可逆矩阵
- 格式:ppt
- 大小:514.00 KB
- 文档页数:37
可逆矩阵知识点总结一、可逆矩阵的定义1. 定义阐述- 设A为n阶方阵,如果存在n阶方阵B,使得AB = BA=E(E为n阶单位矩阵),则称矩阵A是可逆的,并称B是A的逆矩阵,记作B = A^-1。
例如,对于二阶矩阵A=begin{pmatrix}a&bc&dend{pmatrix},若ad - bc≠0,则A可逆,其逆矩阵A^-1=(1)/(ad - bc)begin{pmatrix}d& - b-c&aend{pmatrix}。
2. 可逆矩阵的唯一性- 若矩阵A可逆,则A的逆矩阵是唯一的。
假设B和C都是A的逆矩阵,那么AB = BA = E且AC=CA = E。
由B = BE=B(AC)=(BA)C = EC = C,可证得逆矩阵的唯一性。
二、可逆矩阵的性质1. 基本性质- 若A可逆,则A^-1也可逆,且(A^-1)^-1=A。
因为A与A^-1满足AA^-1=A^-1A = E,所以A^-1的逆矩阵就是A。
- 若A、B为同阶可逆矩阵,则AB也可逆,且(AB)^-1=B^-1A^-1。
证明如下:(AB)(B^-1A^-1) = A(BB^-1)A^-1=AEA^-1=AA^-1=E,同理(B^-1A^-1)(AB)=E。
- 若A可逆,k≠0为常数,则kA可逆,且(kA)^-1=(1)/(k)A^-1。
因为(kA)((1)/(k)A^-1)=k×(1)/(k)(AA^-1) = E,同理((1)/(k)A^-1)(kA)=E。
2. 与行列式的关系- 矩阵A可逆的充要条件是| A|≠0。
当| A| = 0时,称A为奇异矩阵;当| A|≠0时,称A为非奇异矩阵。
例如,对于三阶矩阵A=begin{pmatrix}1&2&34&5&67&8&9end{pmatrix},计算其行列式| A|=0,所以A不可逆;而对于矩阵B=begin{pmatrix}1&0&00&2&00&0&3end{pmatrix},| B| = 6≠0,则B可逆。
证明矩阵可逆的9种方法是矩阵可逆是指一个矩阵存在一个逆矩阵,其乘积等于单位矩阵。
下面将介绍9种证明矩阵可逆的方法。
方法一:行列式法要证明一个矩阵可逆,可以计算其行列式。
如果矩阵的行列式不为零,则矩阵可逆。
方法二:逆矩阵法如果一个矩阵存在一个逆矩阵,且这个逆矩阵满足乘积为单位矩阵,那么这个矩阵可逆。
方法三:初等变换法通过对矩阵进行一系列的初等行变换或初等列变换,能够将矩阵化为行阶梯形或列阶梯形。
如果最终得到的行阶梯形或列阶梯形存在没有零行或零列,那么该矩阵可逆。
方法四:伴随矩阵法对于一个n阶矩阵A,其伴随矩阵记为adj(A),满足A * adj(A) = adj(A) * A = A * I,其中A 表示A的行列式,I表示单位矩阵。
如果一个矩阵A的伴随矩阵存在,且A 不为零,则A可逆。
方法五:特征值法计算矩阵A的特征值,如果所有特征值都不为零,则矩阵A可逆。
方法六:线性相关法将矩阵A的列向量组看作是一个线性相关的向量组,当且仅当这个向量组的秩等于矩阵的列数时,矩阵可逆。
方法七:投影矩阵法如果一个矩阵A是一个投影矩阵,即A * A = A,则矩阵A可逆。
方法八:正交矩阵法如果一个矩阵A满足A的转置矩阵与A的乘积等于单位矩阵,即A * A^T = I,其中A^T表示A的转置矩阵,则矩阵A可逆。
方法九:哈达玛矩阵法如果一个n阶方阵H满足H的每一个元素的模都是1,且任意两行之间的内积等于0,则矩阵H可逆。
以上是证明矩阵可逆的9种方法。
每种方法都有其独特的思路和侧重点。
可以根据具体情况选择合适的方法进行证明。
可逆矩阵知识点总结一、可逆矩阵的定义可逆矩阵是指一个方阵A,如果存在另一个方阵B,使得AB=BA=I,其中I为单位矩阵,那么我们称A是可逆的,B就是A的逆矩阵,记作A^-1。
换句话说,如果一个n阶方阵A的行列式det(A)不等于零,则该矩阵A是可逆的,即存在一个n阶矩阵B,使得AB=BA=I。
我们知道,单位矩阵I是一个对角线上元素均为1,其余元素均为0的n阶方阵。
二、可逆矩阵的性质1. 可逆矩阵的逆矩阵是唯一的在可逆矩阵中,如果存在逆矩阵B,那么逆矩阵是唯一的。
这是因为假设还有一个逆矩阵B'也满足AB'=B'A=I,那么可以证明B=B'。
这个性质在证明逆矩阵的存在时非常重要。
2. 可逆矩阵的转置矩阵也是可逆的如果一个矩阵A是可逆的,那么它的转置矩阵A^T也是可逆的,并且(A^T)^-1 = (A^-1)^T。
3. 可逆矩阵的逆矩阵也是可逆的如果一个矩阵A是可逆的,那么它的逆矩阵A^-1也是可逆的,而且(A^-1)^-1=A。
4. 可逆矩阵的乘积是可逆的如果两个矩阵A和B都是可逆的,那么它们的乘积AB也是可逆的,且(AB)^-1=B^-1A^-1。
5. 可逆矩阵的逆矩阵的逆矩阵还是它本身如果一个矩阵A是可逆的,那么它的逆矩阵A^-1的逆矩阵还是它本身,即(A^-1)^-1=A。
6. 可逆矩阵的乘法满足结合律如果三个矩阵A、B、C都是可逆的,那么它们的乘法满足结合律,即(AB)C=A(BC)。
三、可逆矩阵的判定定理在求解一个矩阵是否可逆时,我们需要有一个判定的定理,这就是可逆矩阵的判定定理。
1. 矩阵可逆的判定公式对于一个n阶方阵A,它的行列式不等于0,即det(A)≠0,则矩阵A可逆。
这是最基本的判定定理,也是我们最常用的方法。
2. 矩阵可逆的充分必要条件对于一个n阶方阵A,它的行列式不等于0,则矩阵A可逆。
反之,如果一个n阶方阵A可逆,则其行列式也不等于0。
3. 矩阵可逆的另一种判定法对于一个n阶方阵A,如果它的秩等于n,则矩阵A可逆。