商的变化规律
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
商的变化规律的口诀三条
(1)被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。
(2)除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n 倍。
(3)被除数与除数同乘以来自或同除以一个数(零除外360问答),商不变。
扩展资料:
积的变化规律是指因数的变化所引起的积的变化。
(1)如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。
(2)一个因数扩大n倍,另一个因数缩小n倍,则积不变。
除法运算肥天裂性质
(1)若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数
不变。
例如:68÷17×17=68(或68×17÷1绿钱规云歌投建以玉7=68)。
(2)一个数除以几个数的积兴得乡讲从养属得都花你,可以用这个
数依次除以积里的各个因数。
例如:320÷(2×5×8)=320÷2÷5÷8=4。
(3)几个数的积除以一个数,可以让积里的任何一致段机个因数除
以这个数,再与光其他的因数相乘。
例如:8×管苦洲视联72X4÷9=72÷9×8×4=256。
四年级下册商的变化规律
商的变化规律是四年级下册数学学习的内容,具体包括以下两个规律:
1. 商不变的规律:在除法中,被除数和除数同时乘或除以一个相同的数(0 除外),商不变。
2. 商随除数或被除数变化的规律:在除法中,除数不变,被除数乘或除以一个数(0 除外),商也乘或除以同一个数;被除数不变,除数乘或除以一个数(0 除外),商反而除以或乘同一个数。
通过学习商的变化规律,学生可以更好地理解除法的本质,提高计算能力和解决实际问题的能力。
四年级上册数学积和商的变化规律一、积的变化规律。
1. 规律内容。
- 一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。
- 例如:- 在3×5 = 15这个算式中,如果3不变,5乘2变为10,那么积3×10 = 30,15也乘2得到30;如果3不变,5除以5变为1,那么积3×1 = 3,15也除以5得到3。
2. 应用示例。
- 已知12×15 = 180,如果12不变,15扩大3倍变为45,那么积也扩大3倍,12×45 = 12×15×3=180×3 = 540。
- 已知20×30 = 600,如果20缩小为原来的(1)/(10)变为2,30不变,那么积也缩小为原来的(1)/(10),2×30 = 60。
3. 拓展。
- 两个因数同时变化时:- 两个因数都乘一个数(0除外),积就乘这两个数的乘积。
例如2×3 = 6,如果2乘2变为4,3乘3变为9,那么4×9 = 36,6乘2×3 = 6得到36。
- 两个因数都除以一个数(0除外),积就除以这两个数的乘积。
例如16×20 = 320,如果16除以2变为8,20除以4变为5,那么8×5 = 40,320除以(2×4)=8得到40。
- 一个因数乘一个数,另一个因数除以相同的数(0除外),积不变。
例如4×9 = 36,如果4乘3变为12,9除以3变为3,那么12×3 = 36,积不变。
二、商的变化规律。
1. 规律内容。
- 被除数不变,除数乘几或除以几(0除外),商就除以几或乘几。
- 例如:- 在12÷3 = 4这个算式中,如果12不变,3乘2变为6,那么商12÷6 = 2,4除以2得到2;如果12不变,3除以3变为1,那么商12÷1 = 12,4乘3得到12。
四年级积商的变化规律5条一、积的变化规律。
1. 一个因数不变,另一个因数乘几,积也乘几。
- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。
- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。
2. 一个因数不变,另一个因数除以几(0除外),积也除以几。
- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。
- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。
3. 两个因数同时乘一个数(0除外),积乘这个数的平方。
- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。
- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。
4. 两个因数同时除以一个数(0除外),积除以这个数的平方。
- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。
- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。
二、商的变化规律。
1. 被除数不变,除数乘几(0除外),商就除以几。
- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。
商的变化规律哎呀,说起这商的变化规律,那可真是数学世界里一个特别有趣又实用的玩意儿!咱们先从最简单的例子说起。
比如说,你和小伙伴一起去买糖果,一包糖果 10 块钱,你有 20 块钱,能买到 2 包糖果,这时候商就是 2。
但要是糖果突然打五折,一包只要 5 块钱,那 20 块钱能买到 4 包糖果,商就变成了 4。
瞧,价格变了,能买到的糖果数量也就跟着变啦,这就是商的变化规律在生活中的小体现。
在咱们的数学教材里啊,商的变化规律主要有这么几条。
首先是被除数不变,除数变化引起商的变化。
就像刚才说的买糖果,被除数 20 块钱不变,除数从 10 变成 5,商就从 2 变成了 4。
除数变小,商反而变大。
然后是除数不变,被除数变化引起商的变化。
还是拿买糖果举例,如果一包糖果还是 10 块钱,你一开始有 20 块钱能买 2 包,后来你又多了 30 块钱,一共 50 块钱,那就能买 5 包了。
被除数变大,商也跟着变大。
还有被除数和除数同时变化的情况。
比如说被除数乘以 2,除数乘以 3,那商就会变小。
这就好比原本你有 20 块钱能买 2 包 10 块钱的糖果,现在你有 40 块钱,但是糖果变成一包 15 块钱了,那你能买到的糖果就少啦。
我记得有一次在课堂上,我给孩子们出了一道题:“如果120÷30=4,那(120×2)÷(30×2)等于多少?”孩子们都开始埋头苦算,有个小家伙特别机灵,一下子就喊出来:“老师,还是 4 !”我问他怎么这么快就想出来了,他一脸骄傲地说:“您刚讲的被除数和除数同时乘以一个数,商不变呀!”那一刻,我心里别提多开心了,这孩子把知识学活啦!在实际解题的时候,掌握了商的变化规律可太有用啦。
比如说计算560÷70,我们可以把被除数和除数同时除以 10,变成 56÷7,一下子就能算出商是 8 。
总之啊,商的变化规律就像是数学世界里的一把神奇钥匙,能帮我们打开很多难题的大门。
商的变化规律商是两数相除的结果.根据除法的意义,“已知两个因素的积与其中的一个因数,求另一个因数的运算叫除法.”可知,乘除法有着密切的关系:被除数相当于两个因数的积.除数相当于已知的一个因数.商相当于另一个因数.1.商的性质(1)两个数相除,如果商存在,必定是唯一的.【例1】54÷9=6 65÷5=13(2)某数先除以一个数,再乘以同一个数,其数不变.【例2】72÷8×8=7235÷5×5=35(3)某数先乘以一个数,再除以同一个数,某数不变.【例3】15×5÷5=1528×3÷3=282.商的变化(1)运算中了解商的变化.根据72÷9=8计算下列各题,并观察商发生了什么变化.(72×2)÷9=16(7÷2)+9=472÷(9×2)=472÷(9÷3)=24(72×2)÷(9×2)=8(72÷3)÷(9÷3)=8通过计算我们发现,商有的扩大了,也有的缩小了,还有的不变.(2)在分类中认识商的变化与谁有关.我们将被除数变化,除数不变的这种除法定为第一类;(72×2)÷9=16(72÷2)÷9=4我们将被除数不变,除数变化的这种除法定为第二类;72÷(9×2)=472÷(9÷3)=24将被除数变了,除数也变了的这种除法定为第三类;(72×2)÷(9×2)=8(72÷3)÷(9÷3)=8通过分类我们初步认识到商的变化与被除数,除数的变化有关.(3)分析中理解商的变化规律:分析第一类:根据72÷9=8,那么(72×2)÷9=16【分析】被除数扩大2倍,除数不变,商扩大2倍.根据72÷9=8,那么(72÷2)÷9=4【分析】被除数缩小2倍,除数不变,商缩小2倍.分析第二类:根据72÷9=8,那么72÷(9×2)=4【分析】被除数不变,除数扩大2倍,产反而缩小2倍.根据72÷9=8,72÷(9÷3)=24【分析】被除数不变,除数缩小3倍,商反而扩大3倍.分析第三类:根据72÷9=8(72×2)÷(9×2)=8(72÷)3÷(9÷3)=8【分析】被除数扩大2倍,除数扩大2倍,商不变,被除数缩小3倍,除数缩小3倍,商也不变.(4)归纳概括中掌握商的变化规律.商的变化规律概括如下:A.如果被除数扩大(或者缩小)若干倍,除数不变,那么它们的商也扩大(或者缩小)同数倍.B.如果除数扩大(或者缩小)若干倍,被除数不变,那么商反而缩小(或者扩大)同数倍.C.被除数和除数都扩大(或者都缩小)同数倍(0除外),那么它们的商不变.我们在平时的计算中,就可以应用商的变化规律和性质进行简算.。
商的变化规律(四上)
设计说明:
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。
与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
本节课从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?从而激起学生一探究竟的兴趣。
但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。
这既是本节课的教学设计目标,也是新课改所倡导的教学理念。
教学内容:
人教版课标实验教材小学数学四年级上册第93页例6。
教学目标:
1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3.培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点:
帮助学生发现并理解商的变化规律。
教学难点:
正确理解被除数不变,除数和商之间的变化规律。
教具准备:
实物投影、计算器。
教学过程:
一、利用迁移、大胆猜测。
师:在前面的学习中,我们已经学习了积的变化规律谁还记得?
生1:一个因数不变,另一个因数扩大或缩小若干倍,积也随之扩大或缩小相同的倍数。
生2:一个因数扩大若干倍,另一个印数缩小相同的倍数,积不变。
师:我们都知道乘法和除法有着密切的关系,现在我们发现了乘法中有这样的规律,大家有什么想法?
生:在除法中是否也存在着类似的规律呢?
师:对呀,我也有这样的疑惑。
那么我们能不能大胆的猜测一下:除法中有没有类似的规律?如果有会是什么规律呢?
生1:我觉着除法中肯定有规律,因为乘除法个部分之间是有联系的。
生2:我同意。
而且我觉着如果被除数扩大了,除数不变,商也会跟着扩大。
生3:我觉着如果被除数不变,除数缩小、商也跟着缩小,除数扩大、商也跟着扩大。
生4:我猜被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。
生5:我不同意。
我觉着如果被除数不变,除数缩小、商会扩大,除数扩大、商会缩小。
(教师根据学生的猜测进行板书)
(评析:简简单单的复习提问,不经意间将乘、除法之间挂起钩来,打通了知识间的横
向联系,巧妙的运用了正迁移,促使学生自己提出问题,从猜测入手启动整个教学活动。
)
二、验证猜测、研究规律。
(一)、验证第一个猜测:除数不变,被除数和商的变化规律。
师:合理大胆的猜测是我们研究问题的重要的第一步,但仅仅停留在猜测上还不行,我们下一步应该怎么办?
生:验证。
师:你们打算怎样来验证?
生:可以列算式来试一试。
师:举例实验的方法,确实是个好方法,那么我们就来逐个的验证。
先来验证“除数不变,被除数扩大或缩小,商是否也随之扩大或缩小呢?”同学们可以小组合作,把你们所举得算式和结论写在实验报告单上。
(学生小组合作验证)
汇报:
师:哪个小组愿意说说你们的发现?
生1:我们小组举的例子是:10÷2=5,如果2不变,10扩大2倍,商就会变成10,也扩大了2倍,所以我们小组的结论是:除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。
生2:我们小组举了3个例子进行验证,4÷2=2,80÷8=10,30÷5=6,每个例子都让除数不变,让被除数扩大、缩小,看商的变化,我们利用了计算器帮助演算,也得到了同样的结论。
师:对这两个小组的汇报大家有什么意见?
生1:我们也得到了同样的结论。
生2:我觉着第2组举了3个例子,更全面一些。
师:举例验证的方法确实应尽可能的多举例,这样才能更全面、正确率才更高,如果我们把全班的例子合在一起就更能说明问题。
(评析:猜测、验证是基本的数学研究方法之一,教师将这一研究思想作为整节课的核心贯穿始终,可见用心良苦。
同时借助第一个层次的验证活动使学生体会到:列举法的应用要考虑它的全面性,仅靠一个例子是不能得结论的。
)
(二)验证第二个猜测:被除数不变,除数扩大或缩小,商会随之缩小或扩大吗?
师:通过举例验证的方法,我们发现刚才的第一个猜想是正确地的!再来看第二个猜测:被除数不变,除数扩大或缩小,商真的会随之缩小或扩大吗?请大家继续验证。
(学生小组合作验证)
汇报:
生1:我们小组找了2个例子,并用计算器进行了验证:
发现被除数不变,除数扩大几倍,商反而缩小相同的倍数,除数缩小几倍,商就扩大几倍。
生2:我们小组也发现刚才的猜测不对,当被除数不变时,除数与商的变化方向是不一样的。
师:大家知道为什么会这样吗?
(学生茫然)
师:其实在我们生活中,有许多事例能够很好的体现出大家所发现的规律,比如:有一个蛋糕,如果平均分给10个人吃,每人只吃它的,是一小块,如果平均分给5个人吃,每人吃它的,是一大块,如果平均分给2个人吃,每人就会吃它的,更大的一块;这就像被除数不变,除数扩大商就缩小,除数缩小商就扩大的道理是一样的。
(评析:当被除数不变时,除数与商之间的变化规律是学生最难理解的,这与乘法中的一个因数不变,另一个因数与积的变化规律正好相反。
教师巧妙的利用生活中学生熟悉的事例,变抽象为形象,突破了难点,起到了画龙点睛的作用。
)
师:通过验证我们发现刚才的猜测不对,正确的结论应该是:被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数(板书)。
(三)验证第三个猜测:被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。
师:同学们,咱们还有一个猜测呢,怎么办?继续验证。
(学生小作合作,继续验证。
)
汇报:
生1:我们小组发现“被除数扩大或缩小若干倍,除数缩小或扩大相同的倍数,商不变”这个猜测也是错误的。
比如:20÷10=2,如果变成40÷5商是8,不是2。
我们又按照另一种方法去实验:20÷10=2,如果被除数扩大2倍变成40,要想让商不变还是2,除数只能是20,也就是说也扩大了2倍。
所以我们认为:被除数和除数同时扩大或缩小相同的倍数时,商才不会变。
生2:我们小组也是这样想的,只是我们组又举了几个例子验证了“被除数和除数同时扩大或缩小相同的倍数时商不变”是正确的。
师:这两个小组的研究思路真好,当他们小组发现有些猜测不正确时,能迅速做出合理的调整,而且还能主动地对新的调整再进行实验验证,这种研究思路值得大家学习。
希望同学们在以后遇到类似的情况时,也能像他们一样,决不轻言放弃,及时调整思路,继续深入研究。
师总结:我要忠心的祝贺大家:通过合理的猜测、反复的验证,成功地发现了除法算式中,被除数、除数、商之间的变化规律,大家真了不起!
(评析:教师借助这个层次,使学生体会到:科学研究并不都是一帆风顺的,它需要不断的修正、反复的实验,这有利于培养学生科学严谨、锲而不舍的优秀品质。
)。