遗传的基本规律
- 格式:pdf
- 大小:8.36 MB
- 文档页数:99
遗传学三大规律总结遗传学是研究遗传信息传递和遗传变异的科学。
遗传学三大规律是指孟德尔的遗传规律、染色体学的遗传规律和分子遗传学的遗传规律。
下面将详细介绍这三大规律。
一、孟德尔的遗传规律孟德尔的遗传规律是遗传学的基础,他在豌豆杂交实验中发现了两性生殖体的遗传现象,并总结出以下三个规律:1.性状表现规律:孟德尔通过杂交实验发现,杂交(异交)后代的性状并非介于父本和母本之间,而是呈现一种明确的表型。
这表明个体的性状是由基因决定的,在杂交过程中,两个纯合亲本所带的基因以一定的比例参与了后代的表型表达。
2.隔离规律:孟德尔提出了性状分离的规律,即在杂交后代中,携带着两种性状的纯合基因会在有性繁殖中分离,而每个个体又只能将一种性状遗传给后代,即每个个体的两个基因互相独立地在生殖细胞中分配给后代。
这种分离规律为后来的基因分离定律奠定了基础。
3.独立规律:孟德尔通过多个杂交实验发现,不同基因对于性状的遗传是独立的,互不影响。
他称这些基因为“遗传因子”,并提出了基因的概念。
二、染色体学的遗传规律染色体学的遗传规律是在孟德尔的遗传规律基础上,随着染色体学的发展而形成的。
它包括以下两个规律:1. 染色体分离规律:根据Mitosis和Meiosis的观察和实验证明,染色体在有丝分裂和减数分裂过程中具有固定的数目和形态。
在减数分裂的第一次分裂中,染色体以同源染色体为单位发生分离,确保每个子细胞获得一对染色体。
这一规律称为李约瑟定律。
2.染色体间的基因连锁和自由组合规律:通过观察多个基因同时杂交所得的后代,发现染色体上的基因会因为染色体间的互联而不能独立分离,成为基因连锁。
然而,基因连锁并非永久的,基因之间可以通过染色体的重组而发生自由组合。
这一规律由摩尔根提出,也称为染色体交换规律。
三、分子遗传学的遗传规律分子遗传学的遗传规律是在分子生物学和基因工程的发展中建立起来的,主要涉及到基因和DNA的结构和功能。
1.DNA的复制与遗传稳定性规律:通过研究DNA的复制过程,发现DNA复制是基因遗传的基础,也是细胞分裂的基础。
遗传学三个基本规律的主要内容
遗传规律有三大规律,分别是基因分离定律,基因自由组合定律,和基因连锁、交换定律。
第一规律,分离定律是遗传学中最基本的一个规律,它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因活动的,基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组,在子代继续表现各自的作用,这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。
第二规律,是自由组合定律,就是当具有两对或者更多对相对性状的亲本杂交,在此一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。
第三个定律,就是连锁与互换定律,连锁与互换定律是指原来为同一亲本所具有的两个性状,在f2中常常有连系在一起遗传的倾向,这种现象成为连锁遗传。
连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体,通过交换的测定,进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。
遗传的基本规律复习笔记一、遗传的第一定律1.孟德尔的豌豆杂交试验孟德尔的豌豆杂交试验:观察并分类记录杂交第一代(F1)和杂交第二代(F2)中具有各种性状的植株或种子数,进行统计与数学归纳。
2.一对性状的遗传分析(1)性状分离性状分离是指让具有一对相对性状的亲本杂交,F1全部个体都表现显性性状,F1自交,F2个体大部分表现显性性状,小部分表现隐性性状的现象。
(2)测交测交是指将F1杂种与隐性的亲本进行杂交,而证明F1杂种产生两种不同但数目相等配子的杂交方法,实质上是用隐性亲本来测验F1杂种基因型的一种回交。
(3)孟德尔对其实验结果提出了诠释的假设:①生物体的遗传特征是由基因决定的。
②每棵植株的每一对相对性状都分别由一对等位基因控制。
③每一个生殖细胞或配子中只含有每对等位基因中的一个基因。
④每一对基因中,一个来自父本的雄性生殖细胞,一个来自母本的雌性生殖细胞。
在形成下一代新的植株或合子时,雌、雄生殖细胞的结合是随机的。
⑤形成生殖细胞时,成对的基因相互分离,分别进入不同的生殖细胞中去。
(4)分离定律的内容在配子形成时,等位基因随着同源染色体的分开而分离,分离到不同的配子中去,独立地随着配子遗传给后代,在一般情况下,配子分离比是1:1,F2基因型分离比是1:2:1,F2表型分离比是3:1。
二、遗传的第二定律1.两对性状的遗传分析独立分配定律(自由组合定律)的内容:F1配子形成时,等位基因分离,非同源染色体上的非等位基因自由组合。
在一般情况下,F1配子分离比为1:1:1:1;F2基因型比为(1:2:1)2;F2表型比为(3:1)2即9:3:3:1。
2.人类筒单的孟德尔式遗传遗传学家采用分析系谱的方法来研究人类简单的孟德尔式遗传,即系谱分析法。
3.颗粒遗传理论颗粒遗传的理论是指每一个基因是一个相对独立的功能单位,在有性生殖的二倍体生物中,控制成对性状的基因是成对的,形成配子时,只有成对的等位基因才会相互分离。
遗传基本规律知识点总结_1、基因的分离规律是在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代。
2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状。
隐性性状在遗传学上,把杂种F1中未显现出来的那个亲本性状。
性状分离在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象。
显性基因控制显性性状的基因。
一般用大写字母表示,豌豆高茎基因用D表示。
隐性基因:控制隐性性状的基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
3、等位基因在一对同源染色体的同一位置上的,控制着相对性状的基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)非等位基因存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
4、相对性状:同种生物同一性状的不同表现类型。
(此概念有三个要点:同种生物豌豆,同一性状茎的高度,不同表现类型高茎和矮茎)。
表现型是指生物个体所表现出来的性状。
基因型:是指与表现型有关系的基因组成。
5、纯合体由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
杂合体由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
6、测交让杂种子一代与隐性类型杂交,用来测定F1的基因型。
测交是检验生物体是纯合体还是杂合体的有效方法。
携带者在遗传学上,含有一个隐性致病基因的杂合体。
7、隐性遗传病:由于控制患病的基因是隐性基因,所以又叫隐性遗传病。
显性遗传病:由于控制患病的基因是显性基因,所以叫显性遗传病。
8、遗传图解中常用的符号:P 亲本♀一母本♂父本杂交自交(自花传粉,同种类型相交) F1 杂种第一代 F2 杂种第二代。
1. 异质子第一性状2. 核型割裂规律3. 染色体常数倍性规律在生物学领域,遗传是一个十分重要的概念。
通过遗传规律的研究,人类能够更好地理解生物的遗传特征,为疾病治疗和生物改良提供了理论基础。
在遗传学的研究中,存在着一些基本规律,它们被普遍认为是遗传现象的基本原理。
在这些基本规律中,有一项并不属于遗传的基本规律,那就是:异质子第一性状。
在经典遗传学中,异质子是指个体的两个相对的性状不同,而纯合子则是指个体的两个相对的性状相同。
根据孟德尔的遗传定律,异质子与异质子的交配所产生的子代称为一等纯杂合;而一等纯杂合与一等纯杂合的交配所产生的子代称为二等纯杂合。
在这个过程中,性状的表现符合一定的规律,这就是孟德尔的遗传规律之一:核型割裂规律。
核型割裂规律是指在一等纯杂合与一等纯杂合的交配中,子代表现出两个性状的混合,而且两个性状的分离是独立进行的。
这个规律也被称作孟德尔第二定律。
通过对核型割裂规律的研究,人们能够更好地理解基因在遗传中的表现和传递。
除了核型割裂规律之外,还有另一个重要的遗传规律,那就是染色体常数倍性规律。
这个规律是指在有性生殖过程中,每个亲代有性细胞中的染色体数目是不变的。
而且,不同物种的染色体常数倍性也是固定的。
染色体常数倍性规律的发现和研究,为人们对遗传现象的理解提供了重要的依据。
总结回顾,通过对以上的讨论,我们可以发现,异质子第一性状并不属于遗传的基本规律。
相对而言,核型割裂规律和染色体常数倍性规律更好地符合遗传现象的基本规律。
这也提醒我们在学习遗传学的过程中,要对不同的遗传规律进行深入思考,以便更好地理解生物的遗传特征。
对于我来说,我更倾向于将遗传规律看作是一种生物活动的法则,而不仅仅是有关基因的表达和传递的科学概念。
通过遗传规律的研究,我们可以更好地理解生物多样性的形成和维持。
在生物学领域,遗传是一个极其重要的概念,它关乎到生物的繁衍和进化。
而遗传规律的研究,则为我们揭示了生物遗传特征的基本原理,为疾病治疗和生物改良提供了理论基础。