可逆矩阵及应用举例
- 格式:ppt
- 大小:2.89 MB
- 文档页数:41
逆矩阵的几种求法与解析矩阵是线性代数的主要内容矩阵是线性代数的主要内容,,很多实际问题用矩阵的思想去解既简单又快捷很多实际问题用矩阵的思想去解既简单又快捷..逆矩阵又是矩阵理论的很重要的内容矩阵又是矩阵理论的很重要的内容, , , 逆矩阵的求法自然也就成为线性代数研究的主逆矩阵的求法自然也就成为线性代数研究的主要内容之一要内容之一..本文将给出几种求逆矩阵的方法本文将给出几种求逆矩阵的方法..1.利用定义求逆矩阵定义定义: : : 设设A 、B B 都是都是都是n n n 阶方阵阶方阵阶方阵, , , 如果存在如果存在如果存在n n n 阶方阵阶方阵阶方阵B B B 使得使得使得AB= BA = E, AB= BA = E, AB= BA = E, 则称则称则称A A 为可逆矩阵可逆矩阵, , , 而称而称而称B B 为A A 的逆矩阵的逆矩阵的逆矩阵..下面举例说明这种方法的应用下面举例说明这种方法的应用. .例1 求证求证: : : 如果方阵如果方阵如果方阵A A A 满足满足满足A k= 0, A k= 0, A k= 0, 那么那么那么EA EA EA是可逆矩阵是可逆矩阵是可逆矩阵, , , 且且(E-A E-A))1-= E + A + A 2+…+A 1-K证明 因为因为E E E 与与A A 可以交换可以交换可以交换, , , 所以所以所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,= 0 ,于是得于是得于是得(E-A)(E-A)((E+A+A 2+…+…+A +A 1-K )=E =E,,同理可得(同理可得(E + A + A E + A + A 2+…+A 1-K )(E-A)=E (E-A)=E,,因此因此E-A E-A E-A是可逆矩阵是可逆矩阵是可逆矩阵,,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明同理可以证明(E+ A)(E+ A)(E+ A)也可逆也可逆也可逆,,且(E+ A)1-= E -A + A 2+…+(+…+(-1-1-1))1-K A 1-K .由此可知由此可知, , , 只要满足只要满足只要满足A A K =0=0,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵,就可以利用此题求出一类矩阵E E ±A 的逆矩阵的逆矩阵. .例2 设 A =úúúúûùêêêêëé0000300000200010,求 E-A E-A的逆矩阵的逆矩阵的逆矩阵. .分析 由于由于由于A A 中有许多元素为零中有许多元素为零, , , 考虑考虑考虑A A K 是否为零矩阵是否为零矩阵, , , 若为零矩阵若为零矩阵若为零矩阵, , , 则可以则可以采用例采用例2 2 2 的方法求的方法求的方法求E-A E-A E-A的逆矩阵的逆矩阵的逆矩阵. .解 容易验证容易验证容易验证A 2=úúúúûùêêêêëé0000000060000200, A 3=úúúúûùêêêêëé0000000000006000, A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,)=E,所以所以所以(E-A)1-= E+A+ A 2+ A 3=úúúûùêêêëé1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,求元素为具体数字的矩阵的逆矩阵,常用初等变换法常用初等变换法常用初等变换法..如果如果A A 可逆,则A 可通过初等变换,化为单位矩阵等变换,化为单位矩阵I I ,即存在初等矩阵S P P P ,,21 使(1)s pp p 21A=I A=I,用,用,用A A 1-右乘上式两端,得:右乘上式两端,得: ((2)s p p p 21I= A 1- 比较(比较(11()(22)两式,可以看到当)两式,可以看到当A A 通过初等变换化为单位矩阵的同时,对单位矩阵矩阵I I 作同样的初等变换,就化为作同样的初等变换,就化为A A 的逆矩阵的逆矩阵A A 1-.用矩阵表示(用矩阵表示(A I A I A I))¾¾¾®¾初等行变换为(为(I A I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法它是实际应用中比较简单的一种方法..需要注意的是,在作初等变换时只允许作行初等变换等变换..同样,只用列初等变换也可以求逆矩阵同样,只用列初等变换也可以求逆矩阵. .例1 求矩阵求矩阵A A 的逆矩阵的逆矩阵..已知已知A=A=úúúûùêêêëé521310132.解 [A I]®úúúûùêêêëé100521010310001132®úúúûùêêêëé001132010310100521® úúúûùêêêëé--3/16/16/1100010310100521®úúúûùêêêëé-----3/16/16/110012/32/10103/46/136/1001故 A 1-=úúúûùêêêëé-----3/16/16/112/32/13/46/136/1. 在事先不知道在事先不知道n n 阶矩阵是否可逆的情况下,也可以直接用此方法阶矩阵是否可逆的情况下,也可以直接用此方法..如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着则意味着A A 不可逆,因为此时表明A =0=0,,则A 1-不存在不存在. .例2 求A=úúúûùêêêëé987654321.解 [A E]=úúûùêêëé100987010654001321®úúûùêêëé------1071260014630001321® úúúûùêêêëé----121000014630001321. 由于左端矩阵中有一行元素全为由于左端矩阵中有一行元素全为00,于是它不可逆,因此,于是它不可逆,因此A A 不可逆不可逆. .3.伴随阵法定理 n n阶矩阵阶矩阵阶矩阵A=[a A=[a ij ]为可逆的充分必要条件是为可逆的充分必要条件是A A 非奇异非奇异..且A 1-=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A ............ (212221212111)其中其中A A ij 是A 中元素中元素a a ij 的代数余子式的代数余子式. .矩阵úúúúûùêêêêëénn nn n n A A A A A A A A A (2122212)12111称为矩阵称为矩阵A A 的伴随矩阵,记作的伴随矩阵,记作A A 3,于是有,于是有A A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I =I,,有1-AA =I ,则A 1-A =I ,所以A ¹0,即A 为非奇异为非奇异. .充分性:充分性: 设A 为非奇异,存在矩阵为非奇异,存在矩阵B=A 1úúúúûùêêêêëénn nnn n A A A A A A A A A (21222)1212111, 其中其中AB=úúúûùêêêëénn n n n n a a a a a aa a a ............... (2)12222111211´A 1úúúûùêêêëénn nnn n A A A A A A A A A ............... (212)221212111=A 1úúúúûùêêêêëéA A A A ...00.........0...00...0=úúúúûùêêêêëé1...00...1......0...100 (01)=I同理可证同理可证BA=I. BA=I.由此可知,若由此可知,若A A 可逆,则可逆,则A A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循规律可循..因为二阶可逆矩阵的伴随矩阵,因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,只需要将主对角线元素的位置互换,次对次对角线的元素变号即可角线的元素变号即可. .若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或个或99个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错出现符号及计算的差错..对于求出的逆矩阵是否正确,一般要通过AA 1-=I =I来检验来检验来检验..一旦发现错误,必须对每一计算逐一排查旦发现错误,必须对每一计算逐一排查. .4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设设A 11、A 22都是非奇异矩阵,且都是非奇异矩阵,且A A 11为n 阶方阵,阶方阵,A A 22为m 阶方阵阶方阵úûùêëé22110A A úûùêëé--12211100AA 证明 因为A =22110A A =11A 22A ¹0, 0, 所以所以所以A A 可逆可逆. . 设A 1-=úûùêëéW ZY X,于是有úûùêëéW ZY X úûùêëé22110A A =úûùêëém nI I 00,其中其中 X A X A 11=I n , Y A 22=0=0,,Z A 11=0=0,,W A 22=I m .又因为又因为A A 11、A 22都可逆,用都可逆,用A A 111-、A 122-分别右乘上面左右两组等式得:分别右乘上面左右两组等式得:X= A 111-,Y=0Y=0,,Z=0Z=0,,W= A 122-故 A 21= úûùêëé--1221110A A把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-úúúúûùêêêêëék A A A =úúúúúûùêêêêêëé---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有都是非奇异矩阵,则有1221211-úûùêëéA A A =úûùêëé-----122122121111110A A A A A证明 因为因为úûùêëé2212110A A A úûùêëé--I A A I 012111=úûùêëé22110A A两边求逆得两边求逆得1121110--úûùêëé-I A A I 12212110-úûùêëéA A A =úûùêëé--12211100A A 所以所以 1221211-úûùêëéA A A =úûùêëé--I A A I 012111úûùêëé--12211100A A=úûùêëé-----122122121111110A A A A A同理可证同理可证12221110-úûùêëéA A A =úûùêëé-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. . . 是特殊方阵求逆的是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E =E,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的性质及在考研中的应用矩阵是线性代数中的基本概念之一,而逆矩阵是矩阵理论中的重要组成部分。
在研究生入学考试中,逆矩阵的出现频率较高,是考生必须掌握的重要内容之一。
本文将介绍逆矩阵的基本性质以及在考研中的应用场景,旨在帮助考生更好地理解和掌握这一部分内容。
逆矩阵是矩阵的一种重要性质,其定义如下:设A是一个可逆矩阵,那么存在一个矩阵B,使得$AB=BA=I$,其中I是单位矩阵。
在这个定义中,矩阵B被称为A的逆矩阵。
$A = \begin{bmatrix} 2 & 3 \ 1 & 2 \end{bmatrix}$计算行列式$det(A)$: $det(A) = |\begin{matrix} 2 & 3 \ 1 & 2 \end{matrix}| = 2 \times 2 - 3 \times 1 = 1$计算A的伴随矩阵A*: $A* = \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix}$计算A的逆矩阵A-¹: $A-¹ = \frac{1}{det(A)} \times A* =\frac{1}{1} \times \begin{matrix} & -2 & 3 \ -1 & 2 & \end{matrix} = \begin{matrix} 2 & -3 \ -1 & 2 \end{matrix}$在考研中,逆矩阵的应用主要涉及以下几个方面:解方程:逆矩阵可以用来求解线性方程组。
当方程组的系数矩阵是可逆矩阵时,我们可以通过逆矩阵快速求解方程组。
证明不等式:在证明某些矩阵不等式时,可以通过引入逆矩阵来简化证明过程。
求特征值和特征向量:在计算矩阵的特征值和特征向量时,需要先求出矩阵的逆矩阵。
解决优化问题:在数学优化中,逆矩阵往往作为系数矩阵的逆出现,对于一些约束优化问题,可以通过求解线性方程组来得到优化解。
可逆矩阵在保密通信中的应用矩阵是数学的基本概念之一。
作为线性代数的核心内容,矩阵广泛运用于各个领域,如数学建模、密码学、化学、通信和计算机科学等,解决了大量的实际问题。
可逆矩阵是矩阵理论中一个很重要的概念,在线性代数中,给定一个n 阶方阵A ,若存在一个n 阶方阵B ,使得AB=BA=E (或AB=E 、BA=E 任满足一个),其中E 为n 阶单位矩阵,则称A 是可逆的,且B 是A 的逆矩阵,记作A -1。
可逆矩阵在通信中的典型应用就是在保密通信中。
保密通信是当今信息时代的一个非常重要的课题, 而逆矩阵正好在这一领域有其应用。
我们可以用逆矩阵对所传递的明文消息进行保密措施后( 即密文消息) 发给接收方, 而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。
一、算法的加密原理信息发送端首先根据密钥矩阵A 的阶数(||A||=n ) , 将明文转换为n 维数向量X, 然后将X 与A 相乘得到密文Y , 既Y=AX, 再将Y 发送, 信息端接受到Y 后, 则利用密钥矩阵A -1(其中A 与A -1互为可逆矩阵)与Y 相乘, 则会得到明文X , 既: A -1Y = A - 1AX = X 。
例如 : 一个密钥矩阵⎪⎪⎪⎭⎫ ⎝⎛=100110111A ,另一个密钥矩阵⎪⎪⎪⎭⎫ ⎝⎛=1001-1001-1A 1-,信息发送端欲发送信息ABC 。
首先根据ASC Ⅱ码表将ABC 传为三维向量⎪⎪⎪⎭⎫ ⎝⎛=676665X ,则对应的密文⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==67133198676665100110111AX Y ,然后将密文Y 传输,当信息端接收到密文Y 时,利用解密密钥矩阵A -1,根据公式求得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==676665671331981001-1001-1Y A X 1-,然后利用ASCII 码表即可解析出发送的信息为ABC 。
可逆线性变换与可逆矩阵的定义与性质可逆线性变换与可逆矩阵是线性代数中非常重要的概念。
在研究线性变换和矩阵的性质时,我们经常会遇到可逆变换和可逆矩阵,它们具有很多重要的性质和应用。
本文将深入探讨可逆线性变换与可逆矩阵的定义与性质,帮助读者更好地理解和应用它们。
一、可逆线性变换的定义与性质1. 定义:一个线性变换T称为可逆的,如果存在另一个线性变换S,使得TS = ST = I,其中I为恒等变换。
简单来说,可逆线性变换存在一个逆变换,使得它们的乘积等于恒等变换。
2. 性质1:如果线性变换T可逆,那么它的逆变换是唯一的。
换句话说,如果TS = ST = I,那么逆变换S就是唯一的,记作T^{-1}。
3. 性质2:可逆线性变换的逆变换也是可逆的。
如果T可逆,则T^{-1}也可逆,且(T^{-1})^{-1} = T。
4. 性质3:可逆线性变换的转置也是可逆的。
如果T可逆,则其转置T^T也可逆,且(T^T)^{-1} = (T^{-1})^T。
5. 性质4:可逆线性变换的乘积也是可逆的。
如果T和U都是可逆的线性变换,则TU也是可逆的,且(TU)^{-1} = U^{-1}T^{-1}。
二、可逆矩阵的定义与性质1. 定义:一个n阶方阵A称为可逆的,如果存在另一个n阶方阵B,使得AB = BA = I。
类似于可逆线性变换,可逆矩阵存在一个逆矩阵,使得它们的乘积等于单位矩阵。
2. 性质1:如果矩阵A可逆,那么它的逆矩阵是唯一的。
换句话说,如果AB = BA = I,那么逆矩阵B就是唯一的,记作A^{-1}。
3. 性质2:可逆矩阵的逆矩阵也是可逆的。
如果A可逆,则A^{-1}也可逆,且(A^{-1})^{-1} = A。
4. 性质3:可逆矩阵的转置也是可逆的。
如果A可逆,则其转置A^T也可逆,且(A^T)^{-1} = (A^{-1})^T。
5. 性质4:可逆矩阵的乘积也是可逆的。
如果A和B都是可逆的矩阵,则AB也是可逆的,且(AB)^{-1} = B^{-1}A^{-1}。
E-A) 1= E + A + 2 K1 + … +A(E- A )(E+A + A 2+…+ AK 1)= E-A K(E-A) (E+A+A 2 + …+A K 1)=E,逆矩阵的几种求法与解析矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 .1. 利用定义求逆矩阵定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用.例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且证明因为E与A可以交换,所以因A K= 0 ,于是得同理可得( E + A + A 2 + … +A K 1 )(E-A)=E ,因此E-A是可逆矩阵,且(E-A) 1 = E + A + A 2 +…+A K 1同理可以证明 (E+ A) 也可逆,且E-A 的逆矩阵.(E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1.由此可知,只要满足A K=0,就可以利用此题求出一类矩阵E A 的逆矩阵.例2 设 A =00 20 00 03,求0003 0000分析 由于A 中有许多元素为零,考虑A K是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵.解 容易验证00 2 00 0 0 6200 0 630 0 0 04A 2=■A 3=, A 4 =000 0 00 00 0000 00 0 0 0而 (E-A)(E+A+ A2+ A 3 )=E , 所以1 12 61230 12 6 (E-A)E+A+ A2+ A.0 0 1 30 00 12. 初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法 •如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使(1) p 1 p 2 p s A=I ,用 A 1右乘上式两端,得:(2) p 1 p 2 p s I= A 1比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1.用矩阵表示( A I )为( I A 1 ),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等变换 .同样,只用列初等变换也可以求逆矩阵 .2 3 1例1 求矩阵A的逆矩阵•已知A= 0 1 31 2 52 3 1 1 0 0 1 2 5 0 0 1解[A I] 0 1 3 0 1 0 0 1 3 0 1 01 2 5 0 0 1 2 3 1 1 0 01 2 5 0 0 1 1 0 0 1/6 13/6 4/30 1 3 0 1 0 0 1 0 1/2 3/2 10 0 1 1/6 1/6 1/3 0 0 1 1/6 1/6 1/31/6 13/6 4/3故 A 1 = 1/2 3/2 11/6 1/6 1/3在事先不知道n阶矩阵是否可逆的情况下,也可以直接用此方法•如果在初等变换过程中发现左边的矩阵有一行元素全为 0,则意味着A不可逆,因为此时表明A =0,则A 1不存在.1 2 3例 2 求 A= 4 5 6.7 8 91 2 3 1 0 0 1 2 3 1 0 0解[A E]= 4 5 6 0 1 0 0 3 6 4 1 07 8 9 0 0 1 0 6 12 7 0 11 2 3 1 0 00 3 6 4 1 0 .0 0 0 1 2 1由于左端矩阵中有一行元素全为0,于是它不可逆,因此A不可逆.3. 伴随阵法定理 n阶矩阵A=[a j ]为可逆的充分必要条件是A非奇异.且A n1A n2矩阵A 21.A n1A 22...A 12称为矩阵A 的伴随矩阵,记作A 3,于是有A 1=-A A 3'' ''' )A 2n.A nnB=A n A 2n 由此可知,若A 可逆,则AA 3.其中A j 是A 中元素a j 的代数余子式.证明 必要性:设A 可逆,由A A 1=I ,有AA 1 = l |,则A A 1 =|l |,所以A 0 , 即A 为非奇异.充分性: 设A 为非奇异,存在矩其中a11 a12 ...a 1nA 11 A21...A n1 a 21a22...a2 n1 A 12A22A n2 AB=... ... ...A・・・an1an2...a nnA 1nA2n...A nnA 0...0 1 0=丄oA ...0 =010 = -1=A ... ... A ...1T0 0...A0 01同理可证BA=I.用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有A|2nAiA2 A inAI2A 22A nn证明 因为A =A ii0 0A22其中X A ii A 11A ii0 A 22=A 1i | |A22An 0 0A 22 i0,所以A 可逆.YW ,于是有X Y A ii ZWA22I n 00 I m n, 丫 A22 =0, ZA ii =0,W A 22 I m .又因为A ii 、A 22都可逆,用22 i 分别右乘上面左右两组等式得:规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对 角线的元素变号即可•若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过 AA 1=I 来检验.一 旦发现错误,必须对每一计算逐一排查.4 .分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A il 、A 22都是非奇异矩阵,且A il 为n 阶方阵,A 22为m 阶方阵iiX= A ii ,Y=0,Z=0,W= A 22A 2i =Aii0 A 22 i把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:iA i iA2 A2i42准三角形矩阵求逆命题设A11、A 22都是非奇异矩阵,则有A11 1 1A12 A111A11 A12 A22 10 A22 0 A22 1证明因为A11 A12 I 1A11 A12 =An 0 0 A22 0 I 0 A22两边求逆得I A11 1 1A12 A1 1 A12 1= A11 100 I 0 A22 0 A22 所以A11A12 1 _ I A11 A12 A1 100 A22 0 I 0 A22 1=A11 11 1 A11 A12 A220 A22 1 同理可证A1110 A11 10A21 A221 1A11 A21 A22 A22 1此方法适用于大型且能化成对角子块阵或三角块阵的矩阵•是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用•5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用 AA 1=E,把题目中的逆矩阵化简掉。
. .. . .. ..逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1求证: 如果方阵A 满足A K= 0, 那么E-A是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A *,于是有A 1-=A 1 A *.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1 A *. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡221100A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
矩阵的行列式与逆矩阵矩阵是线性代数中的一种基本概念,它是由数个数按照矩形排列而成的有限集合。
而矩阵的行列式与逆矩阵是矩阵运算中非常重要的概念与方法。
本文将详细介绍矩阵的行列式以及逆矩阵的定义、性质和计算方法。
1. 矩阵的行列式矩阵的行列式是一个标量,它与矩阵的元素及其排列有关。
对于n 阶方阵A=[a_ij],其中a_ij表示矩阵A的第i行第j列的元素,行列式的定义如下:det(A) = ∑[(-1)^(i+j) * a_ij * det(A_ij)]其中A_ij表示将矩阵A的第i行和第j列剔除后的(n-1)阶矩阵,det(A_ij)表示该(n-1)阶矩阵的行列式。
该定义可以通过递推公式简化计算。
行列式具有很多重要的性质,比如:- 行列式的转置等于行列式本身的值:det(A) = det(A^T)- 行列式相等的矩阵具有相同的行列式:如果A=B,则det(A) = det(B)- 互换矩阵的两行(或两列)会改变行列式的符号:如果B是通过交换A的两行得到的,则det(B) = -det(A)行列式的计算方法包括拉普拉斯展开和三角形展开等,根据矩阵的性质选择最合适的方法进行计算。
2. 逆矩阵对于n阶矩阵A,如果存在一个n阶矩阵B,使得AB=BA=I,其中I为n阶单位矩阵,则称矩阵A为可逆矩阵,矩阵B为矩阵A的逆矩阵,记作A^(-1)。
可逆矩阵一定是方阵。
逆矩阵是矩阵运算中的重要工具,具有以下性质:- 若A为可逆矩阵,则A^(-1)也是可逆矩阵,(A^(-1))^(-1) = A- 若A、B都是可逆矩阵,则AB也是可逆矩阵,(AB)^(-1) = B^(-1)A^(-1)- 若A是可逆矩阵,则det(A)不等于0,且det(A^(-1)) = 1/det(A)逆矩阵的计算方法一般有初等变换法、伴随矩阵法和矩阵的分块法等。
其中初等变换法是最常用的方法,通过对矩阵A施行一系列初等行变换或初等列变换,将其化为阶梯形矩阵,再通过代换求解出逆矩阵。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )= E + A + A +…+A 1-21-K 证明 因为E 与A 可以交换, 所以(E- A )(E+A + A +…+ A )= E-A ,21-K K 因A = 0 ,于是得 K (E-A)(E+A+A +…+A )=E ,21-K 同理可得(E + A + A +…+A )(E-A)=E ,21-K 因此E-A 是可逆矩阵,且(E-A)= E + A + A +…+A .1-21-K 同理可以证明(E+ A)也可逆,且(E+ A)= E -A + A +…+(-1)A .1-21-K 1-K 由此可知, 只要满足A =0,就可以利用此题求出一类矩阵E A 的逆矩阵.K ±例2 设 A =,求 E-A 的逆矩阵.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00300000200010分析 由于A 中有许多元素为零, 考虑A 是否为零矩阵, 若为零矩阵, 则可以K 采用例2 的方法求E-A 的逆矩阵.解 容易验证A =, A =, A =02⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000000600002003⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006004而 (E-A)(E+A+ A + A )=E,所以23(E-A)= E+A+ A + A =.1-23⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10003100621062112.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵使S P P P ,,21 (1)A=I ,用A 右乘上式两端,得:s p p p 211- (2) I= A s p p p 211-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A .1-用矩阵表示(A I )为(I A ),就是求逆矩阵的初等行变换法,−−−→−初等行变换1-它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A =.1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明=0,则A 不存在.A 1-例2 求A=.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321 .→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ]为可逆的充分必要条件是A 非奇异.且ij A =1-A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中A 是中元素a 的代数余子式.ij A ij 矩阵称为矩阵A 的伴随矩阵,记作A ,于是有A = A .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A AA A A (2122212)1211131-A 13证明 必要性:设A 可逆,由A A =I ,有=,则=,所以1-1-AA I A 1-A I A0,即A 为非奇异.≠充分性: 设A 为非奇异,存在矩阵B=,A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111===I A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A AA A ...00.........0...00...0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...00...1......0...100...01同理可证BA=I.由此可知,若A 可逆,则A =A .1-A13用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA =I 来检验.一1-旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 、A 都是非奇异矩阵,且A 为n 阶方阵,A 为m 阶方阵11221122 ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为==0, 所以A 可逆.A 22110A A 11A 22A ≠设A =,于是有=,1-⎥⎦⎤⎢⎣⎡WZYX⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡m nI I 00其中 X A =I , Y A =0,Z A =0,W A =I .又因为A 、A 都可逆,用11n 221122m 1122A 、A 分别右乘上面左右两组等式得:111-122-X= A ,Y=0,Z=0,W= A 111-122-故 A = 21⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:=121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 、A 都是非奇异矩阵,则有1122=12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 证明 因为=⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡22110A A 两边求逆得=1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--12211100A A 所以 =1221211-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A 同理可证=12221110-⎥⎦⎤⎢⎣⎡A A A ⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA =E ,把题目中的逆矩阵化简掉。
逆矩阵三个公式逆矩阵是线性代数中一个重要的概念,它在求解线性方程组、计算矩阵的行列式、求解线性变换等问题中都有广泛的应用。
在本文中,我们将介绍逆矩阵的三个公式,并通过实例展示其应用。
一、逆矩阵的定义逆矩阵是指对于一个给定的方阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。
如果一个矩阵存在逆矩阵,则称之为可逆矩阵或非奇异矩阵,反之则称为奇异矩阵。
二、逆矩阵的计算公式1. 克拉默法则克拉默法则是求解线性方程组的一种方法,它可以通过逆矩阵的概念来推导。
对于一个n阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·adj(A),其中det(A)为A的行列式,adj(A)为A的伴随矩阵。
2. 初等变换法通过初等变换法,我们可以将方阵A通过一系列初等行变换或初等列变换转化为单位矩阵I,此时我们所做的变换操作在另一个矩阵上执行,得到的矩阵即为A的逆矩阵。
具体而言,设A经过一系列初等行变换得到I,则对应的初等行变换矩阵记为E1,同理,设A经过一系列初等列变换得到I,则对应的初等列变换矩阵记为E2,则A的逆矩阵为A^-1=E1·E2。
3. 公式法对于一个2阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[d -b;-c a],其中a、b、c、d分别为A的元素。
对于一个3阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[A11 A12 A13;A21 A22 A23;A31 A32 A33]的转置矩阵,其中Aij为A的代数余子式。
三、逆矩阵的应用实例为了更好地理解逆矩阵的应用,我们以线性方程组的求解为例进行说明。
考虑一个线性方程组:2x + 3y = 84x - 2y = 2我们可以将其表示为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
我们可以通过求解逆矩阵来解得未知数向量x。
它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。
可逆矩阵作为矩阵乘法的逆运算,是矩阵的一种重要运算,在解决矩阵问题中起着重要的作用。
因而掌握可逆矩阵的求法,在解决实际问题时,往往可以起到事半功倍的效果。
本文将对一些常用的可逆矩阵的求法作系统的总结,并进一步介绍几种常见得可逆矩阵的在数学领域和通讯领域的简单应用。
【关键词】矩阵可逆矩阵通信【Abstract】In the discussion of linear equations, we can see that someimportant properties of the linear equations are reflected in its coefficient matrix and augmented matrix of nature, what`s more, the process of the solution performance of the process of transformation of these matrices. Invertible matrix multiplication as the inverse of the matrix is an important matrix operations,and plays an important role in solving the problem. master ring the method of Invertible matrix often can play a multiplier effect in solving practical problems.The following are the system summary of the commonly used reversible method for the evaluation of Invertible matrix, and further descripitions of several common application in the field of mathematics and simple communications.【Key Words】Matrix Invertible matrix Communications目录前言 (5)一、可逆矩阵 (5)二、可逆矩阵的性质及求法 (5)(一)性质 (5)(二)逆矩阵求法 (6)三、可逆矩阵的简单应用 (10)(一)可逆矩阵在数学方面的应用 (10)(二)可逆矩阵在通信方面的应用 (11)(1)加密保密通信模型 (12)(2)可逆矩阵的应用 (12)(3)加密密钥的生成 (13)(4)解密密钥的生成 (14)(5)明文矩阵的选择 (14)(6)加密矩阵的选择 (14)(7)算法优化 (14)结论 (15)参考文献 (15)致谢16前言矩阵作为高等代数,这一伟大数学图腾的重要分支的一大重要部分,在我们的生活,学习,工作,更是在人类的进步中发挥了卓越的工具作用。
二阶矩阵的可逆矩阵摘要:1.二阶矩阵的定义和性质2.可逆矩阵的概念和判定条件3.二阶矩阵可逆性的判断方法4.逆矩阵的求解及其应用正文:在线性代数中,二阶矩阵是一种基本的矩阵形式。
它由两个矩阵元素组成,分别为行列式中的第一行和第一列元素。
本文将介绍二阶矩阵的可逆矩阵,包括其定义、判定条件、求解方法及应用。
首先,我们来回顾一下二阶矩阵的定义和性质。
二阶矩阵是一个具有以下形式的矩阵:A = | a a || a a |其中,a、a、a和a为矩阵A的元素。
二阶矩阵具有以下性质:1.行和列均为1和2的矩阵为二阶矩阵。
2.二阶矩阵的转置矩阵与原矩阵具有相同的行列式值。
3.二阶矩阵的行列式值为其主对角线元素之积减去副对角线元素之积。
接下来,我们介绍可逆矩阵的概念和判定条件。
一个n阶矩阵A是可逆的,当且仅当存在一个n阶矩阵B,使得AB = BA = I,其中I为单位矩阵。
对于二阶矩阵来说,可逆矩阵的判定条件如下:1.行列式值不为零。
即|A| ≠ 0。
2.逆矩阵的存在性。
当满足判定条件1时,我们可以通过高斯消元法求解二阶矩阵A的逆矩阵。
具体步骤如下:a.将A写成增广矩阵形式。
b.按照增广矩阵的顺序,依次求解第一行和第一列的元素。
c.将求得的元素代入原矩阵,得到A的逆矩阵。
最后,我们来讨论逆矩阵的求解及其应用。
求解逆矩阵的方法有多种,如高斯消元法、求解线性方程组等。
在实际应用中,逆矩阵可以帮助我们解决线性方程组问题、计算矩阵的乘积等。
例如,如果给定一个二阶矩阵A和一个向量b,我们可以通过求解线性方程组来找到一个向量x,使得Ax = b。
这时,逆矩阵A就发挥了重要作用,我们可以将问题转化为求解Ab。
总之,二阶矩阵的可逆矩阵在线性代数中具有重要意义。
通过理解二阶矩阵的定义、判定条件、求解方法和应用,我们可以更好地掌握矩阵的性质和运算。
可逆平方矩阵
可逆平方矩阵,简称可逆矩阵,是一个方阵(行数等于列数)且满足可逆性质的矩阵。
具体来说,一个n阶方阵A是可逆的,如果存在一个n阶方阵B使得AB=BA=I,其中I是单位
矩阵。
这意味着存在一个与A乘积得到单位矩阵的逆矩阵B。
可以使用行列式来判断一个矩阵是否可逆。
一个n阶方阵A
是可逆的当且仅当其行列式det(A)不等于0。
如果行列式为0,则矩阵A被称为奇异矩阵,不可逆。
可逆矩阵在线性代数中起着重要的作用。
它们具有许多有用的性质和应用,例如求解线性方程组、计算逆矩阵、矩阵的特征值和特征向量等。
矩阵逆的公式摘要:1.矩阵逆的定义与重要性2.矩阵逆的计算方法3.矩阵逆的应用举例4.矩阵逆的性质与特点正文:一、矩阵逆的定义与重要性矩阵逆是线性代数中一个非常重要的概念,它对于解决线性方程组等问题有着至关重要的作用。
矩阵逆是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I 是单位矩阵。
矩阵逆元素的求解,可以帮助我们更好地理解线性方程组的性质,从而解决实际问题。
二、矩阵逆的计算方法矩阵逆的计算方法有很多,其中最常用的是高斯消元法和求解线性方程组法。
1.高斯消元法:通过高斯消元法可以将一个矩阵化为行最简形式,从而求得矩阵的逆。
具体操作是将矩阵的每个元素都除以矩阵的第一行第一个元素,然后将矩阵的行进行交换,使得第一行变为单位矩阵,然后继续消元,直到矩阵变为行最简形式。
2.求解线性方程组法:假设有一个线性方程组Ax=B,其中A 是系数矩阵,x 是变量矩阵,B 是常数矩阵。
如果这个线性方程组有唯一解,那么系数矩阵A 的逆就可以通过求解这个线性方程组得到。
三、矩阵逆的应用举例矩阵逆在实际应用中有广泛的应用,下面举一个简单的例子来说明。
假设有一个线性方程组:2x+3y=7,5x-4y=8,我们可以通过求解这个线性方程组得到x 和y 的解,从而验证这个线性方程组是否有解。
通过矩阵逆的计算,我们可以得到矩阵的逆,然后将线性方程组转化为Ax=B 的形式,其中A 是系数矩阵,B 是常数矩阵,然后通过求解这个线性方程组,我们可以得到x 和y 的解,从而验证这个线性方程组是否有解。
四、矩阵逆的性质与特点矩阵逆具有以下几个重要的性质:1.矩阵逆只对可逆矩阵存在,对于不可逆矩阵,没有逆矩阵。
2.矩阵逆是唯一的,即对于一个可逆矩阵,其逆矩阵是唯一的。
3.矩阵逆的计算与求解线性方程组密切相关,可以通过求解线性方程组来计算矩阵的逆。
4.矩阵逆的计算方法有多种,包括高斯消元法、求解线性方程组法等。