七年级数学:一元一次方程的应用之追及问题
- 格式:docx
- 大小:30.68 KB
- 文档页数:4
数学教案-一元一次方程的应用之追及问题一、教学目标1.理解追及问题的基本概念,掌握追及问题的解题方法。
2.能够运用一元一次方程解决追及问题,提高解决问题的能力。
3.培养学生分析问题、解决问题的思维能力和团队协作精神。
二、教学内容1.追及问题的基本概念和类型2.一元一次方程在追及问题中的应用3.追及问题的解题方法和步骤三、教学过程1.导入新课(1)引导学生回顾一元一次方程的应用,如年龄问题、行程问题等。
(2)提出追及问题,让学生思考如何解决。
2.知识讲解(1)介绍追及问题的基本概念:追及问题是指两个物体在相对运动过程中,一个物体从后面追赶另一个物体,直到追上为止的问题。
(2)讲解追及问题的类型:直线追及和圆周追及。
(3)分析追及问题的解题思路:找出等量关系,列出方程。
3.案例分析(1)案例一:甲车从A地出发,以每小时60公里的速度行驶,乙车从A地出发1小时后以每小时80公里的速度追赶甲车,求乙车追上甲车需要多少时间?(2)引导学生分析案例,找出等量关系:甲车行驶的距离+1小时行驶的距离=乙车行驶的距离。
(3)列出方程:60x+60=80(x-1)。
(4)解方程:60x+60=80x-80,20x=140,x=7。
(5)得出结论:乙车追上甲车需要7小时。
4.练习巩固1.甲、乙两辆火车从相距600公里的两个车站同时出发,相向而行,甲车速度为每小时80公里,乙车速度为每小时100公里。
求两车相遇需要多少时间?2.一辆汽车从甲地出发,以每小时60公里的速度行驶,一辆自行车从甲地出发1小时后以每小时20公里的速度追赶汽车。
求自行车追上汽车需要多少时间?(2)学生展示解题过程,教师点评并给出正确答案。
(2)强调找等量关系、列方程的重要性。
(3)鼓励学生多练习,提高解决问题的能力。
四、课后作业1.完成课后练习题,巩固追及问题的解题方法。
2.收集生活中的追及问题,尝试用一元一次方程解决。
五、教学反思本节课通过讲解追及问题的基本概念、类型和解题方法,让学生掌握了运用一元一次方程解决追及问题的能力。
一元一次方程的应用之追及问题问题描述追及问题是数学中一个常见的应用问题,也是一元一次方程的经典应用之一。
考虑如下情境:A 、B 两人从同一地点出发,A 的速度为 v1 m/s ,B 的速度为 v2m/s 。
如果 A 比 B 先出发 t 秒,那么 B 多久能追上 A ?构建方程为了解决这个追及问题,我们需要先构建一个一元一次方程来代表 A 和 B 的位置关系。
首先,我们根据题意可以得到 A 和 B 的距离和时间之间的关系:•A 的距离 = (A 的速度) * (时间 + t),即 d1 = v1 * (t + t)•B 的距离 = B 的速度 * 时间,即 d2 = v2 * t其中,d1 和 d2 分别表示 A 和 B 的距离,t 表示 A 比 B 先出发的时间差。
根据题意,当 A、B 两人相遇时,他们的距离相等。
因此,我们可以得到以下方程:v1 * (t + t) = v2 * t将上述方程变换一下,得到一元一次方程的标准形式:v1 * t + v1 * t = v2 * t再进一步整理得到:(v1 - v2) * t = 0根据一元一次方程的定义,我们可以推断出 t = 0 或 v1 - v2 = 0。
由于 t 表示 A比 B 先出发的时间差,而实际问题中 A 必然比 B 先出发,所以 t 不能等于 0。
因此,我们只需考虑 v1 - v2 = 0 的情况。
当 v1 - v2 = 0 时,即 A 和 B 的速度相等,这时无论谁先出发,B 都无法追上 A。
因此,追及问题存在的条件是v1 ≠ v2。
判断追及问题是否有解在解追及问题之前,我们需要先判断问题是否有解。
根据一元一次方程的定义,我们知道如果方程的系数一致,方程有解。
因此,当v1 ≠ v2 时,追及问题有解;当 v1 = v2 时,追及问题无解。
解追及问题当追及问题有解时,我们可以利用一元一次方程的求解方法来计算出相遇的时间 t。
将 v1 和 v2 带入 t 的方程中,求解得到 t 的值。
一元一次方程的应用之追及问题追及问题是一种经典的一元一次方程应用问题,常常出现在物理学、运动学以及交通领域中。
它描述的是两个物体相互追赶、追及的情况,通过建立一元一次方程来求解物体的速度、距离和时间等相关问题。
例如,假设有两个人A和B,他们在同一条直线上同时从不同的位置出发,A的速度是5米/秒,B的速度是4米/秒。
问题1:如果A和B同时出发后,多久之后他们能够相遇?问题2:相遇时,A和B分别走了多少米?首先,可以设定A和B同时出发的时间为t,那么A和B在t时间内分别走过的距离可以用速度乘以时间来表示。
根据题目中给出的数据,A 和B的速度分别是5米/秒和4米/秒,那么他们走过的距离可以表示为:A的距离=5tB的距离=4t问题1:他们相遇的时间是多久?由于他们在相遇时走过的距离是相等的,所以我们可以将A的距离和B的距离相等,即5t=4t。
解这个方程可以得到t=0,表示他们在出发后立即相遇。
但根据题意可知,他们是同时出发的,所以这个解是不符合实际情况的。
因此,我们可以设定他们相遇的时间为t,即5t=4t。
解这个方程可以得到t=0。
这个解同样不符合实际情况,所以可以排除。
问题2:相遇时,A和B分别走了多少米?我们可以将相遇时的距离设为d,即A和B相遇时的距离是d,那么根据上面的分析,A和B分别走过的距离分别是5d和4d。
根据题意,A 和B相遇时的距离是相等的,所以可以写出5d=4d,从而解得d=0。
同样不符合实际情况。
通过上面的分析可以看出,在这个问题中,A和B根本无法相遇。
这是因为在他们的出发速度中,A的速度5米/秒大于B的速度4米/秒,A 始终能够保持在B的前方,无论经过多久都不可能相遇。
通过这个例子,我们可以看到追及问题中一元一次方程的应用。
尽管上述问题中我们没有得到实际的解,但这并不妨碍追及问题在实际情况中的应用。
例如,在交通运输领域中,追及问题可以用于计算不同车辆之间的距离,以及不同车辆的相对速度和时间。
一元一次方程的应用之追及问题——初中数学第一册教案第16课4。
4一元一次方程的应用之追及问题教学目的一、使学生会分析相向而行的同时与不同时动身的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
二、使学生增强了解列一元一次方程解应用题的方式步骤。
教学分析重点:利用路程、速度、时间的关系,按照相遇问题中的相等关系,列出一元一次方程。
难点:寻觅相遇问题中的相等关系。
冲破:同时动身到相遇时,所历时间相等。
注重审题,从而找到相等关系。
教学进程一、温习一、列方程解应用题的一般步骤是什么?二、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,若是快车先开0。
5小时,那么慢车开出x小时后,快车行驶了千米。
二、新授一、引入列方程解应用题,关键是寻觅相等关系,今天咱们通过一例来学习如何寻觅相等关系,和把相等关系表示成方程的方式。
例(讲义P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式别离为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。
一样画出图形,并按讲义讲解,(见教材P217~218)由学生完成求解进程,并作出答案。
解:略说明:(1)本题是相向而行的相遇问题,一路点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。
不同点是一个同时动身,一个不是同时动身,所以所历时间不必然相等。
(2)不是同时动身的,要注意时间的关系。
三、练习P220练习:1,2。
四、小结一、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
二、相向而行的相遇问题中,要注意时间的关系。
五、作业一、P222 4。
4A:13,14,15。
二、基础训练:同步练习3。
《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。
【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。
【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。
【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。
行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
一元一次方程之追及问题甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车???如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车?2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。
乙每小时行4千米,甲每小时行多少千米?3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远?4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇?6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车?7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车?8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米?9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇?10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少?11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。
一元一次方程应用题追及问题一、引言一元一次方程是初中阶段数学中的一个重要知识点,也是学生学习的一个重要内容。
在现实生活中,一元一次方程有着广泛的应用,例如追及问题就是一元一次方程应用的一个典型例子。
本文将通过追及问题来探讨一元一次方程在实际生活中的应用,内容主要包括追及问题的概念、解题方法、应用实例和解决问题的思维方式等。
二、追及问题的概念追及问题是指两个物体在同一直线上相向运动,当它们起始位置、速度和方向都已知的情况下,求它们相遇时的时间和地点。
追及问题是一种典型的应用题,它可以用一元一次方程来解决。
在追及问题中,一般可以将两个物体的运动过程分别用两个一元一次方程来表示,通过求解这两个方程,就可以得到它们相遇的时间和地点。
三、解题方法1.建立方程在追及问题中,首先要根据题目中所给的信息,建立两个物体的运动方程。
通常可以采用以下步骤来建立方程:(1)确定变量及其含义:在问题中,通常需要确定两个物体的位置、速度和时间等变量,然后通过这些变量来建立方程。
(2)建立运动方程:根据两个物体的起始位置、速度和方向等信息,可以建立它们的运动方程。
例如,假设两个物体分别以v1和v2的速度从两个不同的地点出发,那么它们的位置与时间的关系可以表示为s1= v1t + s0和s2 = v2t + s0。
2.求解方程建立方程之后,接下来就是求解方程。
通常可以采用以下方法来求解一元一次方程:(1)代入法:将一个方程中的某个变量的值用另一个方程中的变量表示,然后将此值代入另一个方程中,求出另一个变量的值。
(2)消元法:通过两个方程的加减法,将一个变量消去,然后求解另一个变量。
3.检验解的合理性求解方程之后,还需要检验解的合理性。
通常可以通过代入原方程进行检验,如果代入后等式成立,则说明解是正确的;如果等式不成立,则需要重新检查解题过程。
四、应用实例下面通过几个实际的应用实例来说明追及问题的具体应用:实例一:小明骑自行车以每小时12公里的速度从A地出发,2小时后小红驾车以每小时20公里的速度从B地出发,两人在5小时后相遇,请问A、B两地的距离各是多少公里?解:设A、B两地的距离分别为x公里。
初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 七年级数学教案
编订:XX文讯教育机构
一元一次方程的应用之追及问题
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
教学目的
1、使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
2、使学生加强了解列一元一次方程解应用题的方法步骤。
教学分析
重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。
难点:寻找相遇问题中的相等关系。
突破:同时出发到相遇时,所用时间相等。
注重审题,从而找到相等关系。
教学过程
一、复习
1、列方程解应用题的一般步骤是什么?
2、路程、速度、时间的关系是什么?
3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了千米。
二、新授
1、引入
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。
例(课本P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:
慢车行程+快车行程=两站路程
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450
(2)再分析快车先开了30分两车相向而行的情形。
同样画出图形,并按课本讲解,(见教材P217~218)
由学生完成求解过程,并作出答案。
解:略
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程
+快车行程=两站路程。
不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。
(2)不是同时出发的,要注意时间的关系。
三、练习
P220练习:1,2。
四、小结
1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
2、相向而行的相遇问题中,要注意时间的关系。
五、作业
1、P222 4.4A:13,14,15。
2、基础训练:同步练习3。
XX文讯教育机构
WenXun Educational Institution。