热泵种类介绍
- 格式:ppt
- 大小:2.56 MB
- 文档页数:12
热泵的知识点总结热泵的主要组成部分包括压缩机、膨胀阀、蒸发器和冷凝器。
压缩机负责将低温低压的蒸汽压缩成高温高压的蒸汽,蒸汽在膨胀阀处膨胀成低温低压的蒸汽,然后在蒸发器吸收外界热量,蒸汽变成低温液体,最后在冷凝器释放热量,液体再次变成低温低压的蒸汽。
通过这个过程,热泵可以将外界的低温热能转化为高温热能。
热泵的工作原理是基于蒸发冷凝原理,即利用低温蒸汽和高温蒸汽间的状态变化来实现热能转换。
热泵有多种类型,包括空气源热泵、地源热泵、水源热泵等。
不同类型的热泵适用于不同的环境和应用场景,但它们的工作原理都是一样的。
热泵的应用领域非常广泛,包括家庭暖通、工业制冷、热水供暖等。
在家庭暖通方面,热泵可以代替传统的燃气锅炉和电锅炉,实现供暖和热水的双重功能。
在工业领域,热泵可以用于制冷和空调系统,提高生产效率和产品质量。
在热水供暖方面,热泵可以利用空气、地热或水源等可再生能源,减少对传统能源的消耗,降低能源成本。
热泵技术的发展有助于提高能源利用效率,减少能源消耗和环境污染。
随着环保意识的不断提高和可再生能源的开发利用,热泵技术将在未来得到更加广泛的应用和推广。
热泵的优点包括能效高、环保、节能、安全、使用寿命长、可靠性强、节约能源资源、减少热能损耗、降低运行成本等。
所以在目前来看,热泵技术是未来的一个非常有前景的技术。
热泵技术也有一些缺点,包括:初投资较大、系统复杂、运行成本高、技术要求高、不适用于所有环境等。
但随着技术的不断进步和成本的不断降低,这些缺点将逐渐得到解决。
总之,热泵技术是一种非常有前景和发展潜力的能源技术,它可以改善能源利用效率,减少对化石燃料的依赖,降低环境污染,保护地球环境,促进可持续发展。
我们应该加大对热泵技术的研发和推广力度,推动热泵技术的广泛应用。
地源热泵的分类及其各自特点美国制冷与空调学会(ARI)根据地下换热介质的不同分为三类:一是与地表水换热的水源热泵(water-source heat pumps );二是与地下水换热的地下水源热泵(ground water-sourc e heat pumps) ;三是与土壤换热的地下耦合热泵(ground-coupled heat pump,ground sourc e closed-loop heat pumps,也叫土壤源热泵、闭环水源热泵)。
1.土壤源热泵土壤源热泵以大地作为热源和热汇,热泵的换热器埋于地下,与大地进行冷热交换。
土壤源热泵系统主机通常采用水—水或热泵机组或水—气热泵机组。
根据地下热交换器的布置形式,主要分为垂直埋管、水平埋管和蛇行埋管三类。
垂直埋管换热器通常采用的是U型方式,按其埋管深度可分为浅层(<30m),中层(30~100m)和深层(>100m)三种。
埋管深,地下岩土温度比较稳定,钻孔占地面积较少,但相应会带来钻孔、钻孔设备的经费和高承压埋管的造价提高。
总的来说,垂直埋管换热器热泵系统优势在于:(1)占地面积小;(2)土壤的温度和热特性变化小;(3)需要的管材最少,泵耗能低;(4)能效比很高。
而劣势主要在于:由于相应的施工设备和施工人员的缺乏,造价偏高。
水平埋管换热器有单管和多管两种形式。
其中单管水平换热器占地面积最大,虽然多管水平埋管换热器占地面积有所减少,但管长应相应增加来补偿相邻管间的热干扰。
水平埋管换热器热泵系统由于施工设备广泛使用而且施工人员易找,又加上许多家庭有足够大的施工场地,因此造价就可以减下来。
除需要较大场地外,水平埋管换热器系统的劣势还在于:运行性能上不稳定(由于浅层大地的温度和热特性随着季节、降雨以及埋深而变化);泵耗能较高;系统效率降低。
蛇行埋管换热器比较适用于场地有限又较经济的情况下。
虽然挖掘量只有单管水平埋管换热器20%~30%,但是用管量会明显增加。
热泵分类及特点热泵是一种能够将低温热源中的热量转移到高温处的装置,它利用热力学原理,通过压缩、膨胀工质的循环运动,实现低温热源的升温。
热泵广泛应用于供暖、制冷、热水和工业生产等领域,具有高效节能、环保安全等优点。
根据热源的不同,热泵可以分为空气源热泵、水源热泵和地源热泵三种类型。
1. 空气源热泵空气源热泵是利用空气中的热能作为热源的一种热泵系统。
它通过空气-制冷剂-工质之间的热交换,将低温的空气中的热量转移到室内,提供供暖、制冷和热水等功能。
空气源热泵具有安装方便、运行稳定、成本低等特点。
然而,由于空气源热泵的热源是空气,受气温变化的影响较大,其制热效果在极寒地区会受到一定限制。
2. 水源热泵水源热泵是利用水体作为热源的热泵系统。
它通过水-制冷剂-工质之间的热交换,将水体中的热量转移到室内,实现供暖、制冷和热水等功能。
水源热泵具有热效率高、稳定性好、节能环保等特点。
然而,水源热泵需要有充足的水源供应,对水质和水温的要求较高,安装和运行成本相对较高。
3. 地源热泵地源热泵是利用地下土壤或地下水作为热源的热泵系统。
它通过地源-制冷剂-工质之间的热交换,将地下的热量转移到室内,实现供暖、制冷和热水等功能。
地源热泵具有稳定可靠、热效率高、节能环保等特点。
由于地下温度相对稳定,地源热泵的制热效果不受气温变化的影响,适用于各种气候条件下的供暖需求。
然而,地源热泵的安装和地下管道的布置较为复杂,需要占用一定的土地面积。
总结起来,空气源热泵适用于气候温和地区,安装和运行成本相对较低;水源热泵适用于有充足水源供应的地区,热效率高但成本较高;地源热泵适用于各种气候条件下,稳定可靠但安装成本较高。
根据实际情况,选择合适的热泵类型可以最大程度地发挥其优点,实现节能环保的供暖、制冷和热水需求。
吸收式热泵分类吸收式热泵是一种利用吸收剂对低温热源进行吸收和放出热量的设备,它可以将低温热源中的热能转化为高温热能。
吸收式热泵的应用范围非常广泛,包括工业、建筑、农业等领域。
根据不同的工作介质和工作原理,可以将吸收式热泵分为多种类型。
一、基于工作介质分类1. 水-氨吸收式热泵水-氨吸收式热泵是最常见的一种类型,它由蒸发器、冷凝器、蒸发器、稀溶液换热器和浓溶液换热器等组成。
在这种类型的吸收式热泵中,水是主要的工作介质,而氨则是吸收剂。
当水从蒸发器中蒸发时,它会带走环境中的低温热量,并被氨所吸收。
然后,在稀溶液换热器中,稀溶液会通过与浓溶液接触而释放出所吸收的低温热量,并将氨重新释放出来。
最后,氨会被送回到蒸发器中,这样就完成了一个循环。
2. 水-锂溴吸收式热泵水-锂溴吸收式热泵是另一种常见的类型,它的工作介质是水和锂溴。
与水-氨吸收式热泵不同,这种类型的吸收式热泵需要更高的温度来实现工作。
在这种类型的吸收式热泵中,水是主要的工作介质,而锂溴则是吸收剂。
当水从蒸发器中蒸发时,它会带走环境中的低温热量,并被锂溴所吸收。
然后,在稀溶液换热器中,稀溶液会通过与浓溶液接触而释放出所吸收的低温热量,并将锂重新释放出来。
最后,锂会被送回到蒸发器中。
二、基于工作原理分类1. 单效吸收式热泵单效吸收式热泵是一种基于单级循环原理设计的设备。
在这种类型的吸收式热泵中,只有一个蒸发器和一个冷凝器。
当水从蒸发器中蒸发时,它会带走环境中的低温热量,并被吸收剂所吸收。
然后,在稀溶液换热器中,稀溶液会通过与浓溶液接触而释放出所吸收的低温热量,并将吸收剂重新释放出来。
最后,吸收剂会被送回到蒸发器中。
2. 双效吸收式热泵双效吸收式热泵是一种基于双级循环原理设计的设备。
在这种类型的吸收式热泵中,有两个蒸发器和两个冷凝器。
当水从第一个蒸发器中蒸发时,它会带走环境中的低温热量,并被第一个吸收剂所吸收。
然后,在第一个稀溶液换热器中,稀溶液会通过与浓溶液接触而释放出所吸收的低温热量,并将第一个吸收剂重新释放出来。
一、热泵机组分类:1.涡旋式压缩机热泵机组:涡旋式压缩机为容积式压缩机,具有运转平稳、振动小、噪音低等优点,常用的空气-空气热泵机组,适用于中、小型工程。
2.活塞式压缩机热泵机组:活塞式压缩机为容积式压缩机,结构复杂、转速低、振动大、噪音大、单机容量较小,多机头组合可拼装成100万大卡/时左右热泵机组,COP=3.0~3.5;3. 螺杆式压缩机热泵机组:螺杆式压缩机也为容积式压缩机,结构简单、运转平稳、振动小、噪音低、寿命长,COP=3.5~4.5,适用于中、小型工程,多机头热泵机组可用于较大工程。
单螺杆为平衡式单向运转,磨损小,无轴向推力,其排气效率比双螺杆略低。
二、热泵机组设计:1.选用原则:热泵机组有优点也有缺点,与同容量单冷冷水机组相比,其用电量大,造价高,冬季随室外气温下降制热量衰减严重、结霜严重等,因此,①当某工程有蒸汽源时,空调冷热源应尽量采用“单冷冷水机组加热交换器”方案。
无锡市正在形成城市蒸汽热力网,我们应优先采用以上方案。
②本人认为医院、宾馆等对冬季采暖温度要求较高的工程不适宜采用热泵机组,办公楼、饭店等工程则较适宜,因为它们一般白天使用,热泵机组制热量衰减小,就算采暖效果差些,室内人员可多穿衣服,影响小些。
2.选型方法:尽管江南地区一般工程冷负荷大于热负荷,但空调设计人员应计算出工程夏季冷负荷及冬季热负荷,按机组制冷量≥空调冷负荷来选择热泵机组型号,然后看以下不等式是否成立:热泵机组在冬季室外空调计算温度(如:无锡地区为-5℃)下的制热量≥工程冬季热负荷。
①若该不等式成立,则热泵机组选型适宜。
②若该不等式不成立,则应在空调水管上设辅助加热装置或增大热泵机组容量。
江南地区一般工程以上不等式是成立的。
3. 活塞式及螺杆式热泵机组若干性能比较:许多厂家销售人员出于商业利益,往往片面甚至恶意中伤某品牌或活塞、螺杆式热泵机组,我们设计人员不能被一叶障目,要认真细致地了解各类机型性能,作出正确的选型判断。
根据热泵所利用能源的不同,热泵可作如下分类:一、空气源热泵以空气作为“源体”,空气源热泵,通过冷媒作用,进行能量转移。
目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。
热泵空调器已占到家用空调器销量的40—50%,年产量为400余万台。
热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到20—30%,而且应用范围继续扩大并有向此移动的趋势。
二、水源热泵以地下水作为冷热"源体",在冬季利用热泵吸收其热量向建筑物供暖,在夏季热泵将吸收到的热量向其排放、实现对建筑物供冷。
虽然目前空气能热泵机组在我国有着相当广泛的应用,但它存在着热泵供热量随着室外气温的降低而减少和结霜问题,而水源热泵克服了以上不足,而且运行可靠性又高,近年来国内应用有逐渐扩大的趋势。
三、地源热泵地源热泵是以大地为热源对建筑进行空调的技术,冬季通过热泵将大地中的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。
由于其节能、环保、热稳定等特点,引起了世界各国的重视。
欧美等发达国家地源热泵的利用已有几十年的历史,特别是供热方面已积累了大量设计、施工和运行方面的资料和数据。
四、复合热泵为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。
如空气-空气热泵机组、空气-水热泵机组、水-水热泵机组、水-空气热泵机组、太阳-空气源热泵系统、空气回热热泵、太阳-水源热泵系统、热电水三联复合热泵、土壤-水源热泵系统等。
1、太阳-空气热源热泵系统太阳-空气热源热泵系统是在传统的空气热源热泵系统的基础上,利用太阳能热源而新开发的系统。
它可以制冷、供热、供生活热水,是一种利用自然能源、无污染、适用性广、效率高的新型冷热源系统。
2、土壤-水热泵系统土壤-水热泵(下称土壤热泵)可利用低品位的土壤热能提供热水或向建筑物供暖。
热泵的不同类型及比较众所周知,热泵作为提供热量的主要设备之一,以其对环境友善及节约能源等特点,在许多领域得到了广泛的应用。
在本文中。
首先向我们介绍了热泵的发展历史,介绍了热泵的种类、特点、使用场合及条件,对几种主要热泵在应用过程中存在的问题进行了讨论,分析了热泵技术的研究进展、应用现状及相关新技术。
1、热泵与制冷机区别热泵是一种以冷凝器放出的热量对被调节环境进行供热的一种制冷系统。
就热泵系统的热物理过程而言,从工作原理或热力学的角度看,它是制冷机的一种特殊使用型式。
它与一般制冷机的主要区别在于:①使用的目的不同。
热泵的目的在于制热,研究的着眼点是工质在系统高压侧通过换热器与外界环境之间的热量交换;制冷机的目的在于制冷或低温,研究的着眼点是工质在系统低压侧通过换热器与外界之间的换热;②系统工作的温度区域不同。
热泵是将环境温度作为低温热源,将被调节对象作为高温热源;制冷机则是将环境温度作为高温热源,将被调节对象作为低温热源。
因而,当环境条件相当时,热泵系统的工作温度高于制冷系统的工作温度。
2、热泵的由来及主要应用型式2.1热泵的由来随着工业革命的发展,19世纪初,人们对能否将热量从温度较低的介质“泵”送到温度较高的介质中这一问题发生了浓厚的兴趣。
英国物理学家J.P.Joule提出了“通过改变可压缩流体的压力就能够使其温度发生变化”的原理。
1854年,W.Thomson教授(即大家熟知的Lord Kelvin勋爵)发表论文,提出了热量倍增器(Heat Multiplier)的概念,首次描述了热泵的设想。
当时,热泵供暖的对象主要是民用,供暖需求总量小,特别是对由于采暖方式及其对环境的影响尚没有足够的意识。
人们采暖的方式主要是燃煤和木材,因而,热泵的发展长期明显滞后于制冷机的发展。
上世纪30年代,随着氟利昂制冷机的发展,热泵有了较快的发展。
特别是二战以后,工业经济的长足发展带来的对供热的大量需求及相对能源短缺,促进了大型供热及工业用热泵的发展。