苏教版窗初三数学一元二次方程知识点整合
- 格式:doc
- 大小:27.50 KB
- 文档页数:6
苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.【388528 :根系关系】2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m =±1,又∵m -1≠0,∴m ≠1,故m =-1.【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(2)310m m x mx ---=是关于x 的一元二次方程,求m 的值.【答案】 根据题意得22,20,m m ⎧=⎪⎨-≠⎪⎩ 解得所以当方程2(2)310m m x mx ---=是关于x 的一元二次方程时,2m =-.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2(21)4(21)40x x ++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-,25(3)(3)(3)0x x x --+-=,∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴ 15x =-,232x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴ 13x =,21x =.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.【388528 :一元二次方程的根的判别式】4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根;(2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根.【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围.【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A .B .C .D .【思路点拨】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.【答案】D .【解析】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=.故选D .【总结升华】本题考查了根与系数的关系,解题的关键是得出x 1+x 2=﹣,x 1•x 2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.举一反三:【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在, 请说明理由.【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k -+-=-+>, 所以1312k <.由k-1≠0,得k ≠1. 当1312k <且k ≠1时,方程有两个不相等的实数根; (2) 不存在.如果方程的两个实数根互为相反数,则122301k x x k -+=-=-,解得32k =. 当32k =时,判别式△=-5<0,方程没有实数根. 所以不存在实数k ,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.(2015•青岛模拟)随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?【答案与解析】解:设乙店销售额月平均增长率为x ,由题意得:10(1+2x )2﹣15(1+x )2=10,解得 x 1=60%,x 2=﹣1(舍去).2x=120%.答:甲、乙两店这两个月的月平均增长率分别是120%、60%.【总结升华】此题考查了一元二次方程的应用,为运用方程解决实际问题的应用题型. 举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。
苏教版初三数学九年级上册知识点总结归纳苏教版初三数学九年级上册知识点总结归纳第一章一元二次方程思维导图:知识点归类知识点一:一元二次方程的定义一元二次方程是指通过移项可以使右边为0,而左边只含有一个未知数的二次多项式。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.在判断时,需将方程化成一般形式。
知识点二:一元二次方程的解法用一元二次方程解决问题的步骤可以归纳为“审、设、列、解、检验、答”六步。
1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.2)“设”是指设未知数,在一道应用题中,应恰当地选择其中的一个未知量用字母x表示,然后根据各量之间的数量关系,将其他几个未知量用含x的代数式表示出来.3)“列”就是指列方程,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4)“解”是指解方程,即求出未知数的值。
5)“检验”是指检验方程的解能否保证实际问题有意义。
在解实际应用题时,一定要注意检验求得的一元二次方程的根是否与题意相符,不相符的一定要舍去。
6)“答”是指完成以上步骤后,回归到原始问题,写出答案。
第二章对称图形-圆圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。
下面介绍圆的知识点。
知识点一:圆的基本概念1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
1)劣弧:小于半圆周的弧。
2)优弧:大于半圆周的弧。
知识点二:圆的对称性1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置。
2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置。
3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置。
学科教师辅导教案X 2X吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
(3)小静说:“当月利润最大时,月销售额也最大。
”你认为对吗?请说明理由。
2、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?6.形积问题例11、如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?例12、一张长方形铁皮,四个角各剪去一个边长为4cm的小正方形,再折起来做成一个无盖的小盒子。
已知铁皮的长是宽的2倍,做成的小盒子的容积1536cm3,求长方形铁皮的长与宽。
7.动点几何问题例13、如图,△ABC中,∠B=90°,AB=6,BC=8,点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动:(1)经过几秒,△PBQ 的面积等于8cm2;(2)△PBQ 的面积会等于10cm2吗?会请求出此时的运动时间,若不会请说明理由.例14、已知矩形ABCD 的边长AB=3cm ,BC=6cm 。
某一时刻,动点M 从A 点出发沿AB 方向以1s cm 的速度向B 点匀速运动;同时,动点N 从D 出发沿DA 方向以2s cm 的速度向A 点匀速运动,则经过多长时间,△AMN 的面积等于矩形ABCD 面积的91?出门测合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?。
第1章 一元二次方程 1.1 一元二次方程课程标准课标解读1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.1、理解并掌握一元二次方程的定义.2、正确识别一元二次方程的二次项、一次项、常数项及各项的系数知识点01 一元二次方程的概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 【微点拨】识别一元二次方程必须抓住三个条件: (1)整式方程; (2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 【即学即练1】1.下列方程是一元二次方程的是( ) A .10x += B .11x x-= C .223x y +=D .2310x x -+=【答案】D 【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.目标导航知识精讲【详解】解:A 、10x +=是一元一次方程,故错误; B 、11x x-=不是整式方程,故错误; C 、223x y +=是二元二次方程,故错误; D 、2310x x -+=是一元二次方程,故正确. 故选:D .知识点02 一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.【微点拨】 (1) 只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.【即学即练2】2.下列方程中,常数项为0的是( ) A .210x x ++= B .221212x x --= C .()2213(1)x x -=- D .()2212x x +=+【答案】D 【分析】要确定方程的常数项,首先要把方程化成一般形式. 【详解】解:A 、x 2+x+1=0,常数项为1,故本选项不符合; B 、2x 2-x -24=0,常数项为-24,故本选项不符合; C 、2x 2-3x+1=0,常数项为1,故本选项不符合; D 、2x 2-x=0,常数项为0,故本选项符合. 故选:D .知识点03 一元二次方程的解使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 【即学即练3】3.已知m 是方程210x x --=的一个根,则代数式22m m --的值为( ) A .1- B .0C .1D .5【答案】A 【分析】把x=m 代入210x x --=即可求解. 【详解】解:把x=m 代入210x x --=,得210m m --=,∴221m m --=-, 故选A .知识点04 一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.【即学即练4】4.已知2x =-是关于x 方程2530bx ax ++=的根,则代数式17208a b -+的值为( ) A .11 B .14C .20D .23【答案】A 【分析】将2x =-代入方程2530bx ax ++=可得41030b a -+=,然后适当整理变形即可求解. 【详解】解:将2x =-代入方程2530bx ax ++=可得41030b a -+= ∴1043a b -=∴17208a b -+()172104a b =-⨯-1723=-⨯11=故选:A考法01 一元二次方程的定义1.一元二次方程的定义只含有一个未知数,并且未知数的最高次项的次数是2,这样的整式方程叫做一元二次方程 【典例1】下列方程是一元二次方程的是( ) A .620x -+= B .2210x y C .212x x+= D .220x x +=【答案】D 【分析】根据一元二次方程的定义求解即可. 【详解】解:A 、是一元一次方程,故A 不符合题意; B 、是二元二次方程,故B 不符合题意; C 、是分式方程,故C 不符合题意; D 、是一元二次方程,故D 符合题意; 故选:D .考法02 一元二次方程的解方程的解的定义:使方程两边左右相等的未知数的值,叫做这个方程的解。
第一章一元二次方程一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
2、一元二次方程的一般形式ax 2bx c 0( a 0) ,它的特点是:等式左边十一个对于未知数x 的二次多项式,等式右边是零,此中 ax 2叫做二次项,a叫做二次项系数;bx叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法合用于解形如( x a) 2 b 的一元二次方程。
依据平方根的定义可知,x a 是 b 的平方根,当 b 0 时,x ab , xa b ,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不单在解一元二次方程上有所应用,并且在数学的其余领域也有着宽泛的应用。
配方法的理论依据是完好平方公式a 2 2ab b 2 ( a b) 2,把公式中的 a 看做未知数x ,并用x 取代,则有x2 2bx b2 (x b) 2。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程 ax 2 bx c 0( a 0) 的求根公式:x bb 2 4ac (b2 4ac 0)2a4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这类方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的鉴别式根的鉴别式一元二次方程 ax2 bx c 0(a 0) 中, b2 4ac 叫做一元二次方程ax 2 bx c 0(a 0) 的根的鉴别式,往常用“”来表示,即 b 2 4ac 四、一元二次方程根与系数的关系假如方程 ax 2 bx c 0(a 0) 的两个实数根是x1, x2 ,那么 x1 x2 b ,a x1x2 c 。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方 a程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
江苏省九年级数学上册《一元二次方程》章后复习 苏科版【知识回顾】1.一元二次方程的概念:形如:()002≠=++a c bx ax2.一元二次方程的解法: (1)直接开平方法:(2)配方法:(3)因式分解法:(4)公式法:求根公式:()042422≥--±-=ac b aac b b x3.一元二次方程的根的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根.....。
4.用方程解决实际问题:略 【基础训练】一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是( )A.x+2y=1B.2x(x-1)=2x 2+3 C. 3x+x1=5 D.x 2-2=0 2. 把方程x 2-8x+3=0化成(x+m)2=n 的形式,则m 、n 的值是( )A.4,13B.-4,19C.-4,13D.4,19 3. 方程x(x+3)=x+3的解是 ( )A. x=1B. x 1=0,x 2=-3C. x 1=1,x 2=3D. x 1=1, x 2=-3 4. 已知3是关于x 的方程34x 2-2ax+6=0的一个解,则2a 的值是( ) A.6 B.7 C.8 D.95. 已知两圆的半径R 、r 分别为方程x 2-5x+6=0的两根,两圆的圆心距为1,两圆的位置关系是( )A .外离B .内切C .相交D .外切6.已知直角三角形的两条边长分别是方程x 2-14x+48=0的两个根,则此三角形的第三边是( )A.6或8B.10或27C.10或8D.27 7. 若2x+1与2x-1互为倒数,则实数x 为( )A.±21B.±1C.±22D.±28.使用墙的一边,再用13m 的铁丝网围成三边,围成一个面积为20m 2的长方形,求这个长方形的两边长,设墙的对边长为x m ,可得方程( )A. x (13-x) =20B.x ·13-x2=20C. x (13-12x ) =20 D. x·13-2x2=209.若方程ax2+bx+c=0(a≠0)中,a、b、c满足a+b+c=0和a-b+c=0,则方程的根是()A.1,0B.-1,0C.1,-1D.无法确定10. 某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19%B.20%C.21%D.22%备选题1. 用配方法解关于x的方程x2+px+q=0时,此方程可变形为 ( B )A.22()24p px+= B.224()24p p qx-+=C.224()24p p qx+-= D.224()24p q px--=2.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m的值为( B )A.1 B.-3 C.1或-3 D.不等于1的任意实数3. 已知2y2+y-2的值为3,则4y2+2y+1的值为( B )A.10 B.11 C.10或11 D.3或11二、填空题 (每题3分,共30分)11. 写出一个一根为2的一元二次方程_________ _____.12.关于x的一元二次方程3x(x-2)=4的一般形式是 .13.方程2x2=-4x的解是 .14. 当x=_ _ 时,代数式3-x 和-x2+3x 的值互为相反数15. 当y= 时,y2-2y的值为3.16. 关于x的一元二次方程mx2+x+m2+m=0有一个根为零,那m的值等于 .17. 若一个等腰三角形三边长均满足方程x2-11x+18=0,则此三角形的周长为_____.18. 把一根长度为14cm的铁丝折成一个矩形,这个矩形的面积为12cm2,则这个矩形的对角线长是_______cm.19. 在正数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x-2)*5=0的解为 .20. 若a为方程x2+x-1=0的解,则a2+a+2009= .备选题1. 方程2x2-1=3x的二次项系数是,一次项系数是,常数项是 .2,-3,-12. x2+6x+ =(x+ )2. 9,33. 两个连续自然数的平方和比它们的和的平方小112,那么这两个自然数是__________. 7和84. 如果(a+b-1)(a+b-2)=2,那么a+b的值为.0或3三、解答题(60分):21. 按要求解下列方程(每题4分,共16分)(1)(x-1)2=4(直接开平方法) (2)x 2—4x+1=0(配方法)(3)3x 2+5(2x+1)=0(公式法) (4)3(x-5)2=2(5-x) (因式分解法)22. (6分)解方程x 2=4x+2时,有一位同学解答如下:解:∵a=1,b=4,c=2,b 2-4ac=42-4×1×2=8,∴42221b x a -±-±===-±⨯即x 1=-2+2 ,x 1=-2-2.请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程。
苏科版数学九年级上知识点梳理第一章一元二次方程1.1一元二次方程一、一元二次方程的定义:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)整式方程。
练习:下列哪些方程是一元二次方程,并说明理由。
021)5(1)4(4)3(012)2(0131222222=--==-+=--=-+x x x x x x x y x x x )( 二、一元二次方程的一般形式:关于x 的一元二次方程的一般形式一次项系数。
分别叫做二次项系数、、项和常数项,分别叫做二次项、一次、、其中,是常数,b a c bx ax a c b a c bx ax 22).0,,(0≠=++练习:1.把下列方程化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。
0)3)(3)(2(1-12=-+=-x x x x )(2.下列方程是否是一元二次方程,并说明理由。
0213)4(6)3)(2)(3(021423)2(023)312222=-++=--=--=---xx x x x x x x x m )(( 3.下列关于x 的方程是一元二次方程,则a 应该满足什么条件?222223501)2(4012)3(01)1)(2(011x x ax x x a x x x x a x ax a a =+-=++-=++=++-=++)()()(4.关于x 的方程次方程?在什么条件下为一元一次方程?在什么条件下为一元二02)42(2=+--a bx x a 5.已知关于x 的方程01)3()122=--++-x m x m m ((1)m 取何值时,它是一元二次方程?(2)m 取何值时,它是一元一次方程?6.已知关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,求a 的值?三、一元二次方程的解:使方程左右两边相等的未知数的值是方程的解,一元二次方程的解又叫做一元二次方程的根。
练习:1.关于x 的一元二次方程的值?,则的一个根为k k x x 202=+-2.m 是方程020*******=-+x x 的根,求的值?()201420132-+m m3.关于x 的一元二次方程的值?则的解是b a x a bx ax -=≠=++-2013,1)0(052四、变化率(a 为变化前的数,b 为变化后的数,x 为变化率,n 为变化的次数) 增长率:b x a n=+)1(降低率:b x a n =)-1(练习:1.某校图书馆的藏书在两年内从5万册增加到9.8万册,求图书馆的藏书平均每年的增长率。
苏版初三数学上册《一元二次方程》知识点总结合理的总结,合理的归纳,关于考试成绩会有专门大的关心,下文为大伙儿举荐了一元二次方程知识点总结,祝大伙儿期末考试顺利。
1. 一元二次方程的一样形式: a≠0时,ax2+bx+c=0叫一元二次方程的一样形式,研究一元二次方程的有关问题时,多数习题要先化为一样形式,目的是确定一样形式中的a、b、c; 其中a 、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用,其中直截了当开平方法尽管简单,然而适用范畴较小;公式法尽管适用范畴大,但运算较繁,易发生运算错误;因式分解法适用范畴较大,且运算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0有两个不等的实根; Δ=0有两个相等的实根;Δ无实根; Δ≥0有两个实根(等或不等).家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。
4. 一元二次方程的根系关系:当ax2+bx+c=0 (a≠0) 时,如Δ≥0,有下列公式:死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
有了查字典数学网为大伙儿整理的一元二次方程知识点总结,大伙儿感受是不是方便了专门多,那么大伙儿就要及时关注本网站了。
书山有路勤为径;学海无涯苦作舟
苏教版窗初三数学一元二次方程知识点整合
同学们在考试中是不是经常遇见关于初三数学一元二次方程知识点的内容,重要性想必都不用和大家说了吧,这篇文章希望大家可以好好运用。
一、定义和特点
1、一元二次方程:含有一个未知数,并且未知数的最高次数是2 的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:ax 的平方+bx+c=0(a≠0),它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中ax 的平方+叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、方程起源
古巴比伦留下的陶片显示,在大约公元前2000 年(2000 BC)古巴比伦的数学家就能解一元二次方程了。
在大约西元前480 年,中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。
西元前300 年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7 世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得用使用代数方程,它
同时容许有正负数的根。
11 世纪阿拉伯的花拉子密独立地发展了一套公式以求方程的正数解。
亚伯
拉罕-巴希亚(亦以拉丁文名字萨瓦索达着称)在他的着作Liber embadorum 中,首次将完整的一元二次方程解法传入欧洲。
据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。
但这一点
在他的时代存在着争议。
这个求解规则是(引自婆什迦罗第二):
在方程的两边同时乘以二次项未知数的系数的四倍;
今天的努力是为了明天的幸福。
苏教版窗初三数学一元二次方程知识点整
合
一、定义和特点
1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:ax的平方
+bx+c=0(ane;0),它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax的平方+叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c 叫做常数项。
二、方程起源
古巴比伦留下的陶片显示,在大约公元前2000年(2000 BC)古巴比伦的数学家就能解一元二次方程了。
在大约西元前480年,中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。
西元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7世纪印度的婆罗摩笈多(Brahmagupta)是第一位懂得
用使用代数方程,它同时容许有正负数的根。
11世纪阿拉伯的花拉子密独立地发展了一套公式以求
方程的正数解。
亚伯拉罕巴希亚(亦以拉丁文名字萨瓦索达
著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。
据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。
但这一点在他的时代存在着争议。
这个求解规则是(引自婆什迦罗第二):
在方程的两边同时乘以二次项未知数的系数的四倍;
在方程的两边同时加上一次项未知数的系数的平方;
在方程的两边同时开二次方。
三、性质
方程的两根与方程中各数有如下关系:x1+x2= -b/a,x1 x2=c/a(也称韦达定理)
方程两根为x1,x2时,方程为:x+(x1+x2)X+x1x2=0(根据韦达定理逆推而得)
b-4acgt;0有2个不相等的实数根,b-4ac=0有两个相等的实数根,b-4aclt;0无实数根。
一元二次方程的一般解法有以下几种:
配方法(可解部分一元二次方程)
公式法(在初中阶段可解全部一元二次方程,前提:
△ge;0)
因式分解法(可解部分一元二次方程)
直接开平方法(可解全部一元二次方程)
详情点击:九年级数学一元二次方程的解法知识点
五、小结及例题
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。
但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。
(三种重要的数学方法:换元法,配方法,待定系数法)。
例5:用适当的方法解下列方程。
(选学)
(1)4(x+2)-9(x-3)=0;(2)x+2x-3=0;(3)4x-4mx-10 x+m+5m+6=0
分析:
(1)首先应观察题目有无特点,不要盲目地先做乘法运算。
观察后发现,方程左边可用平方差
公式分解因式,化成两个一次因式的乘积。
(2)可用十字相乘法将方程左边因式分解。
(3)把方程变形为 4x-2(2m+5)x+(m+2)(m+3)=0,然后利用十字相乘法因式分解。
(1)解:4(x+2)-9(x-3)=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
there4;x1=1,x2=13
(2)解: x+2x-3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
there4;x1=-3,x2=1
(3)解:4x-4mx-10x+m+5m+6=0
4x-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
there4;x1=(m+2)/2,x2=(m+3)/2
例6:求方程3(x+1)+5(x+1)(x-4)+2(x-4)=0的二根。
(选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果
把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
there4;5(x-1)(2x-3)=0
there4;(x-1)(2x-3)=0
there4;x-1=0或2x-3=0
there4;x1=1,x2=3/2是原方程的解。
1. 某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
2. 小明将1000元存入银行,定期一年,到期后他取出600元后,将剩下部分(包括利息)继续存入银行,定期还是一年,到期后全部取出,正好是550元,请问定期一年的利率是多少?
3. 一个正方形的边长增加2cm,它的面积增加了40cm2,求这个正方形原来的边长?
4. 用一块长方形的铁片,把它的四角各剪去一个边长
为4cm的小方块,然后把四边折起来,做成一个没有盖的盒子,已知铁片的长是宽的2倍,做成盒子的容积是1 536cm3,求这块铁片的长和宽.
5. 我校生物兴趣小组的同学有一块长18米、宽12米的矩形试验园.为了便于同学们参观,现要开辟一横两纵三条等宽的小路.要使种植面积为176平方米,小路应该多宽?
6. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
初三数学一元二次方程知识点包括一元二次方程,一元二次方程的解法,一元二次方程求根公式,一元二次方程应用题,一元二次方程练习题,帮助大家更好的去学习本单元的内容!热点推荐:苏教版九年级数学一元二次方程说课稿范文。