工程热力学与传热学
- 格式:ppt
- 大小:516.00 KB
- 文档页数:4
传热学与工程热力学的区别
传热学与工程热力学是热力学的两个分支学科。
传热学研究物质内部和相邻物质之间的热量传递规律,探究热量传递的机理及其影响因素。
而工程热力学则是将传热学的知识应用于工程实践中,研究热力系统中的热力学问题,如热力循环、热力转化等。
两者的区别在于研究对象和研究内容的不同,传热学侧重于基础理论的探究,而工程热力学则更关注实际工程应用中的问题解决。
然而,两者之间存在着密切的联系和互相促进的关系,传热学为工程热力学提供了基础理论支撑,而工程热力学则通过实践验证和应用推广,反过来又促进了传热学的发展和完善。
- 1 -。
第一篇工程热力学第一章基本概念一.基本概念系统:状态参数:热力学平衡态:温度:热平衡定律:温标:准平衡过程:可逆过程:循环:可逆循环:不可逆循环:二、习题1.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗?错2.牛顿温标,用符号°N表示其温度单位,并规定水的冰点和沸点分别为100°N和200°N,且线性分布。
(1)试求牛顿温标与国际单位制中的热力学绝对温标(开尔文温标)的换算关系式;(2)绝对零度为牛顿温标上的多少度?3.某远洋货轮的真空造水设备的真空度为MPa,而当地大气压力为,当航行至另一海域,其真空度变化为,而当地大气压力变化为。
试问该真空造水设备的绝对压力有无变化?4.如图1-1所示,一刚性绝热容器内盛有水,电流通过容器底部的电阻丝加热水。
试述按下列三种方式取系统时,系统与外界交换的能量形式是什么。
(1)取水为系统;(2)取电阻丝、容器和水为系统;(3)取虚线内空间为系统。
(1)不考虑水的蒸发,闭口系统。
(2)绝热系统。
注:不是封闭系统,有电荷的交换(3)绝热系统。
图1-15.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。
(1)在大气压力为时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。
耗散效应(2)在大气压力为时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。
可逆(3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。
可逆(4)100℃的水和15℃的水混合。
有限温差热传递6.如图1-2所示的一圆筒容器,表A的读数为360kPa;表B的读数为170kPa,表示室I压力高于室II的压力。
大气压力为760mmHg。
试求:(1)真空室以及I室和II室的绝对压力;(2)表C的读数;(3)圆筒顶面所受的作用力。
图1-2第二章 热力学第一定律一.基本概念功: 热量: 体积功: 节流:二.习题1.膨胀功、流动功、轴功和技术功四者之间有何联系与区别? 2.下面所写的热力学第一定律表达是否正确?若不正确,请更正。
第一章基本概念及定义一、热力学系统1、热力系统热力学系统:人为划定的一定范围内的研究对象称为热力学系统,简称热力系或系统。
外界:系统以外的所有物质边界:系统与外界间的分界面2、热力系统的分类根据系统与外界的物质交换情况分类:1.开口系统:存在质量交换2.闭口系统:不存在质量交换根据系统与外界的能量交换情况分类:1.绝热系统:系统与外界无热量交换2.孤立系统:既无能量交换又无物质交换系统3.简单热力系统:只交换热量及一种形式的功4.复杂热力系统:交换热量及两种形式以上的功简单可压缩系统:在简单热力系统中,工质若是可压缩流体,并且系统与外界交换的功的形式是容积变化功(膨胀功或压缩功),则此热力系统称为简单可压缩系统。
(仅需两个状态参数就能确定系统的状态)3、工质与热源工质:实现热能和机械能之间转换的媒介物质。
热源:在能量交换中与工质有热量交换的物系。
分为高温热源和低温热源。
二、热力学系统的状态及基本状态参数1、定义平衡状态:指系统在不受外界影响的情况下,其本身宏观性质不随时间发生变化的状态。
平衡的本质:不存在不平衡势系统热力平衡状态的条件:热平衡(无温差)、力平衡(无压差)2、状态参数特点:1、状态确定,则状态参数也确定,反之亦然;2、状态参数具有积分特征:状态参数的变化量与路径无关,只与初终态有关;3、状态参数具有全微分特性: 3、基本状态参数1、比体积v :单位质量物质所拥有的容积。
2、压力(绝对压力):力学定义——3、温度T :俗称物体冷热程度的标志三、平衡状态和状态参数坐标图状态参数坐标图的说明:1)系统任何平衡态可表示在坐标图上。
2)图中的每一点都代表系统中的一个平衡状态。
3)不平衡态无法在图中表示。
dy yzdx x z dz x y )()(∂∂+∂∂=AF p =四、状态方程式1、理想气体模型气体分子是具有弹性但不占据体积的质点;除相互碰撞外无其它作用力。
2、摩尔气体常数R与气体常数RgR单位:J/(mol·K) Rg单位:J/(kg·K)五、热力过程和准静态过程1、热力过程处于平衡状态的工质,在受到外界作用时,从一个状态经过一系列的中间状态变化到另一个平衡状态所经历的全部状态的总和称为热力过程。
一、选择题 (82分)1、定量气体吸取热量50kJ,同时热力学能增长了80kJ,则该过程是()。
A、压缩过程B、膨胀过程C、熵减过程D、降压过程对的答案:A学生答案:A2、以下系统中,和外界即没有质量互换,又没有能量互换的系统是()。
A、闭口系统B、开口系统C、绝热系统孤立系统对的答案:D学生答案:3、下列各热力过程,按多变指数大小排序,对的的是()A、定熵过程>定温过程>定压过程>定容过程B、定容过程>定熵过程>定温过程>定压过程C、定压过程>定容过程>定熵过程>定温过程D、定温过程>定压过程>定容过程>定熵过程对的答案:B学生答案:4、等量空气从相同的初态出发,分别经历可逆绝热过程A和不可逆绝热过程B到达相同的终态,则两过程中热力学能的变化()。
A、可逆过程>不可逆过程两者相等C、可逆过程<不可逆过程D、无法拟定对的答案:B学生答案:5、对于抱负气体的定容过程,以下说法对的的是()。
A、定容过程中工质与外界没有功量互换B、定容过程中技术功等于工质的体积变化功C、工质定容吸热时,温度升高,压力增长D、定容过程中工质所吸取的热量所有用于增长工质的焓值对的答案:C学生答案:6、某液体的温度为T,若其压力大于温度T相应的饱和压力,则该液体一定处在()状态。
A、未饱和液体B、饱和液体C、湿蒸汽D、过热蒸汽对的答案:A学生答案:7、在高温恒温热源和低温恒温热源之间有卡诺热机,任意可逆热机以及任意不可逆热机,以下说法对的的是()。
A、卡诺热机是一种不需要消耗能量就能对外做功的机器B、热机的热效率:卡诺热机>可逆热机>不可逆热机C、热机的热效率:卡诺热机=可逆热机D、热机的热效率:可逆热机>不可逆热机对的答案:C学生答案:8、关于热力学第二定律的表述,以下说法错误的是()。
A、功可以自发地无条件的转变为热B、热量可以自发地由高温物体传递至低温物体C、第二类永动机是不也许制造出来的D、可以从大气中取热并使之所有转变为功对的答案:D学生答案:9、下列物质:水、水蒸气、冰中,导热系数大小的排列顺序为()。
工程热力学第一章工质——实现热能和机械能相互转化的媒介物质。
热力学系统——简称系统、体系,人为分割出来作为热力学分析对象的有限物质系统。
闭口系统——与外界只有能量交换而无物质交换的热力系统,闭口系统又叫做控制质量。
开口系统——与外界不仅有能量交换而且有物质交换的热力系统,开口系又叫做控制容积,或控制体。
区分闭口系和开口系的关键是有没有质量越过了边界,并不是系统的质量是不是发生了变化。
绝热系统——与外界无热量交换的热力系统。
绝热系是从系统与外界的热交换的角度考察系统,不论系统是开口系还是闭口系,只要没有热量越过边界,就是绝热系。
简单可压缩系——由可压缩流体构成,与外界可逆功交换只有体积变化功(膨胀功)一种形式,没有化学反应的有限物质系统。
对于简单可压缩系,只要有两个独立的状态参数即可确定一个平衡状态,所有其它状态参数均可表示为这两个独立状态参数的函数。
准平衡过程——又称准静态过程,不致显著偏离平衡状态,并迅速恢复平衡的过程。
准平衡过程进行的条件是破坏平衡的势无穷小,过程进行足够缓慢,工质本身具有恢复平衡的能力。
准平衡过程在坐标图中可用连续曲线表示。
可逆过程——工质能沿相同的路径逆行而回复到原来状态,并使相互作用中所涉及到的外界回复到原来状态,而不留下任何改变的过程。
过程不可逆的成因一是有限势差的作用,二是物系本身的耗散作用,所以可逆过程,首先应是准平衡过程,同时在过程中没有任何耗散效应。
实际热力设备中所进行的一切热力过程都是不可逆的,可逆过程是不引起任何热力学损失的理想过程。
可逆过程可用状态参数图上连续实线表示。
膨胀功——又称“体积功”。
机械功的一种。
由系统体积变化而由系统对环境所做的功或环境对系统所做的功。
第二章热力学能——原称内能,由分子或其他微观粒子的热运动及相互作用力形成的内动能、内位能及维持一定分子结构的化学能和原子核内部的原子能以及电磁场作用下的电磁能等一起构成的内部储存能。
热工复习资料绪论热工学分为两部分:工程热力学和传热学二者区别:工程热力学主要研究能量(特别是热能)的性质及其与机械梦或其他形式能之间相互转换规律;传热学是研究热量传递规律的学科第一章复习重点1.边界(界面):热力系与外界的分界面特性:固定、活动、真实、虚构2.几种热力系统(1)闭口热力系统—与外界无物质交换的热力系统。
(2)开口热力系统—与外界有物质交换的热力系统。
(3)绝热热力系统—与外界无热量交换的热力系统。
(4)孤立热力系统—与外界无任何联系的热力系统。
(5简单可压缩系统—与外界只有热量和机械功交换的可压缩系统3.状态参数分类:(1)与质量无关不可相加的参数,称为强度参数如压力、温度、密度(2)与质量成正比可以相加的参数,广延参数。
如容积,内能、熵4.热工学中常用状态参数有六个:压力、比容、温度、内能、焓、熵基本状态参数:压力 p(此处的压力是指绝对压力非表压力或真空度)、温度 T、比容 v5.绝对压力、环境压力和相对压力之间的关系,可写出如下3个关系式,从中整理出所求量。
当P>Pb时为表压力:P=Pg+Pb;当P<Pb时为真空度:P=Pb-Pv6.平衡状态:指热力系在无外界影响的条件下,宏观性质不随时间变化的状态;要达到平衡状态必须满足热平衡和力平衡两个条件,若存在化学反应或相变包括化学平衡、相平衡7.引入平衡状态的目的:整个热力系统可用一组统一的并具有确定数值的状态参数来描述状态,便于分析热力学问题8.状态公理:对组成一定的闭口系,独立状态参数个数 N=n+1独立参数数目N=不平衡势差数=各种功的方式+热量= n+1 简单可压缩系统独立状态参数个数:N = n + 1 = 29过程:热力系从一个状态变化到另一个状态所经历全部状态的集合10.准静态过程定义:在无限小势差的推动下,由一系列连续的平衡状态组成的过程称为准平衡过程,也称为准静态过程。
条件: 推动过程进行的势差无限小。
工程热力学与传热学概念整理工程热力学第一章、基本概念1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。
热力系以外的物质称为外界;热力系与外界的交界面称为边界。
2.闭口系:热力系与外界无物质交换的系统。
开口系:热力系与外界有物质交换的系统。
绝热系:热力系与外界无热量交换的系统。
孤立系:热力系与外界无任何物质和能量交换的系统3.工质:用来实现能量像话转换的媒介称为工质。
4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。
5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。
实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。
6.强度参数:与系统所含工质的数量无关的状态参数。
广延参数:与系统所含工质的数量有关的状态参数。
比参数:单位质量的广延参数具有的强度参数的性质。
基本状态参数:可以用仪器直接测量的参数。
7.压力:单位面积上所承受的垂直作用力。
对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。
8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。
换言之,温度是热力平衡的唯一判据。
9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。
它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。
10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。
11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。
12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。
13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。
工程热力学与传热学课程设计课程概述工程热力学与传热学是机械工程专业的一门重要课程。
它主要研究热力学基本原理和热力学系统的性质,以及物质内部的热传递、质量传递和动量传递规律。
通过本门课程的学习,学生能够建立并熟练运用热力学和传热学基础理论来解决实际工程问题。
本课程设计旨在帮助学生加深对热力学和传热学的理解,通过实际案例进行分析和解决问题,提高学生的实际操作能力。
设计内容本课程设计分为两个部分:热力学实验和传热学实验。
热力学实验热力学实验是通过实验装置和仪器,测试和分析热力学基础理论在实际中的应用。
本次实验的目的是测量和分析水在不同温度下的物理性质。
实验装置及仪器实验装置主要包括:恒温水浴、测量热电偶、温度计、电源等。
其中恒温水浴用于控制水的温度,测量热电偶和温度计用于测试不同温度下水的物理性质。
实验步骤和数据处理1.准备恒温水浴,测量恒温水浴的温度,保证水浴温度的稳定。
2.准备好测量热电偶和温度计,并将其插入水中进行温度测量。
3.测量并记录不同温度下水的密度、比热容和导热系数。
4.对实验数据进行处理,绘制出水密度、比热容和导热系数与温度的函数关系图。
传热学实验传热学实验是通过实验装置和仪器,测试和分析传热学基础理论在实际中的应用。
本次实验的目的是测量和分析水在不同情况下的传热特性。
实验装置及仪器实验装置主要包括:恒温水浴、传热仪、温度计、电源等。
其中恒温水浴用于使水达到稳定温度,传热仪用于测试传热系数。
实验步骤和数据处理1.准备恒温水浴,将传热仪放入恒温水浴中。
2.调整水浴温度及传热仪温度,使水和传热仪达到稳定温度。
3.测量并记录不同温度差下的传热系数。
4.对实验数据进行处理,绘制出传热系数与温度差的函数关系图。
结束语本次课程设计通过实验测试的方式,增加了学生对工程热力学与传热学的实际操作能力和深入理解。
希望学生们通过本次实验,加深对热力学基础理论的理解,提高科学实验的操作和数据处理能力,增强对传热学应用的理解和创新能力。