b﹣4ab2+5ab2﹣5a2b﹣2a2b﹣12=5a2b+ab2﹣12,当a=,b=5时,原式=1+5﹣12=﹣6.四、解答题24.窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是acm,计算:(1)窗户的面积;(2)窗户的外框的总长.【分析】(1)根据图示,用边长是acm的4个小正方形的面积加上半径是acm的半圆的面积,求出窗户的面积是多少即可.(2)根据图示,用3条长度是2acm的边的长度和加上半径是acm的半圆的周长,求出窗户的外框的总长是多少即可.【解答】解:(1)窗户的面积是:4a2+πa2÷2=4a2+0.5πa2=(4+0.5π)a2(cm2)(2)窗户的外框的总长是:2a×3+πa=6a+πa=(6+π)a(cm)25.如果用a表示人的脚印长度,用b表示身高,它们有如下关系:b=7a﹣3.07.(1)某人的脚印长度为24.5cm,则他的身高约是多少?(2)在某次案件中,抓获了两名可疑人员,甲的身高为1.87m,乙的身高为1.75m.若现场测量的脚印长度为26.9cm,请通过计算说明谁作案的可能性更高.【分析】(1)直接把a的值代入b=7a﹣3.07.求出答案;(2)直接把a的值代入b=7a﹣3.07.求出答案.【解答】解:(1)当a=24.5时,b=7a﹣3.07=168.43;(2)当a=26.9时,b=7a﹣3.07=185.23,甲的身高比较接近,所以作案的可能性更大.。
一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-2.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b 5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-46.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x - C .2n n x - D .1(1)2n n n x +-7.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1 8.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++9.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 10.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、611.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 12.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者 13.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--14.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-15.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- 二、填空题16.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.17.在多项式422315x x x x 中,同类项有_________________;18.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.19.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.20.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.21.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.22.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.23.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.24.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.25.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.26.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.三、解答题27.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 28.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1(1)c=_____.(2)若f (1)=2,求a+b 的值;(3)若f (2)=9,求f (﹣2)的值.29.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?30.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭.。
1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元. 故选:A . 【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 2.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D 【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可. 【详解】第个图案中有黑色纸片3×1+1=4张 第2个图案中有黑色纸片3×2+1=7张, 第3图案中有黑色纸片3×3+1=10张, …第n 个图案中有黑色纸片=3n+1张. 当n=7时,3n+1=3×7+1=22. 故选D. 【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律. 6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21- B .12- C .36 D .12B解析:B 【分析】根据同类项定义得出m 3=,代入求解即可. 【详解】解:∵322x y 和m 2x y -是同类项,∴m 3=,∴4m 24432412-=⨯-=-, 故选B . 【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项. 7.下列各代数式中,不是单项式的是( ) A .2m - B .23xy -C .0D .2tD 解析:D 【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择. 【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D . 【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.8.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.9.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020- A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 10.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.11.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.12.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:496 497 498 499 500 501 502 503 504 505 506507508509510511512513由图可知:501+502+503+504=2010满足题意.故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 13.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 14.下列说法正确的是( ) A .0不是单项式 B .25R π的系数是5 C .322a 是5次单项式 D .多项式2ax +的次数是2D解析:D 【分析】根据整式的相关概念可得答案. 【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确. 故选:D . 【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数. 15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008 【解析】a 2=−|a 1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.3.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990. 【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即: 第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.5.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时3b 【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b 【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式()[()(2)]a b a b a b +++--计算即可求解.【详解】 解:依题意有()[()(2)]a b a b a b +++-- [2]a b a b a b =+++-+2a b a b a b =+++-+3b =(千米/时).故顺流速度为3b 千米/时.故答案为:3b .【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x 2,∵一次项系数是,∴一次项是5x ,∵常数项是-4,∴这个二次三项式为:-3x 2+5x-4.故答案为:-3x 2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 9.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 10.“a 的3倍与b 的34的和”用代数式表示为______.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b + 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.11.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.1.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.2.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; … 请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.3.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.解析:m=1,n=4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m的值,根据单项式的次数是单项式中所有字母指数和,可得n的值.【详解】∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m、n的值是解题关键.4.古人云:凡事宜先预后立.我们做任何事情都要先想清楚,然后再动手去做,才能避免盲目从事.一天,需要小亮计算一个L形的花坛的面积,在动手测量前,小亮依花坛形状画出示意图,并用字母表示出了将要测量的边长(如图所示),小亮在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需要测量哪条边的长度?请你在图中用字母n表示出来,然后求出它的面积.+-解析:图详见解析,am bn mn【分析】由图可知花坛是由两块矩形组成,若想求解矩形面积就必需知道矩形的长和宽,而图中少了左边矩形的宽.【详解】解:需要测量的边如图所示(或测量剩下的那条边的长度).+-.图形的面积为am bn mn【点睛】不规则的几何图形的面积的计算要转化为规则的几何图形面积的和差.。
2020-2021学年度初一数学整式的加减优生提升训练题2(附答案)一、单选题1.如果单项式312m x y +-与432n x y +的和是单项式,那么(m +n )2019的值为( ) A .-1 B .0 C .1 D .201922.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则9a 10﹣10a 9的值为( )A .90B .91C .103D .1053.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…,则232019222+++…+2的末位数字是A .8B .4C .6D .64.如图所示,每个小立方体的棱长为1,图1中共有1个立方体,其中1个看得见,0个看不见;图2中共有8个小立方体,其中7个看得见,1个看不见;图3中共有27个小立方体,其中19个看得见,8个看不见;……;则第10个图形中,其中看得见的小立方体个数是( )A .270B .271C .272D .2735.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的四等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合.再将数轴按逆时针方向环绕在该圆上(如圆周上表示的数字3的点与数轴上表示-2的点重合……),则该数轴上表示-2019的点与圆周上重合的点表示的数字是( )6.一列数按某规律排列如下: 1121231234,,,,,,,,,1213214321…,若第n 个数为57,则n =( )A .50B .60C .62D .717.观察下列等式:71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,那么:71+72+73+…+72 016的末位数字是( )A .9B .7C .6D .08.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .159.如图,在2019个“口”中依次填入一列数字m 1,m 2,m 3;……. m 2019,使得其中任意四个相邻的“口”中所填的数字之和都等于-10.已知m 4=0,m 6=-7,则m 1+m 2019的值为( )A .0B .-3C .-10D .-14 二、填空题10.若a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,依此类推,则2019a =_____.11.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4.则-2019应排在A ,B ,C ,D ,E 中______的位置.12.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n根火柴棒时,共需要摆__________根火柴棒.13.观察下列各式,并回答下列问题:①111233+=;②112344+=;③113455+=;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数(1)n n的代数式表示出来,并证明你的猜想. 14.如图,在各个手指间标记字母A,B,C,D.请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,….当字母C第2019次出现时,数到的数恰好是_________.15.由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):若规定坐标号(m ,n )表示第m 行从左向右第n 个数,则(7,4)所表示的数是_____;(5,8)与(8,5)表示的两数之积是_______;数2012对应的坐标号是_________ 16.已知:1234533393273813243,,,,=====……则122019333+++的末尾数字是_______.17.如图,45AOB ∠=︒,过OA 上到点O 的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1S ,2S ,3S ,4S ,….观察图中的规律,则2S =______,第n 个黑色梯形的面积n S =______.18.把正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用(1,1)=M A 表示正奇数M 是第1组第1个数(从左往右数),如7(2,3)A =,则(5,3)表示的数为_______,1015A =_________. 19.下面由小木棒拼出的系列图形中,第n 个图形由n 个正方形组成,请写出第n 个图形中小木棒的根数S 与n 的关系式______.三、解答题20.如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.(1)第2个图形中,火柴棒的根数是________;(2)第3个图形中,火柴棒的根数是________;(3)第4个图形中,火柴棒的根数是_______;(4)第n 个图形中,火柴棒的根数是_______ .21.如图,一扇窗户,窗框为铝合金材料,下面是由两个大小相等的长方形窗框构成,上面是由三个大小相等的扇形组成的半圆窗框构成,窗户半圆部分安装彩色玻璃,两个长方形部分安装透明玻璃(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含x,y的代数式表示)(2)一扇这样窗户一共需要玻璃多少平方米?铝合金窗框宽度忽略不计(用含x,y的代数式表示)(3)某公司需要购进20扇窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:铝合金(米/元)彩色玻璃(平方米/元)透明玻璃(平方米/元)甲厂商200 80不超过100平方米的部分,90元/平方米,超过100平方米的部分,70元/平方米乙厂商220 6080元/平方米,每购1平方米透明玻璃送0.1米铝合金当x=2,y=3时,该公司在哪家厂商购买窗户合算?22.(1)一天数学老师布置了一道数学题:已知x=2017,求整式()()()322332678323541x x x x x x x x x--+---+-+++-的值,小明观察后提出:“已知x=2017是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x=+--,整式M与整式N之差是234x ax x+-.①求出整式N.②若a是常数,且2M+N的值与x无关,求a的值.23.观察下面三行数:-1、2、-4、8、-16、32、-64、……①0、3、-3、9、-15、33、-63、……②1、-5、7、-17、31、-65、127、……③(1) 第①行的第8个数是___________,第①行第n个数是___________(用n的式子表示)(2) 取第①、②、③行的第10个数分别记为a、b、c,求a-b+c的值(3) 取每行数的第n个数,这三个数中任意两数之差的最大值为6146,则n=__________ 24.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为m,宽为n的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含n的式子表示出图②中两块阴影部分的周长和?_____(填“能”或“不能”);(2)若能,请你用只含n的式子表示出中两块阴影部分的周长和;若不能,请说明理由_____.25.已知:M=3a2+4ab -5a-6,N=a2-2ab-4(1)化简:5M-(3N + 4M),结果用含a、b的式子表示.(2)若式子5M-(3N + 4M)的值与字母a的取值无关,求b4+116M-316N-18的值.26.将连续的偶数2,4,6,8⋯排列成如下的数表用十字框框出5个数(如图)()1十字框框出5个数的和与框子正中间的数20有什么关系?()2若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;()3十字框框住的5个数之和能等于2010吗?若能,写出十字框框住的5个数,并填入右图中.如不能,说明理由.27.小王买了一套经济房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m ),解答下列问题:(1)用含有x 、 y 的式子表示地面总面积(2)当x=4,y=2时,若铺1m 2地砖的平均费用为30元,那么铺地砖的费用是多少元?28.阅读材料观察下列等式:第1个等式:1a =1111-1323⎛⎫=⨯ ⎪⨯⎝⎭; 第2个等式:2a =1111-35235⎛⎫=⨯ ⎪⨯⎝⎭; 第3个等式:1111-57257⎛⎫=⨯ ⎪⨯⎝⎭; 第4个等式:1111-79279⎛⎫=⨯ ⎪⨯⎝⎭; ...请解答下列问题:(1)按以上规律列出第5个等式5a =(2)求1234100a a a a a ++++⋯的值。
(3)依照上述方法,试计算114⨯+147⨯+1710⨯+11013⨯+11316⨯+11619⨯ 29.若()()2222351x ax y b bx x y +----+-的值与字母x 的取值无关,试求a ,b的值.参考答案1.A【解析】【分析】 若单项式312m x y +-与432n x y +的和是单项式,则{3431m n +=+=,可分别求出m 、n 的值.【详解】由 m+3=4 ,n+3=1得 m=1 n=-2 ()20191-=-1【点睛】本题考察单项式和多项式的性质,以及幂级数的求法.2.A【解析】【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【详解】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴9a 10﹣10a 9=9×10×(10+2)﹣10×9×(9+2)=90.故选A .【点睛】本题考查了图形的变化规律,找出图形之间的联系,找出规律解决问题.3.B【解析】【分析】通过观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据2019÷4=504…3,得出22019的个位数字与23的个位数字相同是8,进而得出答案.【详解】解:∵2n 的个位数字是2,4,8,6四个一循环,2019÷4=504…3,∴22019的个位数字与23的个位数字相同是8,故2+22+23+24+25+…+22019的末位数字是2+4+8+6+…+2+4+8的尾数,则2+22+23+24+25+…+22019的末位数字是:2+4+8=14,末尾为4,故选B.【点睛】本题主要考查的是尾数特征,解决本题的关键是根据题意找出数字循环的规律.4.B【解析】【分析】由图可知,共有小立方体个数为序号数的立方,看不见的小正方体的个数=(序号数-1)3,由此规律即可解决问题.【详解】图①中,共有1个小立方体,其中1个看得见,0=(1-1)3个看不见;图②中,共有8个小立方体,其中7个看得见,1=(2-1)3个看不见;图③中,共有27个小立方体,其中19个看得见,8=(3-1)3个看不见;…,第n个图中,一切看不见的棱长为1的小立方体的个数为(n-1)3,看见立方体的个数为n3-(n-1)3,所以则第10个图形中,其中看得见的小立方体有103-93=271个.故选B.【点睛】本题考查图形的变化规律,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.5.C【解析】【分析】结合图和题干可知,每4个数为一个循环组依次循环,所以需要计算2019÷4,看是第几组第几个数字,即可解答.【详解】由图可知,每4个数为一组,依次循环,分别与0、3、2、1重合,2019÷4=504 (3)所以,表示-2019的点是第505个循环组的第3个数,为2,即表示-2019的点与圆周上重合的点表示的数字是2故选C【点睛】本题考查数轴以及数字变化规律,结合题干和图,找出规律,是解题关键.6.B【解析】【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234 ,,,,,,,,, 1213214321,…,可写为:1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…,∵57的分子和分母的和为12,∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,, 1110987654321,∴第n个数为57,则123410560 n=++++⋯++=,故选B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.7.D【解析】【分析】分析题意,可得7的正整数次幂的结果的个位数字依次为7、9、3、1、7、9、3、1……,得到规律为:每4个数字为一个循环;用2016除以4,判断有几个循环周期,再求出一个循环所得和的末尾数字,即可解答.【详解】∵71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,∴个位数字以7、9、3、1每4个为一个循环÷=∵20164504∴共有504个循环∵7+9+3+1=20∴经过一个循环周期所得和的末尾数字是0∴经过504个循环周期所得和的末尾数字是0故选D【点睛】本题以有理数乘方为背景,考查规律探究类题目的解法,解答本题的关键是从7n的结果中找出末尾数字的规律.8.B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.9.B【解析】【分析】根据任意四个相邻“口”中,所填数字之和都等于-10,可以发现题目中数字的循环变化规律,从而可以得出m2019=m3,本题得以解决.【详解】解:∵任意四个相邻“口"中,所填数字之和都等于-10,∴m1+m2+m3+m4=m2+m3+m4+m5,m2+m3+m4+m5=m3+m4+m5+m6,m3+m4+m5+m6=m4+m5+m6+m7,m4+m5+m6+m7=m5+m6+m7+m8,∴m1=m5,m2=m6,m3=m7,m4=m8,同理可得,m1=m5=m9=…,m2=m6=m10=…,m3=m7=m11=…,m4=m8=m12=…,∵m6=-7,∴m2=-7,∴m1+(-7)+m3+0==-10,∴m1+m3==-3,⨯+,∵2019=45043∴m2019=m3,∴m1+m2019=-3故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的循环变化规律.10.4【解析】【分析】根据差倒数的定义分别计算出a1,a2,a3,a4…则得到从a1开始每3个值就循环,而2019÷3=673,所以20193a a =.【详解】 解:∵113a =-, 2131413a ==⎛⎫-- ⎪⎝⎭, 314314a ==- 411143a ==-- 5131413a ==⎛⎫-- ⎪⎝⎭… ∴这列数以13,,434-三个数依次不断循环出现; ∵2019÷3=673,∴20193a =4a =故答案为:4【点睛】此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.11.C【解析】【分析】根据题中图形布列规律得出每个峰的封顶位置数的绝对值规律为5n-1,第奇数个峰的峰顶位置数为正数,第偶数个峰的峰顶位置数为负数,因为2019=404×5-1,即可判断-2019位于第404个峰的峰顶位置.【详解】解:∵峰1,峰2,峰3,…的峰顶位置数分别是4,-9,14,…∴第n个峰的峰顶位置数的绝对值为5n-1,第奇数个峰的峰顶位置数为正数,第偶数个峰的峰顶位置数为负数∵2019=2020-1=404×5-1∴-2019位于第404个峰的C位置.故答案为:C【点睛】此题考查图形的变化规律,观察出每个峰的其中一个位置的数字变化规律是解答此题的关键.12.32n(n+1)【解析】【分析】通过观察前三个图形可以发现其中的规律为:每边上摆n根火柴棒时,从上至下,每层不共边的三角形个数为1、2、3、……、n,则火柴棒根数为3×(1+2+3+…+n)根,应用规律解决问题即可.【详解】解:如图:当n=1时,需要火柴3×1=3,当n=2时,需要火柴3×(1+2)=9;当n=3时,需要火柴3×(1+2+3)=18,…,依此类推,第n个图形共需火柴3×(1+2+3+…+n)=32n(n+1);故答案为:32n(n+1).【点睛】此题考查了规律性问题.注意由特殊到一般的分析方法,注意此题的规律为每边上摆n根火柴棒时,需32n(n+1)根火柴棒.13.(1=;(2(n=+【解析】【分析】(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.【详解】(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:==(2)猜想:用含自然数(1)n n≥的代数式可表示为:(n=+证明:左边(n===+=右边,所以猜想正确.【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.14.6057.【解析】【分析】由图中可以看出:A→B→C→D→C→B→A→B→C→…,6个字母一循环,在这一个循环里面,C出现2次,利用2019次除以2得出循环的次数与余数判定数的个数,由此规律解决问题.【详解】解:∵字母A→B→C→D→C→B每6个一循环,在这一个循环里面,C出现2次,2019÷2=1009…1,∴C第2019次出现时,数到的数恰好是1009×6+3=6057.故答案为:6057.【点睛】此题考查图形的变化规律,找出数字的运算规律,找出循环规律是解题关键.15.134,12144,(10,495).【解析】【分析】根据下一行中数的个数是上一行中数的个数的2倍表示出前n行偶数的个数的表达式为2m-1,然后求出第6行的最后一个偶数,再计算之后的4个偶数即可求出(7,4);分别求出第4行第7行最后的一个偶数,然后求出(5,8)与(8,5)表示的数,再相乘即可;求出数2012是第1006个偶数,根据表达式得1006=29-1+495,先求出第511个数是第9行的最后一个数,再求解即可.【详解】解:设前m行偶数的个数为S,则S=1+2+22+23+…+2m-1,两边都乘以2得,2S=2+22+23+…+2m,所以,S=2m-1,当m=6时,S=26-1=64-1=63,所以,(7,4)所表示的数是第63+4=67个偶数,为134;当n=4时,24-1=15,所以,(5,8)表示的数是第15+8=23个偶数,为46,当n=7时,27-1=127,所以,(8,5)表示的数是第127+5=132个偶数,为264,46×264=12144;∵数2012是第1006个偶数,n=9时,29-1=511,1006-511=495∴数2012是第10行的第495个数,可以表示为(10,495).故答案为:20,12144,(10,495).【点睛】本题是对数字变化规律的考查,读懂题目信息,表示出前n 行的偶数的个数的表达式是解题的关键,也是本题的难点.16.9【解析】【分析】观察不难发现,每4个数为一次循环,所以用2019除以4,余数是几则与第几个个位数之和就是它的末尾.【详解】123433,39,327,381,====12343333+++∴的个位数为0281333+++ 的个位数也为零201945043÷= 122019333+++∴ 的个位数为9故答案为9.【点睛】 本题主要考查学生的归纳总结能力,关键在于找到规律,先将前几项加和在慢慢发现规律. 17.212S =, 84n S n =-【解析】【分析】依题意可得所有阴影部分都是一个直角梯形.又因为45AOB ︒∠= ,所以梯形的上下底长度分别等于垂足到O 点的距离,而高则是固定的2,则梯形的面积数值其实就是上下底的和.其中第n 个梯形的上底为:14(1)43n n +-=- (第一个梯形的上底1加上(n-1)个4),下底为:4n-1,于是84nS n =-.【详解】 解:∵45AOB ︒∠=,∴梯形的上下底长度分别等于垂足到O 点的距离,而高则是固定的2.又∵第一个梯形上底是1,下底是3,∴14S = .第二个梯形面积212S =,第三个是320S =,∴可以发现梯形面积数值上其实就是上下底的和.∵各个梯形的上底都是前一个梯形上底加上4.∴第n 个梯形的上底就是14(1)43n n +-=-,下底自然就是43241n n -+=- ,于是(43)(41)84n S n n n =-+-=- .故答案为(1)212S =, (2). 84n S n =- 【点睛】本题以特殊角为切入点,通过构造美丽的几何图形吸引读者的探究欲望,需要有较高自信和数学素养.18.37 A 1015=(23,24)【解析】【分析】根据题意可以发现题目中的数据都是奇数,从第一组开始,每组中的奇数都是奇数个,然后再根据现用(1,1)=M A 表示正奇数M 是第1组第1个数(从左往右数),从而可以计算(5,3)表示的数;再计算出1015是第508个数,然后判断第508个数在第几组,再判断是这一组的第几个数即可.【详解】解:(5,3)表示的数为第5组的第3个数,为37,即:37(5,3)=A∵1015是第101515082+=个奇数, ∴设1015在第n 组,则1+3+5+7+…+(2n-1)≥508, 即(121)5082+-≥n n解得:当n=22时,1+3+5+7+…+61=484;当n=23时,1+3+5+7+…+63=529;故第508个数在第23组,第529个数为:2×529-1=1057, 第23组的第一个数为:2×485-1=969, 则1015是10159692-+1=24个数. 故A 1015=(23,24),故答案为(23,24).【点睛】此题考查了数的规律变化,需要明确题意,熟练掌握其中的方法与技巧,在规律不好发现的时候可以用试一试的办法找其规律.19.3n+1【解析】【分析】首先根据前面的几项寻找规律,再写出规律即可.【详解】解:当1n =时,311S =⨯+当2n =时,321S =⨯+当3n =时,331S =⨯+当4n =时,341S =⨯+当n n =时,3131S n n =⨯+=+所以第n 个图形中小木棒的根数S 与n 的关系式为3n+1故答案为3n+1【点睛】本题主要考查学生的归纳总结能力,根据简单的正方形的数量关系确定第n 个正方形的数量关系.20.(1)7;(2)10;(3)13;(4)3n+1.【解析】【分析】(1)(2)(3)图形中的火柴棒根数可以点数得到.(4)根据(1)(2)(3)的结果总结规律,从第一个开始每增加一个正方形火柴棒数增加3个,则第n个图形中应用的火柴棒数为:4+3(n-1).【详解】解:根据已知图形可以发现:(1)第2个图形中,火柴棒的根数是7;(2)第3个图形中,火柴棒的根数是10;(3)第4个图形中,火柴棒的根数是13;(4)∵每增加一个正方形火柴棒数增加3,∴第n个图形中应有的火柴棒数为:4+3(n-1)=3n+1.【点睛】本题是一个找规律的题,根据前几个图形中火柴棒的个数总结规律,用此规律求解在第n 个图形中的火柴棒的个数.21.L=112x+2y(2)S=xy+38x2(3)公司在甲厂商购买窗户合算,理由见解析.【解析】【分析】(1)求出制作窗框的铝合金材料的总长度即可;(2)按照矩形与半圆的面积的和即为窗框的面积;(3)分别求出甲、乙的费用比较大小即可判断. 【详解】(1)4x+2y+π•12x=(112x+2y)米,答:一扇这样窗户一共需要铝合金(112x+2y)米;(2)xy+12×π•(2x)2=(xy+38x2)米2,答:一扇这样窗户一共需要玻璃(xy+38x2)平方米;(3)20个这样的窗户共用铝合金为20×(112232⨯+⨯)=340(米), 共用彩色玻璃为20×2328⨯=30(平方米),共用透明玻璃为20×2×3=120(平方米),甲的费用:340×200+100×90+(120-100)×70+30×80=68000+9000+1400+2400=80800元;乙的费用:(340-120×0.1)×220+120×80+30×60=72160+9600+1800=83560元, ∵80800<83560,∴公司在甲厂商购买窗户合算.【点睛】本题考查了列代数式,代数式求值,弄清题意,正确列式是解题的关键.22.(1)小明说的有道理,理由见解析.(2) ①N=-2x 2+ax-2x-1 ② a=811. 【解析】【分析】(1)原式去括号合并同类项后得到最简结果,根据化简结果中不含x ,得到x 的值是多余的.(2)①根据题意,可得N=(x 2+5ax-3x-1)-(3x 2+4ax-x ),去括号合并即可;②把M 与N 代入2M+N ,去括号合并得到最简结果,由结果与x 值无关,求出a 的值即可.【详解】(1)小明说的有道理,理由如下:原式=x 3-6x 2-7x+8+x 2+3x-2x 3+3+x 3+5x 2+4x-1=(1-2+1)x 3+(-6+1+5)x 2+(-7+3+4)x+(8+3-1)=10,由此可知该整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax-3x-1)-(3x 2+4ax-x )=x 2+5ax-3x-1-3x 2-4ax+x=-2x 2+ax-2x-1;②∵M=x 2+5ax-3x-1,N=-2x 2+ax-2x-1,∴2M+N=2(x 2+5ax-3x-1)+(-2x 2+ax-2x-1)=2x 2+10ax-6x-2-2x 2+ax-2x-1=(11a-8)x-3,由结果与x 值无关,得到11a-8=0,解得:a=811. 【点睛】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.23.(1)128,12()n ---;(2)-1026;(3)12. 【解析】【分析】(1)观察可得,012321222428(),(),(),()--=---=--=--=-……,由此即可求得第8个数和第n 个数;(2)观察可得,第②行的数比对应第①行的是大1,第③行的数是对应第①②行数的和的相反数,分别求得每行的第10个数,再代入求值即可;(3)设第①行数为x ,由(2)可得第②行对应的数为x+1,第③行对应的的数为-2x-1,已知第②行的数比对应第①行的是大1,可得第①②行对应数之差不可能为6146;再分第①③行对应数之差为6146和第②③行对应数之差为6146两种情况求得x 的值,根据x 值的情况继而求得n 的值.【详解】(1)∵012321222428(),(),(),()--=---=--=--=-……∴第①行的第8个数是81722128()()---=--= ,第①行第n 个数是12()n ---; 故答案为:128,12()n ---;(2)观察可得,第②行的数比对应第①行的是大1,第③行的数是对应第①②行数的和的相反数,由①可得,第①行的第10个数a =512,∴第②行的第10个数b =513,第③行的第10个数c =-1025,∴a-b+c=512-513+(-1025)=-1026;(2)设第①行数为x ,由(2)可得第②行对应的数为x+1,第③行对应的的数为-2x-1, ∵第②行的数比对应第①行的是大1,∴第①②行对应数之差不可能为6146;当第①③行对应数之差为6146时,即x-(-2x-1)=6146或(-2x-1)-x=6146解得x=61453或x=-2049 ∵x=12()n ---=61453或x=12()n ---=-2049,n 为正整数, ∴n 的正整数值不存在;当第②③行对应数之差为6146时,即x+1-(-2x-1)=6146或-2x-1-(x+1)=6146,解得x=2048或x=61483- ∵x=12()n ---=2048或x=12()n ---=61483-,n 为正整数, ∴由12()n ---=2048可求得n=12,当x=12()n ---=61483-时n 正整数值不存在; 综上,n=12.故答案为:12.【点睛】本题考查了数字变化规律,仔细观察所给的数列,正确得出每行之间对应数的关系是解决问题的关键.24.(1)能;(2)能;理由见解析【解析】【分析】设图①小长方形的长为a ,宽为b ,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到2a b m +=,代入计算即可得到结果.【详解】(1)能;故答案为能;(2)能,理由如下:设小长方形的长为a ,宽为b ,上面的长方形周长为:2()m a n a -+-下面的长方形周长为:2(22)m b n b -+-两式联立,总周长为:2()2(22)444(2)m a n a m b n b m n a b -+-+-+-=+-+ 2a b m +=(由图可得)∴阴影部分总周长为444(2)4444m n a b m n m n +-+=+-=【点睛】本题考查列代数式以及整式的加减,分析题目和图形,列出代数式,熟练掌握整式的加减是解题关键.25.(1)10ab -5a+6;(2)516. 【解析】【分析】(1).直接把M ,N 带入到待解的代数式中直接求解(2)把5M-(3N + 4M)整理成(105)6a b -+,因为结果与a 无关,这只需1050b -=,求B 代入b 4+116M-316N-18即可. 【详解】(1)由题意,得:原式=5343M N M M N --=-∵M=3a 2+4ab -5a-6,N=a 2-2ab-4∴原式=22334563612M N a ab a a ab -=+---++1056ab a =-+(2)若式子5M-(3N + 4M)的值与字母a 的取值无关,∴53431056(105)6M N M M N ab a a b --=-=-+=-+当1050b -=时,可知5M-(3N + 4M)的值与字母a 的取值无关,此时12b =, 536M N -=题中原式=b 4+116M-316N-18=411(3)168b M N +--4162145()21616161616=+-=+= 【点睛】与某个未知量无关可以简单理解为不论这个未知量取何值时,代数式大小不表.然后带入最为简单的数值求解另一个未知量.26.()1是20的5倍;()25个数的和是5a ;()3十字框框住的5个数之和能等于2010,理由见解析.【解析】【分析】(1)可算出5个数的和看看和20的关系;(2)上下相邻的行相差12,左右相邻的行相差是2,所以可用a 表示;(3)看看求出的中间数a 是不是整数就可以.【详解】()1832201822100++++=,100205÷=.是20的5倍.()2设中间的数是a .2212125a a a a a a -++++-++=.5个数字之和是5a .()3设中间的数是a .52010a =,402a =,40212336÷=⋯,是第三列的数,故十字框框住的5个数之和能等于2010,如图所示:【点睛】本题考查理解题意的能力,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.27.(1)626x y ++ ;(2)1020.【解析】【分析】(1)根据地面总面积=长为6、宽为x 的矩形面积+卫生间的面积+长为3、宽为2的矩形面积;(2)把x=4,y=2代入(1)中式子进行运算得出总面积,再根据“铺1m 2地砖的平均费用为30元”进行计算即可.【详解】(1)6322626x y x y +⨯+=++;(2)当x=4,y=2时,626=64+22+6=34x y ++⨯⨯,3430=1020⨯元,答:地面总面积626x y ++,铺地砖的费用是1020元.【点睛】本题主要考查了列代数式求面积和求代数式的值,结合题意得出宽的代数式是解题的关键. 28.(1)1111-9112911⎛⎫=⨯ ⎪⨯⎝⎭;(2)100201;(3)619【解析】【分析】(1)根据题意得出分母的变化规律,进而得出答案;(2)根据题意得出分母的变化规律,进而得出答案;(3)利用(2)中变化规律进而化简求出答案.【详解】(1)第5个等式5a =1111-9112911⎛⎫=⨯ ⎪⨯⎝⎭故填:1111-9112911⎛⎫=⨯ ⎪⨯⎝⎭(2)根据已知条件得到规律:1111-(2n-1)(2n+1)22n-12n+1n a ⎛⎫==⨯ ⎪⎝⎭ ∴1234100a a a a a ++++⋯ =111-23⎛⎫⨯ ⎪⎝⎭+111-235⎛⎫⨯ ⎪⎝⎭+111-257⎛⎫⨯ ⎪⎝⎭+111-279⎛⎫⨯ ⎪⎝⎭+…+111-2199201⎛⎫⨯ ⎪⎝⎭ =1111111111----...-335512779199201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⨯⎢⎥⎣⎝⎦⎭ =1112201⎡⎤⨯-⎢⎥⎣⎦ =12002201⨯ =100201(3)114⨯+147⨯+1710⨯+11013⨯+11316⨯+11619⨯ =111111111-- (3434731619)⎫⎛⎫⎛⎫⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=111111-- (447161391)⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎡⎤⨯⎢⎥⎣⎦ =11-1913⎡⎤⨯⎢⎥⎣⎦ =131819⨯=619 【点睛】此题主要考察等式的规律探索和应用,认真观察已知,找到存在的规律是解题关键.29.3a =-,1b =【解析】【分析】去括号合并同类项,把问题转化为方程即可解决问题.【详解】解:()()2222351x ax y b bx x y +----+- 2(22)(3)61b x a x y b =-++--+.又∵()()2222351x ax y b bx x y +-+--+-的值与字母x 的取值无关,∴220b -=,30a +=.∴3a =-,1b =.【点睛】本题考查整式的加减运算,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.。