《管理运筹学》整数规划
- 格式:pdf
- 大小:3.48 MB
- 文档页数:37
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
习题3-1某厂拟在A 、B 、C 、D 、E 五个城市中建立若干个配送中心,各处设配送中心都需要资金、人力、设备等,而这样的需求量及能提供的利润各处不同,有些点可能亏本,但却能得到贷款和人力等资源。
设数据已知,由下表所示。
厂方应作出何种最优选址方案能使总利润最大。
请建立该问题的数学模型。
3-2用分支定界法求解下列整数规划问题⎪⎩⎪⎨⎧≥≥+≤+⎪⎩⎪⎨⎧≥≥+≤+-+=+=且为整数且为整数)()(0,5427230,5021010m 2min 12121212121212121x x x x x x x x x x x x x x z ax x x z 3-3用割平面法求解下列整数规划问题⎪⎩⎪⎨⎧≥≤+≤+⎪⎩⎪⎨⎧≥≥+≥++=+=且为整数且为整数)()(0,102920,1029232m 232min 12121212121212121x x x x x x x x x x x x x x z ax x x z 3-4用隐枚举法求解下列0-1规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤+≤+≤++≤-++-=1,0,,162444233max 3212232321321321x x x x x x x x x x x x x x x x z3-5安排4个人做4项不同的工作,每个人完成工作所需要的时间如下表所示,(1)应如何指派,可使总的时间最少?(2)如果表中的数据为创造的效益,应如何指派,使总效益最大?(3)如果在表中增加一个人(一行),完成A、B、C、D工作的时间分别为16、17、20、21天,这时应如何指派,使总时间最少?3-6对每题结论进行判断,如果结论错误请改正。
(1)整数规划的最优解是先求相应的线性规划的最优解然后取整得到。
(2)求最大值整数规划问题的目标函数值是各分支函数值的上界。
(3)求最小值整数规划问题的目标函数值是各分支函数值的上界。
(4)整数规划的可行解集合是离散型集合。
(5)0一1规划的变量有n个,则有2n个可行解。
第四章整数规划整数规划(Integer Programming)主要是指整数线性规划。
一个线性规划问题,如果要求部分决策变量为整数,则构成一个整数规划问题,在项目投资、人员分配等方面有着广泛的应用。
整数规划是近二、三十年发展起来的数学规划的一个重要分支,根据整数规划中变量为整数条件的不同,整数规划可以分为三大类:所有变量都要求为整数的称为纯整数规划(Pure Integer Programming)或称全整数规划(All integer Programming);仅有一部分变量要求为整数的称为混合整数规划(Mixed Integer Programming);有的变量限制其取值只能为0或1,这类特殊的整数规划称为0-1规划。
本章主要讨论整数规划的分枝定界法、割平面法、0-1规划及指派问题。
第一节整数规划问题及其数学模型一、问题的提出在线性规划模型中,得到的最优解往往是分数或小数,但在有些实际问题中要求有的解必须是整数,如机器设备的台数、人员的数量等,这就在原来线性规划模型的基础上产生了一个新的约束,即要求变量中某些或全部为整数,这样的线性规划称为整数规划(Integer Programming)简称IP,是规划论中的一个分枝。
整数规划是一类特殊的线性规划,为了满足整数解的条件,初看起来,只要对相应线性规划的非整数解四舍五入取整就可以了。
当然在变量取值很大时,用上述方法得到的解与最优解差别不大,当变量取值较小时,得到的解与实际最优解差别较大,当变量较多时,如n=10个,则整数组合有210=1024个,而且整数解不一定在这些组合当中。
先来看下面的例子。
例4.1某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A、材料B,有关数据如下,问这两种设备各生产多少使工厂利润最大?表4-112量都要求为整数,建立模型如下:2123max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,5.45.01432x x x x x x x x 要求该模型的解,首先不考虑整数约束条件④,用单纯形法对相应线性规划求解,其最优解为:x 1=3.25 x 2=2.5 max z =14.75由于x 1=3.25,x 2=2.5都不是整数,不符合整数约束条件。