基于89C51单片机振弦式传感器水位测量系统方案
- 格式:doc
- 大小:227.00 KB
- 文档页数:17
基于AT89C51单片机的水位控制系统设计1 引言1.1 设计目的在工农业生产中,常常需要测量液体液位。
随着国家工业的迅速发展,液位测量技术被广泛应用到石油、化工、医药、食品等各行各业中。
低温液体(液氧、液氮、液氩、液化天然气及液体二氧化碳等)得到广泛的应用,作为贮存低温液体的容器要保证能承受其载荷;在发电厂、炼钢厂中,保持正常的锅炉汽包水位、除氧器水位、汽轮机凝气器水位、高、低压加热器水位等,是设备安全运行的保证,因此一个安全合适的水位系统是很必要的。
1.2 设计要求利用单片机设计一个水位控制系统,要求用开关来模拟水位的状态,当设定完水位后,系统根据水位情况控制电磁阀的开启和关断。
具体要求如下:1、设计单片机工作系统电路。
2、通过键盘设置其预定水位,根据水位不同控制电机的旋转。
5、利用Proteus进行仿真。
1.3 设计方法本设计是采用AT89C51单片机为核心芯片,及其相关硬件来实现的水体液位控制系统,采用八个键盘来模拟水位, CPU循环检键盘输入状态,并用3位七段LED显示示液位高度,检测液位数据,实施报警安全提示,当水体液位低于用户设定的值时,系统自动打开泵上水,当水位到达设定值时,系统自动打开排水泵。
2 设计方法和原理2.1 水塔水位的控制原理单片机水塔水位控制原理如图l所示,图中的虚线表示允许水位变化的上、下限位置。
在正常情况下.水位应控制在虚线范围之内。
为此,在水塔内的不同高度处,安装固定不变的3根金属棒A、B、C。
用以反映水位变化的情况。
其中,A棒在下限水位.B棒在上、下限水位之间,C棒在上限水位(底端靠近水池底部.不能过低,要保证有足够大的流水量)。
水塔由电机带动水泵供水。
单片机控制电机转动,随着供水,水位不断上升.当水位上升到上限水位时,由于水的导电作用。
使B、C棒均与+5 V连通。
因此B、C两端的电压都为+5 V,即为“l”状态,此时应停止电机和水泵工作,不再向水塔注水;随着水量的减少,当水位处于上、下限之间时。
基于单片机的水位控制系统设计目录1概述 (3)2设计的基本任务和要求 (5)2.1基本功能 (5)2.2塔水位控制原理 (5)2.3系统硬件总体方案 (6)3控制系统方案设计 (6)3.1系统硬件方案 (6)3.2核心芯片 AT89C51 单片机 (7)3.3系统软件总体方案 (8)4.Proteus 设计与仿真 (10)4.1 元器件清单 (10)4.2 基于单片机水位控制原理图5 (11)4.3 基于单片机的水位控制PCB 图 6 (11)4.4 水位检测的主程序 (12)4.5 实验仿真结果 (16)4.6 结语 (16)5 设计体会 (17)参考文献 (18)1概述液位控制系统是以液位为被控参数的控制系统,它在工业生产的各个领域都有广泛的应用。
在工业生产过程中,有很多地方需要对容器内的介质进行液位控制,使之高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉的使用寿命和产品的质量起着至关重要的作用。
液位控制一般指对某一液位进行控制调节,使其达到所要求的控制精度。
液体的液位的自动控制,是近年来新开发的一项新技术,它是微型计算机软件、硬件、自动控制等几项技术紧密结合的产物 ,工程作业采用的是微机控制和原有的仪表控制,微机控制有以下明显优势 :1)直观而集中的显示各运行参数,能显示液位状态。
2)在运行中可以随时方便的修改各种各样的运行参数的控制值,并修改系统的控制参数 ,可以方便的改变液位的上限、下限。
3)具有水体控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性综合以上的种种优点可以预见采用计算机控制系统是行业的大势所趋。
单片机是在一块芯片上集成了一片微型计算机所需的CPU、存储器、输入、输出等部件。
单片机自问世以来 ,性能不断提高和完善 ,体积小、速度快、功耗低的特点使它的应用领域日益广泛。
基于AT89C51单片机的液位数据采集系统设计作者:张继信张建刚来源:《电子世界》2011年第24期【摘要】本文设计了一种新型的基于单片机的液位数据采集系统,该系统以AT89C51单片机作为主体,实现液位的数据采集及显示、报警功能。
【关键词】AT89C51单片机;液位数据采集;越限报警;抗干扰信号处理1.前言单片机控制系统以其控制精度高、性能稳定可靠、设置操作方便、造价低等特点被应用到液位系统的数据采集与控制中来[1]。
本文设计了一种新型的基于单片机的液位数据采集系统,该系统以AT89C51单片机作为主体,实现液位的数据采集及显示。
2.系统说明本系统由以下几个部分组成:由差压式液位传感器采集数据采集部分,A/D转换部分,数据处理部分,数据显示部分等。
首先把差压式传感器采集到的液位模拟量以电信号方式输入到ADC0809转换器中,将之转换成为离散的数字量,该模拟量在AT89C51芯片内通过数字处理程序和数字滤波程序的处理后,进入片外数据存储器8255A,最终在8段LED显示器中直观的显示出来。
当所测液位超出限定范围时,系统将自动发出报警。
其系统原理如图1所示。
本文设计的液位数据采集系统增加了数据采集抗干扰信号处理技术,相对于传统的液位数据采集系统,该系统的各方面性能有了显著提高,而且该系统的电路调试方便、稳定性好、成本低。
3.液位数据采集系统硬件设计液位数据采集系统的硬件设计整个系统设计的主要组成部分。
其中系统硬件主要包括主控制器AT89C51芯片、A/D转换芯片、显示数码管、液位传感器、超限报警模块等。
3.1 AT89C51单片机AT89C51产品与80C51相比,除了其片内有闪存存储器,现编程/擦除速度快之外,AT89C51还可实现远距离编程,而且其产品价格比片内带EPROM的80C51低,这就充分显示出AT89C51的优越性。
由于本次设计的任务是建立一个液位数据的实时采集系统,因此选用选用双排直插式结构的AT89C51单片机,满足设计要求。
电子信息工程实验教学中心《综合课程设计》设计报告完成日期:2015/6/30目录摘要 (1)1 绪论 (2)1.1 项目研究背景及意义 (2)1.2 课题现状32 总体设计方案及论证 (3)2.1 总体方案设计 (3)3 硬件实现及单元电路设计 (4)3.1 设计原理 (4)3.2 设计方案 (5)3.3 传感器模块 (5)3.3.1 传感器的选择 (5)3.4 系统工作原理......................................................... 错误!未定义书签。
3.5 水位显示电路 (7)3.6 外部晶振时钟电路的设计 (7)3.7 时钟电路的设计 (8)3.8 自动报警电路 (8)3.9 中央处理器模块 (9)3.10 继电器控制模块 (9)3.11 水位检测系统仿真图 144 软件设计 (13)4.1 主程序工作流程图 (13)5 总结 (15)6 参考文献 (15)附录 (16)附件1:原理图 (16)附件2:仿真图 (16)附件3:元件清单 (17)附件4:程序........................................................................... 错误!未定义书签。
摘要随着社会的发展,科技的进步以及人们生活水平的逐步提高,各种方便与生活的自动控制系统开始进入了我们的生活,单片机作为微型计算机发展的一个重要分支,具有高可靠性、高性能价格比、低电压、低功耗等优势,以其为核心的自动控制系统赢得了广泛的应用。
该课程设计的题目是基于单片机的水塔水位控制,在此水塔水位控制系统中,检测信号来自插入水中的4个金属棒,以感知水位变化情况。
工作正常情况下,应保持水位在某一范围内,当水位变化发生故障的时候,及时关断电机电源,发出声、光报警信号。
其目的在于对单片机技术的应用,由单片机实现自动运行,使水塔内水位始终保持在一定范围,以保证连续正常地供水。
基于AT89C51单片机的水位控制系统课程设计报告设计课程设计课程名称嵌入式系统课程设计学科名称(加粗,3号)专业课5月31日,XXXX项目权重分值具体要求分值文献阅读和调查论证0分。
XXXX年月日分工合作描述学科名称学生姓名学生编号工作完成DS18B20数字温度计设计最终总结调试。
所有团队成员将共同完成项目总结1 1简介3 2设计方法和原则4 (1)水塔水位控制原则4 (2)总体设计4 3硬件设计5 (1)硬件设计5 (2)主芯片AT89C51 5 (3)光学报警和显示电路6 (4)键盘连接电路6 (5)复位电路7 (6)晶体振荡器电路8 4软件设计9 (4)) 程序流程图及其分析9 5系统仿真和实际调试10 (1)组件列表10 (2)系统调试和仿真10 6共结13致谢13附录1源代码15word模型抽象水箱液位控制系统研究背景:在工农业生产中,经常需要控制液位。
随着国家工业的快速发展,水位控制技术已经广泛应用于石油、化工、医药、食品等行业。
低温液体(液氧、液氮、液态氩、液化天然气和液态二氧化碳等。
)被广泛使用。
作为储存低温液体的容器,它们必须能够承受载荷。
在电厂和钢厂,维持正常的锅炉汽包水位、除氧器水位、汽轮机凝汽器水位、高低压加热器水位等。
是设备安全运行的保证。
在教学和科研中,经常会遇到需要控制水位的实验装置。
水箱液位控制系统的研究意义:大型水箱是许多公司生产过程中必不可少的一部分。
其优异的性能和工作质量不仅对生产有很大的影响,而且影响安全生产。
过去,大量的水箱操作是由相应的人员进行的。
这种人工方法带来了很大的缺点,例如水位控制、水箱环境的持续监控、夜间监控等。
操作人员稍有疏忽,或者简单的监控设备损坏,都会给生产人员的人身安全带来不可挽回的损失和更严重的风险。
因此,要控制水箱,如果我们能使用精确的自动系统,严格按照生产规定操作,就能最大限度地避免事故的发生,节约资源,有效地提高生产效率。
从节约水资源的角度考虑,以往的人工控制在很多情况下造成了不必要的资源浪费。
课程设计课程名称嵌入式系统课程设计题目名称(黑体,三号)专业班级2013级电子信息科学与技术(3)班学生姓名张磊、徐贤进、曹谦、王浩学号51202011026、5120201101251202011021、51202011033指导教师吕俊龙二○一五年五月三十一日蚌埠学院计算机科学与技术系本科课程设计成绩评定表项目权重分值具体要求得分文献阅读与调查论证0.20 100能独立查阅文献和从事其它调研活动;有收集、加工各种信息的能力设计质量0.30 100 设计合理、功能齐备,程序运行正常,实验数据准确可靠;有较强的实际动手能力论文撰写质量0.20 100设计说明书完全符合规范化要求,用A4复印纸打印成文学习态度0.20 100 学习态度认真,科学作风严谨,严格按要求开展各项工作,按期完成任务学术水平与创新0.10 100 设计有创意,有一定的学术水平或实用价值总分评语:存在问题:等级:指导教师:年月日蚌埠学院计算机科学与技术系课程设计任务书课程嵌入式系统课程设计班级2013电子信息科学与技术<3>班指导教师吕俊龙题目 DSB18B20数字温度计的设计完成时间2015年 5月28日至2015年6月21日主要内容功能要求:数字是温度计测温范围在-55~125℃,误差在±0.5℃以内,采用LED 数码管直接显示。
主控芯片:AT89C2051或ARM9传感器:DS18B20显示电路:4位LED数码管设计报告要求1.封面:(格式附后)2.课程设计任务书3.课程设计报告:⑴系统总体方案⑵设计思路和主要步骤⑶各功能模块和流程图⑷设计代码⑸心得体会和参考资料说明:学生完成课程设计后,提交课程设计报告及软件,要求文字通畅、字迹工整(也可用以打印),文字不少于5000 字,并装订成册。
上机时间安排星期周次一二三四五六日第14周-第17周12电子信息科学本1,1-2节12电子信息科学本1,7-8节12电子信息科学本1,1-2节12电子信息科学本1,5 -6节指导时间地点上机时间,多媒体技术实验室重行楼411版面要求1.题目用黑体三号,段后距18磅(或1行),居中对齐;2.标题用黑体四号,段前、段后距6磅(或0.3行);3.正文用小四号宋体,行距为固定值,22磅;4.标题按“一”、“㈠”、“1”、“⑴”顺序编号。
目录摘要ABSTRACT第一章绪论 (4)1.1研究背景 (4)1.2温湿度综合检测系统 (5)1.2.1 温度和湿度检测 (5)1.2.2 温湿度检测的国内外研究动态 (7)1.2.3 温湿度检测技术的发展方向 (9)1.3课题研究内容和意义 (11)第二章温湿度综合检测仪的整体设计 (12)2.1系统方框图 (12)2.2温湿度检测仪的整体设计过程 (12)2.2.1 温湿度 (12)2.2.2 数字式温度传感器DS18B20 (15)2.2.3 单片机AT89C51 (19)2.2.4 共阴极显示驱动MAX7219 (22)2.3软件语言的选取 (24)第三章温湿度检测仪主要硬件电路设计 (25)3.1.1 时钟电路 (25)3.1.2 复位电路 (26)3.21-W IRE单总线技术 (27)3.3显示电路 (30)第四章温湿度检测仪软件设计 (35)4.1系统软件设计 (35)4.1.1 系统流程图 (35)4.1.2 系统主程序 (35)4.2DS18B20温度数据采集 (37)4.2.1 数据采集流程图 (37)4.2.2 数据采集子程序 (37)4.3MAX7219驱动8位以下LED显示器: (40)4.3.1 MAX7219工作流程图 (40)4. 3. 2 MAX7219工作子程序 (41)第五章系统的调试、可靠性和抗干扰技术 (44)5.1系统的调试 (44)5.2可靠性设计 (45)5.3抗干扰技术 (46)5.3.2 软件抗干扰 (47)5.4 本系统对干扰的预防 (48)结束语 (49)致谢词 (50)参考文献 (52)附录 (54)第一章绪论1.1 研究背景粮食储藏是国家为防备战争、灾荒及其它突发性事件而采取的有效措施,因此,粮食的安全储藏具有重要意义。
目前,我国地方及垦区的各种大型粮库都还存在着程度不同的粮食储存变质问题。
根据国家粮食保护法规定,必须定期抽样检查粮库各点的粮食温度和湿度,以便及时采取相应的措施。
现代检测技术与系统研究报告题目:基于AT89C51的水质监测系统的设计学院:电气工程学院年级专业:仪器仪表工程学号:学生姓名:日期:2013.12.14一、绪论1.1 课题的研究背景和意义针对客观环境运用物理、生物或化学等的现代科技手段,间断地或连续地对水体污物及其有关的组成成份鉴定和测试,通过仪器的检测或实验进行定性、定量和系统的描述,做出正确的环境质量评价称作水环境监测。
我国不仅存在水资源短缺和空间、时间分布不平衡的严重问题,而且更普遍存在着水质性缺水的危机。
而当今世界的水环境也面临着两大问题,水资源的短缺和水污染的加重。
工业生产废水和城乡生活污水向江河湖泊及土壤中的大量持续排放,使得地下水质和地表水质日益下降,更加剧了水资源的紧张,破坏了水环境,危害着人类及大自然生态系统的健康。
随着人们环保意识的提高,以及国家对水污染问题也越来越重视,水质监测的要求也越来越高了,因此,需要有先进的水质监测成套系统才能满足日益丰富的社会要求。
水质监测系统能做到实时,连续监测和远程监控,达到及时掌握主要流域重点断面水体水质状况,预警预报重大流域性水质污染事故,以便使水厂在发生重大水污染时掌控水源水质状况,做到防范、解决突发水污染事故的目的等。
水质监测工作是水体污染防治工作和水环境保护工作的重要部分。
但是,目前在我国水环境监测的实际工作中,大量采用的监测方法己经不能满足环保事业不断发展的社会需求,因此研究水质监测系统,发展水质监测技术十分重要。
1.2 国内外水质监测技术的现状1.2.1国内水质监测技术的现状许多年以来我国的环境监理工作一直采用传统的环境水质监测工作,主要以人工现场采样、实验室仪器分析为主。
虽然在实验室中分析手段完备,但实验室监测存在监测频次低、采样误差大、监测数据分散、不能及时反映污染变化状况等缺陷。
难以对水质监测现场信息正确及时的了解。
我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。
. . . .基于89C51单片机振弦式传感器水位测量系统专业名称:机电一体化年级班别:姓名:学号:指导教师:年月摘要 (2)前言 (3)一、绪论 (4)1.1水位测量的历史及现状 (4)1.2 方案论证 (5)1.3 本系统的设计原理 (6)1.4总体概况及展望 (7)1.5设计要求 (7)二、振弦式传感器 (7)2.1 工作原理 (8)2.2 振弦式传感器的设计 (9)2.3 结论 (11)三、硬件系统设计 (12)3、硬件系统设计原理 (12)四、程序设计 (13)4、程序 (13)五、小结 (14)六、参考文献 (15)七、附录 (16)7.1当处于低水位时Protues仿真图 (16)7.1当处于高水位时Protues仿真图 (17)摘要本文简要介绍了利用单片机和传感器进行水位测量的基本原理,本课题的任务就是利用振弦式压力传感器测量水位,用单片机组成智能测量装置,实现水位的智能监测,并将采集的数据汇总、处理。
然后对本系统的工作原理、智能监测方法、要现的功能、监测系统的组成和硬件线路设计作了详细的讲解。
在结合装置具体要求的基础上,确定了以8051单片机为核心,用振弦式传感器测量共振频率以计算水位的设计方案。
本文例举了智能测量装置的一个整体实现方案。
包括硬件的连接以及软件的实现。
在硬件的连接中具体的讲解了本设计主要采用的振弦式压力传感器的性能以及硬件的连接及各电路模块的主要功能。
在软件的实现中具体的讲解了利用单片机可编程来实现水位测量的扫频和测频两部分,这包括了D/A转换,周期测量,频率计算等子程序。
本文对采用传感器和单片机实现水位测量替代传统的人工方法做出了一定的探讨,并分析比较得出比较可行的实现方案。
关键词单片机、水位测量、振弦式传感器前言本课题探讨了水位测量技术的相关问题。
水位测量在生产实际中是非常重要的。
随着单片机和微机技术的不断发展,单片机技术已广泛应用于现代工业的各个行业。
单片机具有体积小、可靠性高、功能强、灵活方便等许多优点,本设计采用单片机和传感器进行水位测量,通过充分利用单片机的控制功能和部硬件功能,大大减少了外围电路的设计,而且测试精度、可靠性、稳定性大大提高,能方便的实现对整个采集过程及控制过程的自动化处理,本文首先对振弦式压力传感器的工作原理、工作方式、硬件电路的设计和软件部分的设计等方面做了详细的分析。
最后在结合系统的具体要求的基础上,确定了硬件以89C51系列的8051为核心,选用了A/D转换芯片ICL8038进行模数转。
在硬件设计上主要采用的振弦式压力传感器的性能以及硬件的连接及各电路模块的主要功能。
在软件设计上我们同样采用了模块化设计的方法,按系统的功能划分为不同的子程序,用汇编语言实现了激振、信号的采集和处理、测量周期等功能子程序。
采用子程序方便了程序的设计和调试,同样也方便了以后的功能的改进和增加。
一、绪论1.1水位测量的历史及现状水位测量,是水文研究中很重要的一点,提到水文研究,许多人会联想到这是一个非常辛苦的工作,因为水文工作者需要到各个地方采集水文资料,包括水位。
一开始,水位工作者只能通过人工的方法来测量,对于河道的情况水位工作者只能以询问经验丰富的老船工,甚至下水摸索来了解。
然后,水位测量工作开始用绳索坠物的方法,后来又出现了浮标测量法、电容式水位测量法、电阻应变片的压力感应法、超声波反射法水位测量法。
在很多的坝区,因为水位和坝体的承受压力之间有着非常重要的关系,需要我们随时的监控水位,而且,上游的泥沙会堆积在坝底,水位是会改变的。
我们就需要一个简单实用,成本较低的水位测量方法来随时测量水位值。
随着科学的发展水位的检测方法也在变化,精度也有了更佳的提高。
单片机技术和传感器技术的发展使水位测量方法得到了更进一步的发展。
本文就振弦式压力传感器做了一定的讲解,利用了压力传感器的良好的测量特性进行了水位的测量装置的研究。
1.2 方案论证水位测量在科学勘测中一直是一门比较重要的研究课程,在科学的发展史中,有过很多种的水位测量法,比如说:浮标测量法、超声波反射法,电容式水位测量法、电阻应变片的压力感应法等等浮标测量法是根据漂浮在液面上的浮子(也称浮标)受到水的浮力作用.随水位的变化而产生位移来进行液位测量的,水位上升时浮球向上浮;水位下降时,浮球向下浮。
其缺点是安装复杂,测量精度低,不可靠,经常出现浮子卡死不动和传感器堵塞导致测不准;维护工作量大,安装、调试不便,采集到的仅是模拟告警信号,不能直接进入电厂计算机监控系统。
电容式液位计:在容器插入电极,当液位变化时,电极部介质改变,电极间(或电极与容器壁之间)的电容也随之变化,该电容量的变化再转换成标准化的直流电信号。
其精确度为±(0.5~1.5)%。
电容式液位计具有以下优点:传感器无机械可动部分,结构简单、可靠;精确度高;检测端消耗电能小,动态响应快;维护方便,寿命长。
缺点是被测液体的介电常数不稳定会引起较大的误差。
超声波反射法液位计的传感器由一对发射、接收换能器组成。
发射换能器面对液面发射超声波脉冲,超声波脉冲从液面上反射回来,被接收换能器接收。
根据发射至接收的时间可确定传感器与液面之间的距离,即可换算成液位。
其精确度为±0.5%。
这种液位计无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响,因此多用于药池、药罐、排泥水池等的液位测量。
超声波反射法液位计目前所存在的缺点有一定的盲区,且价格较贵。
另外也采用频率计法,但由于需要采用模拟电路和数字电路技术,需要硬件多,电路复杂,稳定性差,测试精度、可靠性、稳定性均不能满足野外工程的需要。
为了克服上述的种种不足,本设计采用单片机和传感器进行水位测量,通过充分利用单片机的控制功能和部硬件功能,大大减少了外围电路的设计,而且测试精度、可靠性、稳定性大大提高,能方便的实现对整个采集过程及控制过程的自动化处理,其基本原理为:通过振弦式压力传感器测量水位,用单片机组成智能测量装置,实现水位的智能监测,并将采集的数据汇总、处理,提供查询、报表输出,完成包括数据采集,数据处理,数据转换及显示、打印等软件功能,实现与其它计算机的通讯。
这是过去普通数字电路较难实现的功能。
采用单片机技术,较好的完成了这一功能,提高了信号的采集精度,利用单片机控制端口实现各种硬件控制的功能。
采用LED液晶显示,功耗小。
1.3 本系统的设计原理本设计系统基于单片机8051和振弦式传感器测量水位,用单片机组成智能监测电路,实现水位的智能监测。
主要工作原理如下:通过单片机和D/A转换芯片产生一锯齿波电压信号,放大后送入标准函数信号发生器ICL8038,使它产生相应的标准频率的扫频正弦波,用这个信号来激振振弦传感器,当送入的波频率和传感器的频率共振时,传感器便被激励出相应的感应信号,这个信号是个衰减的正弦波,该信号在经过过零比较器之后,将被整流成一个标准的方波,以这个方波的半个周期的两个上升或者下降沿为单片机P3.2输入,启动和停止计数器,计数器记下在这半个周期的部时钟的脉冲数,部时钟一个脉冲的固定周期为2s,经过计算就可得到传感器的输出信号的周期,从而得到相应的频率。
1.4总体概况及展望本系统的优点在于采用8051单片机对振弦传感器进行数据采集、分析处理、显示。
具有电路结构简单,使用方便,显示可靠直观,抗干扰能力强等特点。
系统软件采用51系列的汇编语言,采用模块化程序设计技术,软件使用维护方便,可靠性强。
可以相信,随着单片机和传感技术的日趋发展和成熟,在不久的将来,利用单片机技术开发出来的功能化仪器、仪表将会在各个领域得到更广泛的应用。
1.5设计要求本系统要求能够对低水位和高水位的测量,用可调电阻调节电压值作为模拟水位的输入量,低水位是30m,高水位是90m。
本系统的测量围是30-90m。
二、振弦式传感器振弦式传感器由前联的达维金可夫发明,其核心元件是一根钢弦,钢弦的一端固定,另一端则固定在测量元件(受压膜片或测量端块)上.当受力后,钢弦长度将产生微小变化,引起固定频率的变化,从而测出物理量的数值。
振弦式频率传感器具有结构简单、坚固耐用、抗干扰能力强、测值可靠、精度与分辨力高和稳定性好等优点;其输出为频率信号,便于远距离传输,可以直接与微机接口,因而获得广泛运用。
振弦式传感器的一般工作原理是:振弦放置在磁场中,将振弦以一定方式激振,它在振动时会在拾振线圈中感应出电势U的频率就是振弦的固有频率,测得振弦的固有频率求出待测物理量(一般是压力)。
振弦的激振方式一般按振弦的材料来选择,对于非磁性材料采用磁电法激振,对于磁性材料采用电磁法激振。
振弦式频率传感器具有良好的测量特性。
据资料介绍,它可以做到小于0.1﹪的非线性特、0.05%的灵敏度和小于0.1﹪的温度误差。
此外,传感器的结构和测量电路都比较简单。
因此,它已被广泛用于精密的压力测量领域中。
2.1 工作原理振弦式传感器的工作原理可以用图2.1来说明。
传感器是由一根放置在永久磁铁两极之间的金属弦、振弦和电路部分所组成。
金属弦承受着拉力,并且根据不同的拉力大小和弦的不同长度有着不同的固有振动频率。
因此改变拉力的大小可以得到相应的振弦固有振动频率。
在图2.1b中,它可以等效为一个并联的LC 回路。
由于振弦的高Q值,电路只有在振弦的固有振动频率上才能满足振荡条件。
因此,电路的输出信号频率就严格的控制在振弦的固有振动频率,而与作用力的大小有关。
这样,就可以通过测量输出信号的频率来测量力或者压力等。
图2.1b中的R1、R2和场效应管组成负反馈网络,起着控制起振条件和振荡幅度的作用,而R1、R5。
V和C支路控制场效应管的栅极电压,作为稳定输出信号幅值之用。
(a )图2.1 振弦式压力传感器a )结构示意图 b)电原理图振弦在电路中可以等效为一个并联的LC 回路。
如图2.1a ,一根有效长度为e l 的振弦在磁感应强度为B 的磁场中振动时,振弦上有感应电动势e 产生,和电流i 流通。
此时,振弦所感受的力为F=B l e I (2-1)振弦在磁场中运动相当于电路中电容的作用,m 为弦的质量,其等效电容为 C=22el B m (2-2) 振弦的弹簧作用相当于电路中的电感,k 为弦的横向刚度系数。
其等效电感为L=kl B e 22 (2-3) 放大振荡电路2.2 振弦式传感器的设计2.2.1 振弦振弦是传感器变换系统中的重要部件,它将被测的作用力变换成横向振动频率。
设计中主要考虑以下几个问题:弦的材料的选择、弦的紧固方法和弦的几何尺寸。
(1)弦的材料:对于弦的材料的选择,一般有以下几点要求。
①材料的弹性后效、密度和电阻率要小。
为了获得好的动态性能,高的灵敏度和品质因素;②高的强度极限值,以保证可靠的工作;③材料的膨胀系数和弹性模量的温度系数要小,或者与传感器弹性元件的温度系相接近,以提高传感器的温度稳定性;(2)弦的紧固方式:振弦是在拉紧状态下工作的,因此振弦的两端必须固定。