一元一次方程-相遇、追及问题知识讲解
- 格式:ppt
- 大小:859.51 KB
- 文档页数:29
一元一次方程(行程问题)考点1、相遇问题:【基础知识回顾】相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车还是物体的移动,总是要涉及到三个量--------路程、速度、时间。
相遇问题的核心就是速度和。
路程、速度、时间三者之间的数量关系,不仅可以表示成:路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路程÷速度.一般的相遇问题: 甲从A地到B地,乙从B地到A地,然后两人在A地到B地之的某处相遇,实质上是甲,乙两人一起走了AB这段路程,如果两人同时出发,那有:(1) 甲走的路程+乙走的路程= 全程(2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间相遇问题的基本题型1、同时出发(两段)2、不同时出发(三段)相遇问题的等量关系S甲+S乙=S总(全程)S先+S甲+S乙=S总(全程)【典型例题】1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?[变式训练]1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?考点2、追及问题【基础知识回顾】两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程。
追及问题的核心就是速度差。
追及问题追及问题的基本题型1、不同地点同时出发2、同一地点不同时出发追及问题的等量关系1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间【典型例题】1. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?[变式训练]1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为________________.2、某人从家里骑自行车到学校。
一元一次方程——行程问题(追及问题)【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距速度差:快车比慢车单位时间内多行的路程。
即快车每小时比慢车多行的或每分钟多行的路程。
追及时间:快车追上慢车所用的时间。
路程差:快车开始和慢车相差的路程。
熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。
【经典例题】例题1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
行程(追击)问题例1.甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?例2.骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例3.两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行一会后,第二辆汽车才出发,12小时后追上第一辆车,问第二辆汽车出发时相距第一辆汽车多少千米?例4.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,乙起飞时甲已飞出300千米,甲机每小时行300千米,乙2小时后追上甲飞机,乙飞机每小时飞行多少千米?练习1.姐姐步行速度是75米/分,妹妹步行速度是45米/分。
相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
一元一次方程经典行程问题行程问题一、相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速练:一、追及问题1.甲乙两人相距40千米,甲在后乙在前,两人同向而行,甲先出发1.5小时后乙再出发,甲的速度为每小时8千米,乙的速度为每小时6千米,甲出发几小时后追上乙?2、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
1号队员从离队开始到与队员重新会和,经过了多长时间?3.在3点钟和4点钟之间,钟表上的时针和分针什么时间重合?4.甲步行上午7时从A地出发,于下午5时到达B地,乙骑自行车上午10时从A地出发,于下午3时到达B地,问乙在什么工夫追上甲的?分析:设A,B两地间的距离为1,根据题意得:甲步行走全程需要10小时,则甲的速度为_______.乙骑车走全程需要5小时,则乙的速度为_______.2、相遇问题1.甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?。
一元一次方程应用题追及问题一、引言一元一次方程是初中阶段数学中的一个重要知识点,也是学生学习的一个重要内容。
在现实生活中,一元一次方程有着广泛的应用,例如追及问题就是一元一次方程应用的一个典型例子。
本文将通过追及问题来探讨一元一次方程在实际生活中的应用,内容主要包括追及问题的概念、解题方法、应用实例和解决问题的思维方式等。
二、追及问题的概念追及问题是指两个物体在同一直线上相向运动,当它们起始位置、速度和方向都已知的情况下,求它们相遇时的时间和地点。
追及问题是一种典型的应用题,它可以用一元一次方程来解决。
在追及问题中,一般可以将两个物体的运动过程分别用两个一元一次方程来表示,通过求解这两个方程,就可以得到它们相遇的时间和地点。
三、解题方法1.建立方程在追及问题中,首先要根据题目中所给的信息,建立两个物体的运动方程。
通常可以采用以下步骤来建立方程:(1)确定变量及其含义:在问题中,通常需要确定两个物体的位置、速度和时间等变量,然后通过这些变量来建立方程。
(2)建立运动方程:根据两个物体的起始位置、速度和方向等信息,可以建立它们的运动方程。
例如,假设两个物体分别以v1和v2的速度从两个不同的地点出发,那么它们的位置与时间的关系可以表示为s1= v1t + s0和s2 = v2t + s0。
2.求解方程建立方程之后,接下来就是求解方程。
通常可以采用以下方法来求解一元一次方程:(1)代入法:将一个方程中的某个变量的值用另一个方程中的变量表示,然后将此值代入另一个方程中,求出另一个变量的值。
(2)消元法:通过两个方程的加减法,将一个变量消去,然后求解另一个变量。
3.检验解的合理性求解方程之后,还需要检验解的合理性。
通常可以通过代入原方程进行检验,如果代入后等式成立,则说明解是正确的;如果等式不成立,则需要重新检查解题过程。
四、应用实例下面通过几个实际的应用实例来说明追及问题的具体应用:实例一:小明骑自行车以每小时12公里的速度从A地出发,2小时后小红驾车以每小时20公里的速度从B地出发,两人在5小时后相遇,请问A、B两地的距离各是多少公里?解:设A、B两地的距离分别为x公里。
一元一次方程的应用:追及问题初中数学学习目标一、考点突破追及问题是两物体同向行驶,快的(后出发的)追上慢的(先出发的)。
通过本讲的学习,弄清这类问题的数量关系,能够正确找到相等关系并列方程求解,学会熟练地画线段图解决行程问题。
二、重难点提示重点:弄清追及问题的各种类型及其数量关系。
难点:环形跑道和时钟的问题。
考点精讲1. 追及问题的特点:两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。
这类常常会在考试考到,一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;另一种是多人追及、多人相遇,此类则较困难。
2. 追及问题的数量关系:速度差×追及时间=路程差,路程差÷速度差=追及时间(同向追及)等。
这类问题的等量关系是:同时不同地:甲的时间=乙的时间,甲走的路程-乙走的路程=原来甲、乙相距的路程;同地不同时:甲的时间=乙的时间-时间差,甲的路程=乙的路程。
3. 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。
示例甲、乙两人在400 米长的环形跑道上跑步,甲每分钟跑240 米,乙每分钟跑200米,两人同时同地同向出发,几分钟后两人相遇?若背向跑,几分钟后相遇?思路分析:等量关系:两人同时同地同向出发,甲的路程-乙的路程=400 米两人背向跑:甲的路程+乙的路程=400 米典例精讲例题1 甲、乙两人练习赛跑,甲每秒钟跑7 米,乙每秒钟跑6.5 米,他俩从同一地点起跑,乙先跑5 米后,甲出发追赶乙。
设甲出发x 秒后追上乙,则下列四个方程中正确的是()A. 7x =6.5x+5B. 7x =6.5x-5C. 7x+5 =6.5xD.(7+6.5)x =5思路分析:首先理解题意找出题中存在的等量关系:乙跑的路程=甲跑的路程,根据此等式列方程即可。
答案:设甲出发x 秒钟后追上乙,则甲所跑的路程为7x,而此时乙所跑的路程为6.5x +5;根据此时“甲追上乙”那么他们的总路程应该相同,即7x =6.5x+5 ,故选A。
一元一次方程追及相遇问题追及问题两个运动着的物体从不同的地点出发,同向运动。
慢的在前,快的在后,经过若干时间,快的追上慢的。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。
解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。
解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。
如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。