用频率估计概率试卷(含答案)
- 格式:docx
- 大小:298.46 KB
- 文档页数:6
3.2 用频率估计概率一、填空题1.“抛出的蓝球会下落〞,这个事件是 事件.〔填“确定〞或“不确定〞〕 2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 的概率最大,抽到和大于8的概率为 .3.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,那么她在该次预测中达标的概率是 .4.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是 ,对某次投篮而言,二人同时投中的概率是 .5.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过屡次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄色玻璃球有 个.6.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,那么摸出一个黄球的概率是 .7.一只不透明的布袋中有三种小球〔除颜色以外没有任何区别〕,分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .8.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规那么:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规那么公平吗?并说明理由._________________________________.9.一个口袋中有12个白球和假设干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球.10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影局部铺黑色石子,其余局部铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过屡次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2〔精确到2〕.二、选择题11.以下模拟掷硬币的实验不正确的选项是 〔 〕A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上12.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 〔 〕A .21B .51C .361D .3611 13.有6张反面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,假设将这六张牌反面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为〔 〕〔第10题〕〔第16题〕 A .32 B .21 C .41 D .31 14.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是〔 〕A .21B .31C .41 D .015.如图,两个用来摇奖的转盘,其中说法正确的选项是〔 〕A .转盘〔1〕中蓝色区域的面积比转盘〔2〕中的蓝色区域面积要大,所以摇转盘〔1〕比摇转盘〔2〕时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的时机一样大C .转盘〔1〕中,指针指向红色区域的概率是31 D .在转盘〔2〕中只有红.黄.蓝三种颜色,指针指向每种颜色的概率都是3116.把一个沙包丢在如下图的某个方格中〔每个方格除颜色外完全一样〕,那么沙包落在黑色格中的概率是〔 〕A .21B .31C .41 D .5117.中央电视台“幸运52”栏目中的“百宝箱〞互动环节,是一种竞猜游戏,游戏规那么如下:在20个商标中,有5个商标牌的反面注明了一定的奖金额,其余商标的反面是一张苦脸,假设翻到它就不得奖.参加这个游戏的观众有三次翻牌的时机,某观众前两次翻牌均得假设干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是〔 〕A .41B .61C .51D .203 18.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个效劳区,那么此效劳区设在A 、B 之间的概率是〔 〕A .a b B .b a C .b a a + D .b a b +小明家 公园 〔第14题〕 〔第15题〕 A BC〔第18题〕三、解答题19.小明、小华用四张扑克牌玩游戏〔方块2、黑桃4、红桃5、梅花5〕,他俩将扑克牌洗匀后,反面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.〔1〕假设小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.〔2〕小明、小华约定:假设小明抽到的牌的牌面数字比小华的大,那么小明胜,反之那么小明负;假设牌面数字一样,那么不分胜负,你认为这个游戏是否公平?说明你的理由.20.某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的时机,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.〔1〕计算并完成表格;〔2〕请估计,当n很大时,频率将会接近多少?〔3〕假设你去转动该盘一次,你获得洗衣粉的概率约是多少?〔4〕在该转盘中,表示“洗衣粉〞区域的扇形的圆心角约是多少?〔精确到1°〕21.某篮球队在平时训练中,运发动甲的3分球命中率是70%,运发动乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻时机了,假设你是这个球队的教练,问:〔1〕最后一个3分球由甲、乙中谁来投,获胜的时机更大?〔2〕请简要说说你的理由.22.王强与李刚两位同学在学习“概率〞时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数 1 2 3 4 5 6出现次数 6 9 5 8 16 10 〔1〕请计算出现向上点数为3的频率及出现向上点数为5的频率.〔2〕王强说:“根据实验,一次试验中出现向上点数为5的概率最大.〞李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.〞请判断王强和李刚说法的对错.〔3〕如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.23.有一个“摆地摊〞的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的时机,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?24.六个面上分别标有1、1、2、3、3、5六个数字的均匀立方体的外表展开图如图6所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.〔1〕掷这样的立方体可能得到的点有哪些?请把这些点在如下给定的平面直角坐标系中表示出来.〔2〕小明前两次掷得的两个点确定一条直线l,且这条直线经过点P〔4,7〕,那么他第三次掷得的点也在直线l上的概率是多少?参考答案一、填空题1.确定 2.6,325 3.25 4.甲,9205.18 6.25 7.15 8.不公平 9.48 10. 二、选择题11.D 12.D 13.D 14.B 15.B 16.B 17.B 18.D三、解答题19.〔1〕①图略,②23;〔2〕这个游戏公平 20.〔1〕0.;;;〔4〕252︒ 21.都可以.最后一个三分球由甲来投,因甲在平时训练中3分球的命中率较高;最后一个3分球由乙来投,因为在本场比赛中乙的命中率更高,投入最后一个球的可能性更大 22.〔1〕出现向上点数为3的频率为554,出现向上点数为5的频率为827;〔2〕都错;〔3〕1323.400元 24.〔1〕〔1,1〕、〔1,1〕、〔2,3〕、〔3,2〕、〔3,5〕、〔5,3〕;〔2〕通过描点和计算可以发现,经过〔1,1〕,〔2,3〕,〔3,5〕三点中的任意两点所确定的直线都经过点P 〔4,7〕,所以小明第三次掷得的点也在直线l 上的概率是46=23第2课时 比例的性质一、填空题1.a :b :c=2:3:5,那么cb b a -- =________. 2.〔a-b 〕:b=2:3,那么a :b=_______ 3.实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,那么x :y :z=________.4.设实数x ,y ,z 使│x -2y│+ 〔3x-z 〕2=0成立,求x :y :z 的值________. 5、3)(4)2(y x y x -=+,那么=y x : ,=+x y x 6、543z y x ==,那么=++xz y x ,=+-++z y x z y x 53232 7、如果3:1:1::=c b a ,那么=+--+cb ac b a 3532二、选择题8、dc b a =,那么以下等式中不成立的是〔 〕 A.cd a b = B. d d c b b a -=- C. d c c b a a +=+ D. b a c b d a =++ 9、53=y x ,那么在①41=+-y x y x ②5353=++y x ③1332=+y x x ④38=+x y x 这四个式子中正确的个数是〔 〕A. 1个B. 2个C. 3个D. 4个三、解答题10、7532=b a ,求b ab a 3423+的值。
3.2用频率估计概率分层训练提分要义【基础题】1.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个2.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.人数60 260 550 130 根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.874.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数50 100 150 200 500 800 1000 (件)合格频数48 98 144 193 489 784 981 A.12 B.24 C.1188 D.11765.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.25 D.306.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于77.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100 100 100 100 100 100 100 100 100 100摸到白球的次数41 39 40 43 38 39 46 41 42 38请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个8.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是().类型健康亚健康不健康数据(人)32 7 1A.32 B.7 C.710D.459.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球10.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为()A.20 B.30 C.40 D.6011.从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的30≤t≤35 35≤t≤40 40≤t≤45 45≤t≤50 合计频数/公交车用时甲59 151 166 124 500乙50 50 122 278 500丙45 265 167 23 500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定12.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮10 8 0.8则他的投篮命中率为()A.45B.23C.34D.不能确定13.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高x (cm)统计如下:根据以上结果,全市约有3万名男生,估计全市男生的身高不高于180cm 的人数是()A.28500 B.17100 C.10800 D.1500【中档题】14.一个不透明的袋子中装有4个白球和若干个黄球,它们除颜色外完全相同,从袋子中随机摸出一球,再放回,不断重复,共摸球30次,其中10次摸到白球,则估计袋子中大约有黄球______个.15.某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)16.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:估计从该批次口罩中任抽一只口罩是合格品的概率为_____.17.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有6个黑球,从袋中随机摸出一球,记下其颜色,称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是____.【综合题】18.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?19.在不透明的口袋中装有1个白色、1个红色和若干个黄色的乒乓球(除颜外其余都相同),小明为了弄清黄色乒乓球的个数,进行了摸球的实验(每次只摸一个,记录颜色后放回,搅匀后重复上述步骤),下表是实验的部分数据:(1)请你估计:摸出一个球恰好是白球的概率大约是(精确到0.01),黄球有个;(2)如果从上述口袋中,同时摸出2个球,求结果是一红一黄的概率.20.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).21.新冠疫情期间,某校有“录播”和“直播”两种教学方式供学生自主选择其中一种进行居家线上学习.为了了解该校学生线上学习参与度情况,从选择这两种教学方式的学生中,分别随机抽取50名进行调查,调查结果如表(数据分组包含左端值不包含右端值).0~20% 20%~50% 50%~80% 80%~100%录播 5 18 14 13 直播2152112(1)从选择教学方式为“录播”的学生中任意抽取1名学生,试估计该生的参与度不低于50%的概率;(2)若该校共有1200名学生,选择“录播”和“直播”的人数之比为3:5,试估计选择“录播”或“直播”参与度均在20%以下的共有多少人?22.某超市经营某品牌的一种乳制品,根据往年销售经验,每天销售量与当天最高气温t (单位:C ︒)有关.为了制定六月份的订购计划,统计了前三年六月份每天的最高气温、销售量与最高气温的关系得到下表: 最高气温t(单位:C ︒)天数每天销售量(瓶)20t < 15 240 2025t ≤< 30 300 25t ≥45500(1)估计超市今年六月份某一天这种乳制品的销售量不超过300瓶的概率; (2)估计超市这种乳制品今年六月份平均每天的销售量;(3)设进货成本为每瓶4元,售价为每瓶6元,结合前三年六月份的销售数据,估计超市今年六月份经营这种乳制品的总利润.23.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.24.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,随着摸球次数的增多,摸到白球的频率在一个常数附近摆动,请直接写出这个常数(精确到0.01),由此估出红球有几个?(2)在这次摸球试验中,从袋中随机摸出1个球,记下颜色后放回,再从中随机摸出1个球,利用画树状图或列表的方法表示所有可能出现的结果,并求两次摸到的球恰好1是个白球,1个是红球的概率.。
九年级数学上25.3用频率估计概率最新最好试题期中复习考试选用周末练习含答案一.选择题(共7小题)1.(2019春•杏花岭区校级月考)如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上2.(2019春•市南区期末)下面四个实验中,实验结果概率最小的是()A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率3.(2019春•东明县期末)某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球4.(2019•曲靖一模)如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m2 5.(2018秋•密云区期末)2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.6.(2019春•城固县期末)某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②7.(2019•江岸区校级模拟)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③二.填空题(共5小题)8.(2019•丰台区二模)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性“凹面向上”的可能性.(填“大于”,“等于”或“小于”).9.(2019春•海淀区校级月考)小瑶同学在学习概率知识后做了一个随机事件的试验.她把100粒米随机撒到如图所示的一张画有正方形及其内切圆的白纸上,经计数,恰好落在圆内的米粒数为79粒,由此他估计圆周率π的值约为.10.(2019•北京一模)如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为cm2.11.(2018秋•丹江口市期末)如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是m2.12.(2018秋•慈溪市期末)如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是(填写“正确”或“错误”)的.三.解答题(共3小题)13.(2019春•铜山区期末)某批乒乓球的质量检验结果如下:(1)填写表中的空格;(2)画出这批乒乓球优等品频率的折线统计图;(3)这批乒乓球优等品概率的估计值是多少?14.(2018秋•莲湖区期中)李爱数同学发现操场中有一个不规则的封闭图形ABC如图所示,为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圆内掷石子,结果记录如下:请根据以上信息,回答问题:(1)求石子落在圆内的频率;(2)估计封闭图形ABC的面积.15.(2018春•太原期末)随机掷一枚图钉,落地后只能出现两种情况:“钉尖朝上”和“钉尖朝下”.这两种情况的可能性一样大吗?(1)求真小组的同学们进行了实验,并将实验数据汇总填入下表.请补全表格:①,②,③(2)为了加大试验的次数,老师用计算机进行了模拟试验,将试验数据制成如图所示的折线图.据此,同学们得出三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616;②随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的次数一定是620次.其中合理的是.(3)向善小组的同学们也做了1000次掷图钉的试验,其中640次“钉尖朝上”.据此,他们认为“钉尖朝上”的可能性比“钉尖朝下”的可能性大.你赞成他们的说法吗?请说出你的理由.九年级数学上25.3用频率估计概率最新最好试题期中复习考试选用周末练习答案一.选择题(共7小题)1.(2019春•杏花岭区校级月考)如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上【解答】解:A、抛一枚硬币,出现正面朝上的频率是0.5,故本选项错误;B、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是0.33,故本选项正确;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是0.25,故本选项错误;D、掷一个正六面体的骰子,出现3点朝上的频率约为:0.17,故本选项错误;故选:B.2.(2019春•市南区期末)下面四个实验中,实验结果概率最小的是()A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率【解答】解:A、如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率为0.4.B、如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率为0.33.C、如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率为0.2.D、有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率为0.28,因为0.2最小,故选:C.3.(2019春•东明县期末)某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是()A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球【解答】解:A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;故选:B.4.(2019•曲靖一模)如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.2.4m2B.3.2m2C.4.8m2D.7.2m2【解答】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.5.(2018秋•密云区期末)2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是.故选:A.6.(2019春•城固县期末)某林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中成活情况的一组数据统计结果.下面三个推断:①当移植棵数是1500时,该幼树移植成活的棵数是1356,所以“移植成活”的概率是0.904;②随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880;③若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率是0.875.其中合理的是()A.①③B.②③C.①D.②【解答】解:当移植棵数是1500时,该幼树移植成活的棵数是1356,所以此时“移植成活”的频率是0.904,但概率不一定是0.904,故①错误,随着移植棵数的增加,“移植成活”的频率总在0.880附近摆动,显示出一定的稳定性,可以估计这种幼树“移植成活”的概率是0.880,故②正确,若这种幼树“移植成活”的频率的平均值是0.875,则“移植成活”的概率也不一定是0.875,因为某一次或几次的频率太高或太低会影响估计概率,概率是一件事情发生的可能性,故③错误,故选:D.7.(2019•江岸区校级模拟)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.二.填空题(共5小题)8.(2019•丰台区二模)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验的结果.那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性小于“凹面向上”的可能性.(填“大于”,“等于”或“小于”).【解答】解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,∴凸面向上”的可能性小于“凹面向上”的可能性.,故答案为:小于.9.(2019春•海淀区校级月考)小瑶同学在学习概率知识后做了一个随机事件的试验.她把100粒米随机撒到如图所示的一张画有正方形及其内切圆的白纸上,经计数,恰好落在圆内的米粒数为79粒,由此他估计圆周率π的值约为 3.16.【解答】解:设正方形的边长为2a,则圆的半径为a,由题意可得,,解得,π=3.16故答案为:3.16.10.(2019•北京一模)如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为 2.8cm2.【解答】解:正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,∴黑色部分的面积占正方形二维码面积的70%,∴黑色部分的面积约为:4×70%=2.8,故答案为:2.8.11.(2018秋•丹江口市期末)如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是5 m2.【解答】解:∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,∴小石子落在不规则区域的概率为0.2,∵正方形的边长为5m,∴面积为25m2,设不规则区域的面积为s,则0.2,解得:s=5,故答案为:5.12.(2018秋•慈溪市期末)如图,显示的是用计算机模拟随机投掷一枚图钉的某次试验的结果.小明根据试验结果推断:随着重复试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,就可以估计“钉尖向上”的概率是0.618.你认为小明的推断是正确(填写“正确”或“错误”)的.【解答】解:由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故小明的推断是正确的,故答案为:正确.三.解答题(共3小题)13.(2019春•铜山区期末)某批乒乓球的质量检验结果如下:(1)填写表中的空格;(2)画出这批乒乓球优等品频率的折线统计图;(3)这批乒乓球优等品概率的估计值是多少?【解答】解:(1)176÷200=0.88,364÷400=0.91,450÷500=0.9,故答案为:0.88,0.91,0.9,(2)折线统计图如图所示:(3)根据频率,当抽取的数量逐渐增多时,优等品的频率越稳定在0.9左右,因此这批乒乓球优等品概率的估计值大约为0.9.14.(2018秋•莲湖区期中)李爱数同学发现操场中有一个不规则的封闭图形ABC如图所示,为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圆内掷石子,结果记录如下:请根据以上信息,回答问题:(1)求石子落在圆内的频率;(2)估计封闭图形ABC的面积.【解答】解:(1)观察表格得:随着投掷次数的增大,石子落在圆内的频率值稳定在;(2)设封闭图形的面积为a,根据题意得:,解得:a=3π,则封闭图形ABC的面积为3π平方米.15.(2018春•太原期末)随机掷一枚图钉,落地后只能出现两种情况:“钉尖朝上”和“钉尖朝下”.这两种情况的可能性一样大吗?(1)求真小组的同学们进行了实验,并将实验数据汇总填入下表.请补全表格:①0.625,②0.6,③0.62(2)为了加大试验的次数,老师用计算机进行了模拟试验,将试验数据制成如图所示的折线图.据此,同学们得出三个推断:①当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的概率是0.616;②随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618;③若再次用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的次数一定是620次.其中合理的是②.(3)向善小组的同学们也做了1000次掷图钉的试验,其中640次“钉尖朝上”.据此,他们认为“钉尖朝上”的可能性比“钉尖朝下”的可能性大.你赞成他们的说法吗?请说出你的理由.【解答】解:(1)①的频率为0.625、②的频率为0.6、③的频率为0.62,故答案为:0.625、0.6、0.62;(2)合理的是②.①项,当投掷次数是500时,计算机记录“钉尖朝上”的次数是308,所以“钉尖朝上”的频率是0.616,不能得其概率.故①项不符合题意.②项,从图象可知,随着试验次数的增加,“钉尖朝上”的频率在0.618附近摆动,显示出一定的稳定性,据此估计“钉尖朝上”的概率是0.618.故②项符合题意.③项,由图可知,用计算机模拟实验,当投掷次数为1000时,则“钉尖朝上”的频率是0.62,由此可得当投掷次数为1000时,则“钉尖朝上”的频率在0.62左右,但不代表还是0.62,每次试验都具有偶然性,故③项不符合题意.故答案为:②;(3)赞成.理由:随机投掷一枚图钉1000次,其中“针尖朝上”的次数为640次,“针尖朝上”的频率为0.64,试验次数足够大,足以说明“钉尖朝上”的可能性大,赞成他们的说法.。
考点10用频率估计概率一.选择题(共12小题)1.(2020·广东深圳市·九年级期末)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是()A.14B.12C.6D.4【答案】C【分析】根据红球出现的频率和球的总数,可以计算出红球的个数.【解析】解:由题意可得,20×0.3=6(个),即袋子中红球的个数最有可能是6个,故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出红球的个数.2.(2020·全国九年级课时练习)某射击运动员在同一条件下的射击成绩记录如下:则该运动员“射中9环以上”的概率约为(结果保留一位小数)()A.0.7B.0.75C.0.8D.0.9【答案】C【分析】用频率估计概率解答即可.【解析】解:∵从频率的波动情况可以发现频率稳定在0.8附近,∵这名运动员射击一次时“射中9环以上”的概率大约是0.8.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.(2020·东莞市南开实验学校九年级月考)在一个不透明的口袋中装有5个白球,若干个黑球,它们除颜色外其它完全相同,已知摸到白球概率为0.2,则袋子中黑球有多少个?()A.15B.10C.5D.20【答案】D【分析】由摸到白球的频率稳定在0.2附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【解析】解:设黑球个数为x个,∵摸到白色球的频率稳定在0.2左右,∵口袋中得到白色球的概率为0.2,∵50.25x=+,解得:x=20,经检验,x=20是原方程的解故黑球的个数为20个.故选:D.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.4.(2020·四川省成都市新都第四中学九年级期中)下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是()A.0.55B.0.60C.0.70D.0.50【答案】B【分析】根据频率估计概率的方法结合表格可得答案.【解析】由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.60附近,这名球员投篮一次,投中的概率约是0.60.故选择:B.【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.5.(2020·湖南长沙同升湖实验学校九年级期中)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个【答案】C【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可.【解析】∵小红通过多次摸球试验后发现,估计摸到黄球的概率为0.3,∵黄球的个数为50×0.3=15,则白球可能有50-15=35个.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.6.(2020·宁波市镇海区骆驼中学九年级期中)在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( ) A .12个 B .14个C .18个D .28个【答案】B 【分析】设需要往盒子里再放入x 个黄球, “在大次数的实验中,当某事件发生的频率逐渐稳定下来,在某个常数周围作小幅波动时,摸到黄球的频率稳定在0.35左右,利用公式P=mn即可求出.【解析】设布袋中黄球可能为x 个,0.3540xP ==, x=0.35×40=14个, 故选择:B . 【点睛】熟悉某事件发生的概率与频率间的关系:“在大次数的实验中,当某事件发生的频率逐渐稳定下来,在某个常数周围作小幅波动时,我们就说这个常数是该事件发生的概率”是解答本题.7.(2020·广东茂名市·九年级期中)做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50B.0.21C.0.42D.0.58【答案】C【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【解析】解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∵抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42,故选:C.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.8.(2020·四川双流中学九年级月考)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同.小刚每次换出一个球后放回,通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是()A.8个B.15个C.12个D.16个【答案】C【分析】根据利用频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率=1-40%=60%,然后用60%乘以总球数即可得到白色球的个数.【解析】解:∵摸到黄球概率为40%, ∵摸到白球概率为140%60%-=, ∵白球个数为2060%12⨯=(个). 故选C 【点睛】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.9.(2020·山东省平邑县第一中学九年级月考)在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球400次,其中100次摸到黑球,请估计盒子中白球的个数是( ) A .10个 B .15个C .20个D .25个【答案】B 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解. 【解析】解:∵共试验400次,其中有100次摸到黑球,∵白球所占的比例为1﹣100400=0.75, 设盒子中共有白球x 个,则5xx +=0.75, 解得:x =15.故选:B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.10.(2020·渝中区·重庆巴蜀中学八年级开学考试)在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6B.8C.10D.12【答案】A【解析】试题解析:∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,∵根据题意任意摸出1个,摸到黄色乒乓球的概率是40%,设袋中白色乒乓球的个数为a个,则4 40%.4a=+解得:a=6,∵白色乒乓球的个数为:6个,故选A.11.(2020·山东青岛市·七年级期末)甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率【答案】C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(2020·广东佛山市·九年级月考)某服装厂对一批服装进行质量抽检结果如下:则这批服装中,随机抽取一件是优等品的概率约为()A.0.92B.0.89C.0.91D.0.90【答案】D【分析】用优等品数除以抽取的服装数得到优等品的频率,即可估计随机抽取一件是优等品的概率.【解析】解:∵46+89+182+450+900=1667,50+100+200+500+1000=1850,1667÷1850≈0.90,∵从这批服装中随机抽取一件是优等品的概率约为0.90,故选:D.二.填空题(共6小题)13.(2020·湖北武汉市·九年级月考)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率(结果保留两位小数)约是_____.【答案】0.82【分析】根据利用频率估计概率的方法及表格可直接进行求解.【解析】解:由题意得:根据频率的稳定性,这名运动员射击一次时“射中九环以上”的概率约为0.82;故答案为0.82.【点睛】本题主要考查频率估算概率,熟练掌握频率估算概率的方法是解题的关键.14.(2020·全国九年级课时练习)某种绿豆在相同条件下发芽的实验结果如下表,根据表中数据估计这种绿豆发芽的概率约是____(保留三位小数).【答案】0.931【分析】根据大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即可解答.【解析】根据表格可知实验批次为3000粒绿豆的实验粒数最多,发芽频率为0.931,所以根据频率和概率的关系得:这种绿豆发芽的概率为0.931.故答案为:0.931.【点睛】本题考查用频率估计概率,了解大量反复试验下频率的稳定值即为概率是解答本题的关键.15.(2020·甘州中学九年级期末)在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.【答案】20.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【解析】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∵口袋中得到红色球的概率为0.25,∵514x,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.16.(2020·杭州市采荷中学九年级期中)对一批衬衣进行抽检,统计合格衬衣的件数,得到如下的频数表,根据表中数据,那么出售10件衬衣,合格大约有____件.【答案】9【分析】根据题目中的数据可以估计合格衬衣的频率,从而可以解答本题.【解析】解:计算频率填入表格如下:∵衬衣合格的频率趋近于0.9,∵衬衣合格的概率为:0.9,所以出售10件衬衣,合格品大约有:10×0.9=9(件)故答案为:9.【点睛】本题考察频数(率)分布表,解答本题的关键是明确题意,求出合格衬衣的频率.17.(2020·昆明市呈贡区第一中学九年级期中)数学课上老师准备了一个不透明的袋子,袋子里装着形状、大小相同的红球和白球,同学们以小组为单位进行摸球实验:将球搅匀后从中任意抽出1个球,记下颜色并放回,搅匀,不断重复这个过程.经过试验同学们发现:摸到红球的频率在一个稳定的常数附近摆动,估计摸到红球的概率是________(精确到0.01).【答案】0.33【分析】通过表格中数据,随着次数的增多,摸到红球的频率越稳定在0.33左右,估计得出答案.【解析】解:观察表格发现,随着摸球次数的增多,摸到红球的频率逐渐稳定在0.33附近,由此估出摸到红球的概率为0.33.故答案为:0.33.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.18.(2020·浙江台州市·九年级期末)某商场设立了一个可以自由转动的转盘,并规定:顾客购物30元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:假如你去转动该转盘一次.你获得签字笔的概率约是______.(精确到0.1)【答案】0.6【分析】频率=频数 总数,根据概率公式计算即可.【解析】落在“签字笔”区域的次数=65+122+190+306+601=1284转动转盘的总次数=100+200+300+500+1000=21001284≈,故获得签字笔的概率约是0.6,0.62100故答案为:0.6.三.解析题(共6小题)19.(2020·山东青岛市·胶州六中九年级月考)从一大批水稻种子中抽取若干粒,在同一条件下进行发芽试验,结果如下表:(1)计算各批种子发芽频率;(2)画出发芽频率的折线统计图;(3)这些频率具有什么样的稳定性?(4)根据频率的稳定性,估计水稻种子的发芽概率.(精确到0.01)【答案】(1)见解析;(2)见解析;(3)频率稳定在0.92附近;(4)0.92【分析】(1)根据表格中数据分别求出种子发芽频率即可;(2)根据表格中数据画出发芽频率的折线统计图即可;(3)利用(1)中所求的频率可以看出种子发芽频率的稳定性;(4)利用(1)中所求直接估计得出种子的发芽概率.【解析】解:()1如下表:()2频率的折线统计图如下:()3这些频率稳定在0.92附近;()4根据频率的稳定性,估计水稻种子的发芽概率为0.92.【点睛】此题主要考查了利用频率估计概率,根据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进而求出是解题关键.20.(2020·浙江杭州市·)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频率表如下:(1)计算表中a,b的值并估计任抽一件衬衣是合格品的概率.(2)估计出售2000件衬衣,其中次品大约有几件.【答案】(1)a =0.88,b =0.90,P =0.90 ;(2)其中次品大约有 200件【分析】(1)根据频数÷总数=频率,分别求出a 、b 即可,再根据频率可靠性可知总数越大时频率越稳定,故总数为1000时所得频率即为每一件衬衣的合格率;(2)利用一件衬衣的合格率×总数=频数,即可合格的衬衣数量,再用总量-合格的衬衣数量=次品数量.【解析】解:(1)881000.88a =÷=,90110000.90b =÷=,0.90p =,故答案为:0.88a =,0.90b =,0.90p =.(2)由(1)可知每一件衬衣的合格率为0.90p =,∵次品数量=()200010.90200⨯-=,故答案为:次品大约有200件.【点睛】此题主要考查了利用频率估计概率的应用,解答此题关键是估计出任取1件衬衣是次品的概率.21.(2020·山西晋中市·七年级期末)某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).(1)a的值为,b的值为;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)【答案】(1)0.74、0.705;(2)0.70;(3)108°.【分析】(1)根据频率mn,计算即可;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,可估计概率;(3)在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是360°×0.3.【解析】解:(1)a=111÷150=0.74、b=564÷800=0.705,故答案为0.74、0.705;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,所以获得“10元兑换券”的概率约是0.70,故答案为0.70;(3)在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是360°×0.3=108°.【点睛】本题考核知识点:用频率表示概率. 解题关键点:理解频率的意义.22.(2020·浙江杭州市·杭州外国语学校九年级月考)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?【答案】(1)见解析;(2)0.9【分析】(1)根据表格中所给的样本容量和频数,由频率=频数:样本容量,得出“优等品”的频率,然后填入表中即可;(2)用频率来估计概率,频率一般都在0.9左右摆动,所以估计概率为0.9,这是概率与频率之间的关系,即用频率值来估计概率值.【解析】解:(1)“优等品”的频率分别为45÷50=0.9,92÷100=0.92,455÷500=0.91,890÷1000=0.89,4500÷5000=0.9.填表如下:(2)由于“优等品”的频率都在0.9左右摆动,故该厂生产的羽毛球“优等品”的概率约是0.9.【点睛】本题是一个统计问题,考查样本容量,频率和频数之间的关系,这三者可以做到知二求一,本题是一个基础题,可以作为选择题和填空题出现.23.(2020·江苏淮安市·八年级期末)在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?【答案】(1)0.59,116.(2)0.6. (3)8个.【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率即可求出摸到白球概率.根据口袋中白球的数量和概率即可求出口袋中球的总数,用总数减去白颜色的球数量即可解答.【解析】(1)a=59100=0.59,2000.58116b=⨯=.(2)由表可知,当n很大时,摸到白球的频率将会接近0.6;.(3)120.6128÷-=(个).答:除白球外,还有大约8个其它颜色的小球.【点睛】本题考查如何利用频率估计概率,解题关键是要注意频率和概率之间的关系. 24.(2020·四川巴中市·七年级期末)2020年新冠肺炎疫情期间,我市学生停课不停学,坚持在家自学,并开展了丰富多彩的业余文体活动,小明根据统计,对某校七年级(8)班同学开展业余文体活动的情况绘制了如下两个统计图,请解决下列问题:(1)该班共有学生多少名?(2)若从该班任选一名学生参加学校书法比赛,选出的学生恰好是书法爱好者的概率是多少?(3)扇形统计图中,诗词对应扇形的圆心角度数是多少?(4)计算诗词爱好者的人数并补全条形统计图【答案】(1)50;(2)10%;(3)21.6︒;(4)3,详见解析.【分析】(1)读懂统计图,得出书法爱好者一共5人,占全班人数的10%,从而计算出全班总人数;(2)用书法爱好者的人数除以全班总人数计算即可;(3)用360°依次减去乐器、书法、影视欣赏对应的扇形的圆心角的度数即可;(4)先利用诗词对应的的扇形的圆心角的度数计算出诗词爱好者占全班总人数的百分比,再乘以全班总人数即可.【解析】÷=名,解:(1)510%50答:该班共有学生50名;÷=,(2)55010%答:选出的学生恰好是书法爱好者的概率是10%;︒-︒-⨯︒-÷⨯︒=︒(3)36086.410%360305036021.6答:扇形统计图中,诗词对应扇形的圆心角度数是21.6︒;÷⨯=人,(4)诗词爱好者的人数为:21.6360503补全图形如下:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
与《利用概率解决实际问题》有关的中考题集锦第1题. (2006 梅州课改)小明与小华在玩一个掷飞镖游戏,如图甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷).(1)不考虑其他因素,你认为这个游戏公平吗?说明理由.(2)请你在图乙中,设计一个不同于图甲的方案,使游戏双方公平.答案:解:(1)这个游戏公平.根据图甲的对称性,阴影部分的面积等于圆面积的一半, ∴这个游戏公平.(2)把图乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略)第2题. (2006 成都课改)含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张. 答案:9第3题. (2006 济南课改)小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢,请你判断这个游戏对双方是否公平,并说明理由.答案:游戏对双方是公平的.通过列表或树状图等方法,求得()12P =小明赢. ()12P =小明赢. 因为()()P P =小明赢小明赢,所以游戏对双方是公平的.图甲 图乙第4题. (2006 青岛课改)小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.答案:从表中可以得到:P (小明获胜)59=,P (小亮获胜)49=. ∴小明的得分为55199⨯=,小亮的得分为44199⨯=.5499>∵,∴游戏不公平. 修改规则不惟一,如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分.第5题. (2006 湖北十堰课改)小莉和小慧用如图所示的两个转盘做游戏,转动两个转盘各一次,若两次数字和为奇数,则小莉胜;若两次数字和为偶数,则小慧胜.这个游戏对双方公平吗?试用列表法或树状图加以分析.红黄蓝红 (红,红) (红,黄) (红,蓝) 黄 (黄,红) (黄,黄) (黄,蓝) 蓝(蓝,红)(蓝,黄)(蓝,蓝)红黄蓝第二次第一次答案:解:这个游戏对双方公平.理由如下:12 3 4 2 213+= 224+= 235+= 246+= 3 314+= 325+= 336+= 347+= 4 415+= 426+= 437+= 448+=从表中可以看出,总共有12种结果,每种结果出现的可能性相同,而两数和为奇数的结果有6种. 61122P ∴==小莉.因此,这个游戏对双方公平.第6题. (2006 佛山课改)小明、小华用牌面数字分别为1,2,3,4的4张扑克牌玩游戏.他俩将扑克牌洗匀后,背面朝上放置在桌面.若一次从中抽出两张牌的牌面数字之和为奇数,则小明获胜;反之,小华获胜. 这个游戏公平吗?请说明理由.答案:解:这个游戏不公平.理由:因为一次抽出两张牌的组合共有(12)(13)(14)(23)(24)(34),,,,,,,,,,,,六种情况,其中有4组中的两数和是奇数. 所以421()()633P P ===小明获胜小华获胜,. 因此,这个游戏不公平.第7题. (2006 广州课改)如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转). (1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少?(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.答案:解:(1)按照小夏设计的游戏规则,小夏获胜的可能性是23,而小秋获胜的可能性是13. (2)公平的游戏规则不唯一,只要正确,均得分.解法1:如果两转盘各转动1次,两个指针所指区域内的数之和为5或6,则小夏获胜;否则小秋获胜. 理由如下:甲转盘指针所指区域的数 乙转盘指针所指区域的数 两数和从树状图可以看出,两数和为5或6的机会与两数和为7或8的机会是相等的,所以,两人获胜的机会均为12,即设计的游戏规则是公平的. 解法2:如果两转盘各转动1次,两个指针所指区域内的数之和为奇数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 解法3:如果两转盘各转动1次,两个指针所指区域内的数之积为4的倍数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 解法4:如果两转盘各转动1次,两个指针所指区域内的数之差为奇数,则小夏获胜;否则小秋获胜,此时,两人获胜的可能性均为12.(理由略) 等等.第8题. (2006 镇江课改)小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.4 5 4 5 4 5 5 6 6 7 7 8 123答案:解:方法一:用表格来说明 或方法二:用树状图来说明红色 蓝色 红1 (红1,红) (红1,蓝)红2 (红2,红) (红2,蓝)蓝色 (蓝,红) (蓝,蓝)所以,配成紫色的概率为P (配成紫色)3162==. 所以游戏者获胜的概率为12.第9题. (2006 白银课改)某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A B C ,,三种不同的型号,乙品牌计算器有D E ,两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)写出所有的选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号计算器被选中的概率是多少?(3)现知新华中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为A 型号计算器,求购买的A 型号计算器有多少个?答案:解:(1)树状图表示如下:转盘 转 盘 12 开始 红1 红2 蓝色 蓝(红1,蓝) 红(红1,红) 蓝(红2,蓝)红(红2,红) 蓝(蓝,蓝) 红(蓝,红)⨯⨯公司 计算器单价 (单位:元) A 型:60 B 型:40 C 型:25 D 型:50 E 型:20A BC甲品牌列表表示如下:有6种可能结果:()()()()()()AD AE B D B E C D C E ,,,,,,,,,,,. 说明:用其它方式表达选购方案且正确者,只给1分.(2)因为选中A 型号计算器有2种方案,即()()A D A E ,,,,所以A 型号计算器被选中的概率是2163=. (3)由(2)可知,当选用方案()A D ,时,设购买A 型号,D 型号计算器分别为x y ,个, 根据题意,得4060501000.x y x y +=⎧⎨+=⎩,解得100140.x y =-⎧⎨=⎩,经检验不符合题意,舍去;当选用方案()A E ,时,设购买A 型号、E 型号计算器分别为x y ,个, 根据题意,得4060201000.x y x y +=⎧⎨+=⎩,解得535.x y =⎧⎨=⎩,所以新华中学购买了5个A 型号计算器.第10题. (2006 衡阳课改)A B ,两个口袋中均有3个分别标有数字1,2,3的相同的球,甲、乙两人进行玩球游戏.游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?答案:解:不公平.下面列举所有可能出现的结果:123甲 A BC D()D A , ()D B , ()D C , E()E A , ()E B , ()E C , 乙 A和 B1 2 3 42 3 4 53 4 5 6 由此可知,和为奇数有4种,和为偶数有5种.∴甲赢的概率为49,乙赢的概率为59.∴不公平.第11题. (2006济宁课改)甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由..答案:不公平.因为出现偶数的概率为59,而出现奇数的概率为49第12题. (2006南京课改)某校有A B,两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.答案:解:所有可能出现的结果如下:甲乙丙结果AAA(A,A,A)AAB(A,A,B)ABA(A,B,A)ABB(A,B,B)BAA(B,A,A)BAB(B,B,B)BBA(B,B,A)BBB(B,B,B)(1)甲、乙、丙三名学生在同一个餐厅用餐的概率是14;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率是78.第13题. (2006安徽课改)田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,蠃得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强……(1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)【解】答案:解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,总有一种对抗情况田忌能赢,所以田忌获胜的概率16P=.与《利用概率解决实际问题》有关的中考题集锦(二)第14题. (2006大连课改)小明为了检验两枚六个面分别刻有点数1,2,3,4,5,6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.答案:解:两枚骰子质量不都合格.同时抛两枚骰子两个朝上面点数和有以下情况:234567345678456789567891067891011789101112,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.∴出现两个朝上面点数和为7的概率为610.167 366=≈.试验20000次出现两个朝上面点数和为7的频率为200.001 20000=.因为大数次试验的频率接近概率,而0.001和0.167相差很大.∴两枚骰子质量不都合格.第15题. (2006菏泽课改)将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.答案:答:这种游戏规则对甲、乙双方不公平.理由如下:不妨设甲先摸,则甲、乙所摸得球的情况如下:总共有12种情况,每种情况发生的可能性相同,其中积为奇数的情况有2种,积为偶数的情况有10种,所以甲获胜的概率为21126=,乙获胜的概率为105126=. 因1566<,所以这样的游戏规则对甲、乙双方不公平.第16题. (2006 宜昌课改)某商场设计了两种促销方案:第一种是顾客在商场消费每满200元就可以从一个装有100个完全相同的球(球上分别标有数字1,2,…,100)的箱子中随机摸出一个球(摸后放回).若球上的数字是88,则返购物券500元;若球上的数字是11或77,则返购物券300元;若球上的数字能被5整除,则返购物券5元;若是其它数字,则不返购物券.第二种是顾客在商场消费每满200元直接获得购物券15元.估计促销期间将有5000人次参加活动.请你通过计算说明商家选择哪种促销方案合算些?答案:解:获得500元购物券的概率是0.01,, 获得300元购物券的概率是0.02, 获得5元购物券的概率是0.2摸球一次获得购物券的平均金额为:()0.015000.023000.2512⨯+⨯+⨯=(元) 如果有5000人次参加摸球,商场付出的购物券的金额是:()50000.015000.023000.2560000⨯⨯+⨯+⨯=元若直接获得购物券,需付金额:50001575000⨯=元 商场选择摸球的促销方式合算.开始2 3 4 1 2 3 4 1 3 4 1 2 4 1 2 3 甲: 乙: (2)(3)(4) (2)(6)(8) (3)(6)(12) (4)(8)(12) 积:第17题. (2006 株洲课改)如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张. (1)用列举法列举所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.答案:(1)所有可能出现的结果可用下表表示: 1231 (11), (12),(13),2 (21), (22), (23), 3(31), (32), (33),(2)由上表可知牌面的数字之和不小于5的概率为:3193=.第18题. (2006 山西吕梁课改)有一块表面是咖啡色、内部是白色、形状是正方体的烤面包.小明用刀在它的上表面、前面面和右侧表面沿虚线各切两刀(如图1),将它切成若干块小正方体形面包(如图2).(1)小明从若干块小面包中任取一块,求该块面包有且只有两个面是咖啡色的概率; (2)小明和弟弟边吃边玩.游戏规则是:从中任取一块小面包,若它有奇数个面为咖啡色时,小明赢;否则,弟弟赢.你认为这样的游戏规则公平吗?为什么?如果不公平,请你修改游戏规则,使之公平.答案:解:(1)按上述方法可将面包切成27块小面包,有且只有两个面是咖啡色的小面包有12块,124279=.所以,所求概率是49.红桃方块(图1) (图2)(2)27块小面包中有8块是有且只有3个面是咖啡色,6块是有且只有1个面是咖啡色. 从中任取一块小面包,有且只有奇数个面为咖啡色的共有14块,剩余的面包块共有13块. 小明赢的概率是1427,弟弟赢的概率是1327. 所以,按照上述规则弟弟赢的概率小于小明赢的概率,游戏不公平.游戏规则修改举例:任取一块小面包,恰有奇数个面为咖啡色时,哥哥得13分;恰有偶数个面为咖啡色时,弟弟得14分.积分多者获胜.第19题. (2006 鄂尔多斯课改)如图,有两个可以自由转动的均匀转盘A B ,.转盘A 被平均分成3等份,分别标上123,,三个数字;转盘B 被平均分成4等份,分别标上3456,,,四个数字.有人为甲、乙两人设计了一个游戏规则;自由转动转盘A 与B ,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则为乙获胜. 你认为这样的游戏规则是否公平?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?答案:解:不公平. P ∵(和为6)31124==,甲、乙获胜的概率不相等 ∴不公平.(无列表或树状图不扣分) 规则改为:和是6或7,甲胜;否则乙胜.(和为奇数,甲胜;和为偶数,乙胜;或和小于7,甲胜;和大于等于7,乙胜.答案不唯一.) 列 表3 4 5 6 1 4 5 6 7 2 5 6 7 8 36789第20题. (2006 辽宁十一市课改)在一个不透明的口袋中,装有若干个除颜色不同其余213 A4 35 6B A都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个D.3个答案:A第21题. (2006 漳州课改)根据天气预报,明天降水概率为20%,后天降水概率为80%,假如你准备明天或后天去放风筝,你选择 天为佳. 答案:明第22题. (2006 山西临汾课改)某市举办“2008拥抱北京”迎奥运长跑活动,参加长跑活动的市民约有10000人,为了解参加长跑活动人员的年龄分布情况,从中随机抽取了一部分人的年龄作为样本,进行数据处理后,得到如图所示不完整的频数分布直方图.(1)若所抽取年龄在60 岁以上的人数占样本总人数的15%,请求出样本容量,并补全频数分布直方图;(2)请估计参加这次长跑活动的市民中,20岁以下的约有多少人? (3)根据统计图提供的信息,请再写出两条正确的结论.答案:解:(1)1515%100÷=, ∴样本容量是100. 补图正确. (2)1000028%2800⨯=(人), ∴参加这次长跑活动的市民中20岁以下 的约有2800人. (3)答案不唯一,例如所得的信息可以是: ①参加这次长跑活动的市民中20岁以下的人最多;②参加这次长跑活动的市民中41—50岁之间的人最少;③参加这次长跑活动的市民中20—30岁之间的人大约是15%;人数 年龄 30 252015 10 50 20岁以下 20| 30岁 31| 40岁 41| 50岁 51| 60岁 60岁以上 2815 12 10 15 人数年龄30 252015 10 5 0 20岁以下 20| 30岁 31| 40岁 41| 50岁 51|60岁60岁以上28 15 12 101520第23题. (2006山西临汾课改)小明和小乐做摸球游戏.一只不透明的口袋里只放有3个红球和5个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球小明得3分,若是绿球小乐得2分.游戏结束时得分多者获胜.(1)你认为这个游戏对双方公平吗?(2)若你认为公平,请说明理由;若你认为不公平,也请说明理由,并修改规则,使该游戏对双方公平.答案:解:(1)不公平.(2)P(摸出红球)38=,P(摸出绿球)58=.小明平均每次得分39388=⨯=(分),小乐平均每次得分55284=⨯=(分).9584<,∴游戏对双方不公平.游戏规则可修改为:①口袋里只放2个红球和3个绿球;②摸出红球小明得5分,摸到绿球小乐得3分;说明:修改游戏规则对双方公平即可得2分.第24题. (2006钦州课改)袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是25和35,则袋中黄球有个.答案:15第25题. (2006南充课改)在三个相同乒乓球上分别写上1,2,3,放入布袋中供甲、乙两人做游戏.规则是:(1)每轮游戏两人各摸一个球,一人摸出记录编号后放回袋中另一人再摸.(2)如果两球的编号之和为奇数,则甲胜;如果两球的编号之和为偶数,则乙胜.你认为这是否是一个公平的游戏?如果不公平,谁获胜的可能性较大?答案:解:编号之和的可能性列表如下:1 2 3 1 2 3 4 23453 4 5 6由表可知,编号之和为奇数的可能性有4种,编号之和为偶数的可能性有5种. 即P (编号之和为奇数)49=,P (编号之和为偶数)59=. 因此,这不是一个公平的游戏.乙获胜的可能性较大. 注:不列表画树状图亦可第26题. (2006 郴州课改)甲、乙两超市同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外,其它全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表). 甲超市 球两红一红一白 两白 礼金券(元) 5 10 5 乙超市如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.答案:去甲超市购物一次摸奖获10元礼金券的概率是P (甲)1111266663=+++= 去乙超市购物一次摸奖获10元礼金券的概率是P (乙)111663=+=所以我选择去甲超市购物.球两红一红一白两白礼金券(元) 10 5 10乙摸甲摸 编号之和。
(2012年1月最新最细)2011全国中考真题解析120考点汇编频率估计概率的方法来求概率一、选择题1.(2011•南充,12,3分)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.考点:用样本估计总体。
分析:首先可以求出样本的不合格率,然后利用样本估计总体的思想即可求出这一万件产品中不合格品约为多少件.解答:解:∵某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为:5÷100=5%,∴估计该厂这一万件产品中不合格品为10000×5%=500件.故答案为:500.点评:此题主要考查了利用样本估计总体的思想,解题时首先求出样本的不合格率,然后利用样本估计总体的思想即可解决问题.二、填空题1.(2011江苏淮安,16,3分)有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为 .考点:利用频率估计概率。
专题:应用题。
分析:因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.解答:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解.2.“Welcomc to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字3.(2011湖北黄石,12,3分)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛.组委会现定:任问一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如表(一)表(一)根据表(一)提供的信息n= 0.3 .考点:频数(率)分布表。
人教版九年级数学上册第二十五章《25.3用频率估计概率》课时练习题(含答案)一、单选题1.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.242.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A.14B.13C.12D.233.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个4.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.如图,电路连接完好,且各元件工作正常.随机闭合开关1S,2S,3S中的两个,能让两个小灯泡同时发光的概率为()A.16B.12C.23D.136.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.17.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是78.数学社团的同学做了估算π的实验.方法如下:第一步:请全校同学随意写出两个实数x、y(x、y可以相等),且它们满足:0<x<1,0<y<1;第二步:统计收集上来的有效数据,设“以x,y,1为三条边长能构成锐角三角形”为事件A;第三步:计算事件A发生的概率,及收集的本校有效数据中事件A出现的频率;第四步:估算出π的值.为了计算事件A的概率,同学们通过查阅资料得到以下两条信息:①如果一次试验中,结果落在区域D中每一个点都是等可能的,用A表示“试验结果落在区域D中一个小区域M中”这个事件,那么事件A发生的概率为P(A)=MD;②若x,y,1三个数据能构成锐角三角形,则需满足x2+y2>1.根据上述材料,社团的同学们画出图,若共搜集上来的m份数据中能和“1”成锐角三角形的数据有n份,则可以估计π的值为()A.42n mm+B.2nmC.4nmD.44m nm-二、填空题9.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.10.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为__cm2.11.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).三、解答题(共0分)13.某种油菜籽在相同条件下的发芽试验的结果如下:试验的粒数n20 80 100 200 400 800 1000 1500 发芽的粒数m14 54 67 132 264 532 670 1000发芽的频率mn0.7 0.675 0.67 0.66 0.66 0.665 a0.667(1)填空:上表中a=_________;(2)根据上表,请估计,当n很大时,发芽的频率将会接近多少?(结果保留两位小数)(3)根据上表,这种油菜籽发芽的概率的估计值是多少?(结果保留两位小数)14.一工厂生产某种型号的节能灯的质量抽检结果如表:抽检个数50 100 200 300 400 500次品个数 1 3 5 6 7 9(1)根据表格中的数据求任抽1件是次品的概率;(2)厂家承诺:顾客买到次品包换.如果卖出这批节能灯800个,那么要准备多少个兑换的节能灯?15.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:a________;b=________;(1)按表格数据,表中的=(2)请估计:当次数s很大时,摸到白球的频率将会接近________(精确到0.1);(3)试估算:这一个不透明的口袋中红球有多少个?16.对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.(1)完成上表.(2)估计任意抽一件衬衣是合格品的概率.(3)估计出售1200件衬衣,其中次品大约有几件.17.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是13.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为14.若能,请写出如何调整白球数量;若不能,请说明理由.18.据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率。
25.3 用频率估计概率1.下面说法合理的是( )A.小明在10 次抛图钉的试验中发现3 次钉尖朝上,由此他说钉尖朝上的概率是310B.抛掷一枚均匀的正方体骰子,“掷得6”1的概率是的意思是每66 次就有1 次掷得6C.某彩票的中奖机会是2%,则买100 张彩票一定会有2 张中奖D.在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48 和0.512.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚均匀的正方体的骰子,出现1 点的概率B.从一个装有2 个白球和1 个红球的袋子中任取一球,这3 个球除颜色外无其他差异,取到红球的概率C.抛一枚均匀硬币,出现正面的概率D.任意写一个整数,它能被2 整除的概率3.在一次质检抽测中,随机抽取某摊位20 袋食盐,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5 ~501.5 g 之间的概率为( )A.15 B.14C.310D.7204.一个口袋中有红球、白球共10 个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100 次球,发现有71 次摸到红球.请你估计口袋中红球的数量为个.5.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30 条鱼做上标记,然后放归鱼塘,经过一段时间, 等有标记的鱼完全混合于鱼群中,再打捞200 条鱼,发现其中带标记的鱼有5 条,则鱼塘中估计有条鱼.6.在“抛掷质地均匀的正六面体”的试验中,已知正六面体的六个面上分别标有数字1,2,3,4,5,6,随着试验次数的增多,出现数字“1”的频率的变化趋势是接近.7.为了解学生的体能情况,随机选取了1 000 名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.(1)估计学生同时喜欢短跑和跳绳的概率.(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.(3)如果某同学喜欢长跑,那么该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?8.在一次大规模的统计中发现英文文献中字母E 的使用频率在0.105 附近,而字母J 的使用频率大约在0.001 附近,如果这次统计是可信的,那么下列说法可信吗?试说明理由.(1)在英文文献中字母E 出现的频率在10.5%左右,字母J 出现的频率在0.1%左右;(2)如果再去统计一篇约含200 个字母的英文文章时,那么字母E 出现的频率一定非常接近10.5%.9.一个袋子中装有12 个完全相同的小球,每个球上分别写有数字1~12.现在用摸球试验来模拟6 人中有2 人生肖相同的概率,在此过程中,下面有几种不同的观点,其中正确的是( )A.摸出的球一定不能放回B.摸出的球必须要放回C.由于袋子中的球多于6 个,因此摸出的球是否放回无所谓D.不能用摸球试验来模拟此事件10.一个不透明的袋中装有除颜色外均相同的8 个黑球、4 个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中有红球个.11.儿童节期间,某公园游戏场举行一场活动.有一种游戏规则是:在一个装有8 个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸1 个球,摸到1 个红球就得到一个玩具.已知参加这种游戏的儿童有40000 人,公园游戏场发放玩具8000 个.(1)求参加此次活动得到玩具的频率. (2)请你估计袋中白球的数量接近多少?★12.小颖和小红两位同学在学习“概率”时,做抛掷骰子(质地均匀的正方体)试验,她们共做了60 次试验,试验的结果如下:朝上的点数123456出现的次数796820 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5 点朝上的概率最大”;小红说:“如果抛掷600 次,那么出现6 点朝上的次数正好是100 次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各抛掷一枚骰子,用列表的方法求出两枚骰子朝上的点数之和为3 的倍数的概率.★13. 小红和小明在操场做游戏,他们先在地上画了半径分别为2 m 和3 m 的同心圆(如图),蒙上眼在一定距离外向大圆内掷小石子,掷中阴影部分小红胜,否则小明胜,未掷入大圆内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)20参考答案夯基达标1.D2.B3.B 在随机抽取的 20 袋食盐中,质量在 497.5 ~501.5 g 之间的有 5 袋,由此可以估计任买一袋该摊位的食盐,质量在 497.5 ~501.5 g 之间的概率为 5= 1.44.75.1 2006.1 67.解 (1)同时喜欢短跑和跳绳的概率为 3001 000= 3 .10(2)同时喜欢三个项目的概率为200+150 = 7.1 000 20(3) 同时喜欢短跑的概率为150= 3,同时喜欢跳绳的概率为200+150+200= 11,同时喜欢跳远的概率为200 1 000= 1. 51 000201 0002011 > 1 > 3 , 20520∴该同学同时喜欢跳绳的可能性大.8.分析 根据试验频率近似地等于概率的前提条件进行判断.解 (1)正确.理由:本次大规模的统计是可信的,故试验频率近似地等于概率.(2)不正确.理由:含 200 个字母的英文文章中的字母 E 的使用频率与英文文献中字母 E 的使用频率不是等价的,只能用试验的方法去求得. 培优促能 9.B10.8 设袋中有红球 x 个,则袋中三种颜色的球共计(x+8+4)个, 根据题意可得� =0.4,解这个方程得 x=8,�+8+4经检验,x=8 是方程的解,且符合题意.11. 解 (1)参加此项游戏得到玩具的频率�= 8 000 ,即� = 1.�40 000�5∵(2)设袋中共有x 个球,则摸到红球的概率P(红球)=8.从而8 = 1,解得x=40,�� 5故白球接近40-8=32(个).12.解(1)“3点朝上”出现的频率是6 = 1 ;“5点朝上”出现的频率是20 = 1.60 10 60 3(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才稳定在事件发生的概率附近.小红的说法也是错误的,因为事件发生具有随机性,故“6 点朝上”的次数不一定是100 次.(3)列表如下:P(点数之和为3 的倍数)=12 = 1.36 3创新应用13.解(1)不公平.因为P =9π-4π = 5,阴影9π9即小红胜的概率为5,小明胜的概率为4,9 9故游戏对双方不公平.(2)能利用频率估计概率的试验方法估算非规则图形的面积.设计方案:①设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S),如图;②往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不做记录);③当掷点次数充分大(如 1 万次),记录并统计结果,设掷入正方形内n 次,其中m 次掷入非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即掷入非规则图形内的频率为�≈P(掷入非规则图形�内)=�1,�≈�1 ���故��⇒S1≈�.。
人教版九年级数学上册用频率估计概率专题练习1.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .B .C .D .36118161212.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A .8000条B .4000条C .2000条D .1000条3.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.4.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.5.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.6.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.7.对某厂生产的直径为4cm 的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n 5010050010005000优等品数m 45924558904500优等品频率nm (2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.9.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.10.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?11.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50456048103042381510标记数2132011201总条数53362734432618222547标记数2121211212(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.12.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.13.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷子次数50次150次300次石子落在⊙O内144393 (含⊙O上)的次数m石子落在图形内的次数n1985186你能否求出封闭图形ABC的面积?试试看.14.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?15.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.16.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗?17.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?18.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?19.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.20.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.参考答案1.C . 2.B . 3. 9. 4.⋅154;415.略.,416.⋅217.(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9.8.可估计三色球总数为个,则黄球约为40个,红球约为100-40-25=35个.100%2525=9.可能性是可取3个白球和两个红球,用红球代表过了保质期的饮料,从这5个球中;101任取两个,这两个均为红球的概率即为所求.10.(1)(支),估计箱子里有100支不合格产品;10010052000=⨯(2)0.5×(2000-100)-1×100=850(元),这箱笔芯能赚钱,赚了850元.11.(1)先求有标记数与总条数的比得池塘鱼数条,估计可能不太,67928242567928100=÷=准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.12.估计又,127.015019==≈N n P .149.35.0127.01.022π,π2=⨯⨯=≈∴=Pa l a l P 13.随实验次数的增加,可以看出石子落在⊙O 内(含⊙O 上)的频率趋近0.5,有理由相信⊙O 面积会占封闭图形ABC 面积的一半,所以求出封闭图形ABC 的面积为2π.14.如图,当所抛圆碟的圆心在图中边框内(宽为5cm )部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为⋅16715.用计算器设定1~365(一年按365天计)共365个随机数,每组取10个随机数,有两个数相同的记为1,否则记为0,做10组实验,求出现两个数相同的频率,用此数据来估计概率.16.由于间谍侦查到的班是随机的,设敌国有x 个班严重缺员,那么解得x =,2202220x =200,可见敌国有200个班严重缺员,仅有的20个班基本满员,又加上士气不振,可以说“敌国已基本上无战斗力了”.17.从袋中随机摸取一球,记下颜色放回摇匀,摸20次为一次实验,若摸出n 个橙球,则摸到橙球的频率为重复多次实验,用实验频率估计理论概率;用求出袋中;20n 2030n÷球的总数,再用总数减去30个橙球数,就得出放进去的白球数.18.首先统计出联通用户数量m ,然后随机调查1000名手机用户,如果其中有n 名中国联通用户,则可估计对手的市场占有率为对手用户数量为名.,10001n-m nm -100019.方案一:从口袋中摸出10粒棋子做上标记,然后放回口袋.拌匀后从中摸出20粒棋子,求出标记的棋子与20的比值,不断重复上述过程30次,有标记的棋子与20的比值的平均数为则估计袋中棋子有10m 粒.,1m方案二:另拿10粒黑色棋子放到袋中,拌匀后,重复方案一中的过程.黑棋子与20的比值平均数为估计袋中原有白棋子(10n -10)粒.,1n20.能.设男教师人数为x ,则解得x =75,估计该校约有75位男教师.,200805050=+x。
九年级数学上册《用频率估计概率》练习题(附答案解析)学校:___________姓名:___________班级:____________一、单选题1.下列说法正确的是()A.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖B.某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616 C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等2.传说中的小李飞刀,飞刀绝技高超,飞刀靶心的命中率为96%,在一次飞刀演练中,前96次均命中靶心,那么他的第97次飞刀命中靶心的概率为()A.96%B.100%C.4%D.03.木箱里装有仅颜色不同的9张红色和若干张蓝色卡片,随机从木箱里摸出一张卡片后记下颜色后再放回,经过多次的重复实验,发现摸到红色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A.6张B.8张C.10张D.4张4.一个不透明的箱子里装有m个球,其中红球有5个,这些球除颜色外都相同.每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回.大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出m 的值为()A.25B.20C.15D.10P A的值不可能是()5.某随机事件A发生的概率()A.0.0001B.0.5C.0.99D.16.关于频率和概率的关系,下列说法正确的是()A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率7.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16B.12C.8D.48.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2B.0.5C.0.6D.0.89.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.1610.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.12二、填空题11.一个不透明的口袋中装有5个红球和m个黄球,这些球除颜色外都相同,某同学进行了如下试验:从袋中随机摸出1个球记下它的颜色后,放回摇匀,为一次摸球试验.根据记录在下表中的摸球试验数据,可以估计出m的值为_________.12.在一个不透明的口袋中装有红球和白球共8个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有75次摸到红球,则口袋中红球的个数约为___________.13.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间不超过15min的频率为______.14.某水果店购进1000kg水果,进价为每千克5元,售价为每千克9元,很快所有水果都销售完.(1)这批水果全部出售后的利润是____元.(2)老板看到销售情况很好,第二次又以同样的价格购进了该水果1000kg,销售过程中有3%的水果因被损坏而不能出售.按每千克9元售出第二次进货量的一半后,为了尽快售完,水果店准备将余下的水果打折出售,两次获得的总利润为5615元.在余下的水果销售中,打了______折.15.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则盒子中大约有白球_______个.三、解答题16.某水果公司新进一批柑橘,销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录在下表中.(1)柑橘损坏的概率约为______(精确到0.1);(2)当抽取柑橘的总质量n=2000kg时,损坏柑橘质量m最有可能是______.A.99.32kg B.203.45kg C.486.76kg D.894.82kg(3)若水果公司新进柑橘的总质量为10000kg,成本价是1.8元/kg,公司希望这些柑橘能够获得利润5400元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表调查结果扇形统计图请根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a b +=________,m =________;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.在一个暗箱里放有a 个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a 的值;(2)从中任意摸出一个球,下列事件:①该球是红球;①该球是白球;①该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).19.计算:(1) (2)按要求填空:小王计算22142x x x --+的过程如下:解:22142x x x --+ ()()()()()()21222222222x x x x x x x x x x =--------+-+-=---+-+-第一步第二步()()()()222222222x x x x x x x x x -------------+-------------+------------------+=第三步=第四步=第五步 小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .参考答案与解析:1.B【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,根据选项一一判断即可.【详解】某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,A 错;某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是3080.616500=,B 正确;当试验次数很大时,频率稳定在概率附近,C 错;试验得到的频率与概率有可能相等,D 错.故选:B【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即为概率.2.A【分析】每次射出的飞刀命中都是相互独立的,每次命中靶心的概率都是96%.【详解】解:第97次飞刀命中靶心的概率与前96次没有关系,所以第97次命中靶心的概率还是96%. 故选:A .【点睛】题目考查随机事件的概率,理解概率的含义及意义是解题关键.3.A【分析】根据概率的求法,找准两点:一是全部情况的总数,二是符合条件的情况数目,求解即可;【详解】解:设木箱中蓝色卡片x 个,根据题意可得,99x +=0.6, 解得:x =6,经检验,x =6是原方程的解,则估计木箱中蓝色卡片有6张;故答案为:A .【点睛】此题考查了用频率估计概率,解题的关键是准确计算.4.B【分析】用红球的数量除以红球的频率即可.【详解】解:50.2520÷=(个),所以可以估算出m 的值为20,故选:B .【点睛】本题考查利用频率估计概率,解题的关键是掌握在大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.D【分析】概率取值范围:01p ,随机事件的取值范围是01p <<.【详解】解:概率取值范围:01p .而必然发生的事件的概率P (A )1=,不可能发生事件的概率P (A )0=,随机事件的取值范围是01p <<.观察选项,只有选项D 符合题意.故选:D .【点睛】本题主要考查了概率的意义和概率公式,解题的关键是:事件发生的可能性越大,概率越接近于1,事件发生的可能性越小,概率越接近于0.6.C【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【详解】解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.【点睛】此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.7.D【分析】根据黄球的概率公式列出关于m的方程,求出m的值即可解答.【详解】解:由题意知:1 83mm=+,解得m=4.故选D.【点睛】本题主要考查了概率公式的应用.解决本题的关键是根据概率公式列出关于m的方程,再利用方程思想求解.8.A【分析】设袋中绿球有x个,根据经大量实验,发现摸到绿球的频率稳定在0.2,估计摸到绿球的频率为0.2,从而确定答案.【详解】】解:大量重复试验中,事件发生的频率可以估计概率,①经大量试验,发现摸到绿球的频率稳定在0.2,①摸到绿球的概率约为0.2,故选:A.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9.D【分析】根据概率的意义进行解答即可.【详解】解:掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时,不会受前3次的影响,掷第4次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第4次时6点朝上的概率是16, 故选:D .【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.10.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】设红球约有x 个, 根据题意可得:0.420x , 解得:x =8,故选C .【点睛】本题考查利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.11.20【分析】利用大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:①通过大量重复试验后发现,摸到红球的频率稳定于0.2, ①55m +=0.2, 解得:m =20.经检验m =20是原方程的解,故答案为:20.【点睛】此题主要考查了利用频率估计概率和解分式方程,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据摸出红球的频率得到相应的等量关系.12.6【分析】用球的总个数乘以摸到红球的频率即可.【详解】解:估计这个口袋中红球的数量为8×75100=6(个).故答案为:6.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.0.9.【详解】试题解析:①不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,①通话时间不超过15min的频率为4550=0.9.考点:频数(率)分布表.14.4000四六【分析】(1)根据利润=(售价-进价)×销售量,可以计算出这批水果全部出售后的利润;(2)根据利润=(售价-进价)×销售量,可以列出相应的方程,然后求解即可,注意计算过程中打折数要除以10.【详解】(1)由题意可得,这批水果全部出售后的利润是:(9-5)×1000=4×1000=4000(元),故答案为:4000;(2)设在余下的水果销售中,打了x折,由题意可得:(9-5)×(1000×12)+(9×10x-5)×[1000×(1-12-3%)]+4000=5615,解得x=4.6,即在余下的水果销售中,打了四六折,故答案为:四六.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.15.12【分析】根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.【详解】解:①共摸了40次,其中10次摸到黑球,①有30次摸到白球,①摸到黑球与摸到白球的次数之比为1:3,①口袋中黑球和白球个数之比为1:3,4÷13=12(个). 故答案为:12.【点睛】本题考查的是样本估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.16.(1)0.1(2)B(3)2.6元【分析】(1)根据随着总质量的增加,频率的稳定值可得答案;(2)总质量乘以柑橘损坏的概率即可得出答案;(3)设每千克定价为x 元,根据“销售额-总成本=利润”列方程求解即可.(1)根据表格信息,柑橘损坏的概率约为0.1,故答案为:0.1;(2)当抽取柑橘总质量n =2000kg 时,损坏柑橘质量m 约为2000×0.1=200(kg ),故选:B .(3)根据柑橘损坏的概率约为0.1,可得能够出售的柑橘为:()1000010.19000⨯-=(kg ) 则定价为:10000 1.85400 2.69000⨯+=(元) 答:每千克大约定价2.6元比较合适.【点睛】本题考查了用频率估计概率的知识,用到的知识点为:频率等于所求情况数与总情况数之比.得到售价的等量关系是解决问题的关键.17.(1)50,28,8;(2)144︒;(3)在60120x ≤<范围内的人数为560人.【分析】(1)利用B 组人数与百分率,得出样本的人数;再求出b ,a;再根据所有百分率之和为1,求出m .(2)利用C 组的百分率,求出圆心角度数.(3)用全样的总人数乘以在这个范围内人数的百分率即可.【详解】解:(1)调查人数:16÷32%=50,b: 50⨯16%=8,a=50-4-16-8-2=20, a+b=28; C 组点有率:20÷50=40%,m%=1-32%-40%-16%-4%=8%,m=8;(2)360°⨯40%=144°;(3) 在60120x≤<范围内的人数为:1000⨯2850=560.【点睛】本题主要考查频率,扇形统计图,利用百分率求圆心角以及用样本估计总体,解题的关键是求总出样本总量以及各组别与样本总量的百分率.18.(1)20;(2)①①①.【分析】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【详解】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率=1020=50%;该球是蓝球的概率=620=30%,所以可能性从小到大排序为:①①①.【点睛】本题考查用频率估计概率,强调“同样条件,大量试验”是解题关键.19.(1)(2)因式分解;三和五;12 x-【分析】(1)先化成最简二次根式,然后根据二次根式的四则运算法则求解即可;(2)按照分式的加减运算法则逐步验算即可.(1)解:原式632333222233;(2)解:由题意可知:2212222222222214222222122x x x x xx x x x x x x x x x x x x xx x 第一步第二步=第三步=第四步=第五步故小王的计算过程中第三步和第五步出现了错误;最终正确的计算结果为12x -. 故答案为:因式分解,第三步和第五步,12x - 【点睛】本题考查二次根式的四则运算法则及分式的加减运算法则,属于基础题,熟练掌握运算法则是解题的关键.。
一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A.12B.23C.25D.354.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.345.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A.12B.14C.13D.196.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11767.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”或,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为()A.16B.15C.13D.198.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好9.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1511.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.3012.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a,第二次掷出的点数记为c,则使关于x的一元二次方程260ax x c++=有实数解的概率为()A.49B.1736C.12D.1936二、填空题13.对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.8414.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表:试验种子数n(粒)1550100200500100020003000发芽频数m14459218847695219002850发芽频率mn10.80.90.920.940.9520.9520.950.9515.甲、乙、丙、丁两位同学做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每次都由持球者将球再随机传给其他三人中的某一人,则第二次传球后球回到甲手里的概率是______.16.一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为_____.17.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20x ax b-+=有解的概率是__________。
25.3用频率估算概率(中考真题含解析)(难度等级:⭐⭐⭐)一、选择题(本大题共5小题,共15.0分)1.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A. 6m2B. 7m2C. 8m2D. 9m22.下图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; ③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A. ①B. ②C. ① ②D. ① ③3.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A. 抛一枚硬币,出现正面朝上B. 掷一个正六面体的骰子,出现3点朝上C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球4.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C. 先后两次掷一枚质地均匀的硬币,两次都出现反面D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过95.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为()A. 60枚B. 50枚C. 40枚D. 30枚二、填空题(本大题共10小题,共30.0分)6. 公司以3元/kg 的成本价购进10000kg 柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为______(精确到0.1);从而可大约每千克柑橘的实际售价为______元时(精确到0.1),可获得12000元利润法利润. 柑橘总质量n/kg 损坏柑橘质量m/kg 柑橘损坏的频率mn (精确到0.001)… … … 250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 50050.620.1017. 如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为6,则这个正六边形的边心距OM 的长为______.8. 一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中红球的数量为______个.9. 扬州某毛绒玩具厂对一批毛绒玩具进行质鼠抽检的结果如下:抽取的毛绒玩具数n 20 50 100 200 500 1000 1500 2000 优等品的频数m 19179118446292113791846优等品的频率mn0.950 0.940 0.910 0.920 0.924 0.921 0.919 0.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______.(精确到0.01)10.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为______.11.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是______.12.一个不透明的口袋里放有除颜色外均相同的2个红球、3个白球和5个黑球,一次至少摸_______个,才能使摸出的球各种颜色的都有.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为______.14.某种菜籽在相同条件下的发芽试验结果如下表:每批粒数n251070130310700150020003000发芽粒数m24960116282639133918062715请用频率估计概率的方法估计这批油菜籽在相同条件下的发芽概率是________(精确到0.1).15.“π的估计”有很多方法,下面这个随机模拟试验就是一种,其过程如下:如图,随机撒一把米到画有该图形的白纸上,统计落在圆内的米粒数m与正方形内的米粒数n,并计算频率m n ;在相同条件下,大量重复上述试验,当mn显现出一定稳定性时,就可以估计出π的值为4mn。
北师大版九年级上册第三章概率的进一步认识3.2用频率估计概率同步练习题1.下列说法正确的是<>A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报"明天降水概率10%",是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,则,买这种彩票1 000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次、200次,其中实验相对科学的是<>A.甲组B.乙组C.丙组D.丁组3.某人在做掷硬币试验时,投掷m次,正面朝上有n次<即正面朝上的频率是P=错误!>,则下列说法中正确的是<>A.P一定等于错误!B.P一定不等于错误!C.多投一次,P更接近错误!D.投掷次数逐渐增加,P稳定在错误!附近4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得"凸面朝上"的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现"凸面朝上"的概率约为<>A.22% B.44% C.50% D.56%5.绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是<>A.0.960 B.0.950 C.0.940 D.0.9006.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为________.7.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.8.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计口袋中的黄球有________个.9.小颖和小红两位同学在学习"概率"时,做投掷骰子<质地均匀的正方体>试验,他们共做了60朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10<2>小颖说:"根据试验,一次试验中出现5点朝上的概率最大";小红说:"如果投掷600次,则出现6点朝上的次数正好是100次."小颖和小红的说法正确吗?为什么?10.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是<>A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率11.下列说法中正确的个数是<>①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的"记录结果"这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.412.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒里,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球的个数是________.13.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件<分别记为A,B>,曾老师对他任教的学生做了一个调查,统计结果如下表所示:2012届2013届2014届2015届2016届参与人数106 110 98 104 112B54 57 49 51 56频率0.509 0.518 0.500 0.490 0.500若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.14.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.15.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:<1>请估计:当n很大时,摸到白球的概率约为______;<精确到0.1><2>估算盒子里有白球________个;<3>若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.16.某小组做"用频率估计概率"的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是<>A.在"石头、剪刀、布"的游戏中,小明随机出的是"剪刀"B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是417.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球试验可推算:<1>盒中红球、黄球各占总球数的百分比分别是多少?<2>盒中有红球多少个?答案:1---5 DDDBB6. 157. 208. 159. <1>"3点朝上"出现的频率是错误!=错误!,"5点朝上"出现的频率是错误!=错误!.<2>小颖的说法是错误的.这是因为"5点朝上"的频率最大并不能说明"5点朝上"这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才会稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故"6点朝上"的次数不一定是100次.10. D11 C12. 2813. 100014. 1000015. <1> 0.6<2> 24<3>根据<2>,得错误!=50%,解得x=10,∴可以推测出x的值最有可能是10.16. D17. <1>由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%.<2>由题意可知,50次摸球试验活动中,出现有记号的球4次,∴总球数为8÷错误!=100,∴红球数为100×40%=40.答:盒中有红球40个.。
3.2用频率估计概率一、单选题1.某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有( )A.380粒B.400粒C.420粒D.500粒【答案】D【分析】用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.【解析】解:估计这袋黄豆约有25÷=500(粒),故选:D.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.2.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518【答案】A【分析】根据频率的概念与计算公式逐项判断即可得.【解析】A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为,此项错误;D、若抛掷2000次硬币“正面向上”的频率是,则“正面向下”的频率为,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.3.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学( )A.小明B.小亮C.小颖D.小静【答案】D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.【解析】解:根据模拟实验的定义可知,实验相对科学的是次数最多的小静.故选:.【点睛】考查了利用频率估计概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是()A.0.32B.0.55C.0.68D.0.87【答案】C【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【解析】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5 的概率B.朝上的点数是奇数的概率C.朝上的点数是大于2 的概率D.朝上的点数是3 的倍数的概率【答案】D【分析】随机掷一个均匀正六面体骰子,每一个面朝上的概率为,约为16.67%,根据频率估计概率实验统计的频率,随着实验次数的增加,频率越稳定在35%左右,因此可以判断各选项.【解析】解:从统计图中可得该事件发生的可能性约在35%左右,A的概率为1÷6×100%≈16.67%,B的概率为3÷6×100%=50%,C的概率为4÷6×100%≈66.67%,D的概率为2÷6×100%≈33.33%,即朝上的点数是 3 的倍数的概率与之最接近,故选:D【点睛】本题考查随机事件发生的概率,折线统计图的制作方法,求出每个选项的事件发生概率,再依据折线统计图中反映的频率进行判断.6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有100个,除颜色外其它完全相同,通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在15%、40%,则口袋中白色球的个数很可能是()A.45B.40C.15D.55【答案】A【分析】先由频率之和为1计算出白球的频率,再由数据总数频率频数计算白球的个数.【解析】解:摸到红色球、黑色球的频率稳定在和,摸到白球的频率为,故口袋中白色球的个数可能是个.故选A.【点睛】本题考查了利用频率估计概率的知识,具体数目应等于总数乘以部分所占总体的比值.7.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是( )A.5B.10C.15D.20【答案】A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【解析】设白球有x个,根据题意得:,解得:x=5,即白球有5个,故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.8.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n1001503005008001000投中次数m5896174302484601投中频率n/m0.5800.6400.5800.6040.6050.601这名球员投篮一次,投中的概率约是( )A.0.58B.0.6C.0.64D.0.55【答案】B【解析】【分析】根据频率估计概率的方法结合表格可得答案.【解析】由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.6附近,这名球员投篮一次,投中的概率约是0.6.故选:B.【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.9.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小玲得到下表中的数据:摸球的次数n10020030050080010001500摸到白球的次数m70128171302481599903摸到白球的频率0.700.640.570.6040.6010.5990.602则下列结论中正确的是( )A.n越大,摸到白球的概率越接近0.7B.当n=2000时,摸到白球的次数m=1200C.当n很大时,摸到白球的频率将会稳定在0.6附近D.这个盒子中约有28个白球【答案】C【解析】【分析】根据表中信息可知多次试验的频率稳定值0.6附近,及概率公式解答即可.【解析】由表中信息可知n越大时摸到白球的概率越接近0.6,故A选项错误,当n=2000时,摸到白球的次数是随机事件,m不一定是1200,故B选项错误,当n很大时,摸到白球的频率将会稳定在0.6附近,故C选项正确,根据稳定的频率等于概率,盒子中约有400.6=24个白球,故D选项错误,故选C.本题考查用频率估算概率及概率公式,了解大量重复实验中事件发生的频率等于事件发生的概率并熟练掌握概率公式是解题关键.10.某农科所在相同条件下做某作物种子发芽率的试验,结果如表所示:种子个数2003005007008009001000发芽种子的个187282735624718814901数发芽种子的频0.9350.9400.8700.8910.8980.9040.901率有下面四个推断:①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率是0.891;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1);③种子个数最多的那次试验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中正确的是()A.①②B.③④C.②③D.②④【答案】D①发芽率=发芽种子数除以总种子数;②频率稳定在0.9可估计概率约是0.9;③不能用特殊值代表概率;④用概率估计总体.【解析】①种子个数是700时,发芽种子的个数是624,所以种子发芽的概率大约是0.891,故错误;②随着种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性,可以估计种子发芽的概率约为0.9(精确到0.1),故正确;③种子个数最多的那次试验得到的发芽种子的频率不一定是种子发芽的概率,故错误;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确.其中正确的是②④,故选D.【点睛】本题考查频率与概率、频率估计概率、概率估计总体等知识,掌握相关知识是解题关键,难度容易.二、填空题11.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.【答案】0.32【分析】由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.【解析】解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.故答案为:0.32.【点睛】本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.事件A发生的概率为,大量重复试验后,事件A平均每n次发生的次数是10,那么n=__.【答案】200【分析】根据概率的意义进行解答即可得出答案.【解析】事件A发生的概率为,大量重复做这种试验,事件A平均每n次发生的次数是10,则n=10200;故答案为:200.【点睛】本题考查了概率的意义,大量反复试验下频率稳定值即概率.13.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生m次,则事件A发生的概率一定等于;③频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).【答案】①③④【分析】利用频率与概率的意义即可得出.【解析】解:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小,正确;②做n次随机试验,事件A发生m次,则事件A发生的频率为不是事件的概率,因为频率是可以改变的,而概率是一定的,故不正确;③频率是不能脱离n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值,正确;④频率是概率的近似值,概率是频率的稳定值,正确;故答案为:①③④【点睛】本题考查概率的意义,考查概率和频率之间的关系,正确理解概率和频率的关系,做一个实验事件发生频率是变化的,而概率是不变的,是一个确定的数值.14.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.【答案】8.8【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【解析】解:∵大量重复试验发芽率逐渐稳定在0.88左右,∴10kg种子中能发芽的种子的质量是:10×0.88=8.8(kg)故答案为:8.8.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________.【答案】10【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解析】由题意可得, =0.2,解得,n=10.故估计n大约有10个.故答案为10.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色与红球不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【答案】20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【解析】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则白球有_____个.【答案】30【分析】根据摸到红球的次数求出摸到红球的概率,再根据概率公式求出白球的个数即可.【解析】∵总共摸了200次,其中有50次摸到红球,∴摸到红球的概率为=,设白球有x个,则(x+10)=10,解得:x=30.∴白球有30个.故答案为30【点睛】本题考查利用频率估计概率及概率公式,概率=所求情况数与总情况数之比,熟练掌握概率公式是解题关键.18.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC(如图).为了知道它的面积,小明在封闭图形内划出了一个半径为1 m的圆,在不远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC的面积是 m2.【答案】3π【分析】根据表格中提供的数据计算出石子落在圆内的概率与落在阴影内的概率,根据计算出的概率得出圆面积与阴影部分面积的关系,计算出圆的面积和阴影部分面积,即可解答.【解析】由题表中的信息得,石子落在圆内的频率为:,石子落在阴影内的频率为,由此可得阴影部分的面积约为圆面积的2倍;∵S圆=π m2,∴S阴影=2π m2,∴封闭图形ABC的面积是:π+2π=3π m2.故答案为3π.【点睛】本题考查的是利用频率计算概率在实际生活中的运用,解题的关键是得到阴影与圆的比;用规则图形来估计不规则图形的比是常用的方法.19.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果5次50次300次800次3200次6000次9999次出现正面的频131135408158029805006数出现正面的频20%62%45%51%49.4%49.7%50.1%率(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______.【答案】4 80% 5006 50.1% 4993 49.9% 50%【分析】根据频数即一组数据中出现数据的个数,频率=频数÷总数作答.【解析】解:(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次时,得到4次反面,反面出现的频率是80%;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到5006次正面,正面出现的频率是50.1%;那么,也就是说机器人抛掷完9999次时,得到4993次反面,反面出现的频率是49.9%.(3)根据图表可估计正面出现的概率为50%.故答案为4,80%;5006,50.1%;4993,49.9%;50%.【点睛】本题考查了频数的概念,频数的计算方法.注意各个小组的频数和等于数据总数,各个小组的频率和是1.20.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:2012届2013届2014届2015届2016届参与人数106 110 98 104 112B54 57 49 51 56频率0.509 0.518 0.500 0.490 0.500若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.【答案】1000【解析】试题解析:频率的平均数为:(0.509+0.518+0.5+0.49+0.5)÷5=0.5034≈0.5 2000×0.5=1000,故右手大拇指在上的学生人数可以估计为1000名.三、解答题21.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率(2)该厂生产乒乓球优等品的概率约为多少?【答案】(1)见解析;(2)0.9【分析】(1)根据表格中所给的样本容量和频数,由频率=频数:样本容量,得出“优等品”的频率,然后填入表中即可;(2)用频率来估计概率,频率一般都在0.9左右摆动,所以估计概率为0.9,这是概率与频率之间的关系,即用频率值来估计概率值.【解析】解:(1)“优等品”的频率分别为45÷50=0.9,92÷100=0.92,455÷500=0.91,890÷1000=0.89,4500÷5000=0.9.填表如下:抽取球数n5010050010005000优等品数m45924558904500优等品频率0.90.920.910.890.9(2)由于“优等品”的频率都在0.9左右摆动,故该厂生产的羽毛球“优等品”的概率约是0.9.【点睛】本题是一个统计问题,考查样本容量,频率和频数之间的关系,这三者可以做到知二求一,本题是一个基础题,可以作为选择题和填空题出现.22.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116290480601摸到白球的频率 0.640.58 0.600.601(1)完成上表;(2)“摸到白球”的概率的估计值是 (精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【答案】(1)0.59,0.58;(2)0.6;(3)黑球8个,白球12个.【分析】(1)将m和n的值分别代入求解即可得出答案;(2)根据表中数据,取平均值即可得出答案;(3)根据总数和摸到白球的概率求出白球的个数,再用总数减去白球的个数,即可得出答案.【解析】(1)填表如下:摸球的次数n1001502005008001000摸到白球的次数m5996116290480601摸到白球的频率0.590.640.580.580.600.601(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.【点睛】本题考查的是数据统计,难度系数较低,解题关键是用样本概率估计总体概率. 23.2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为___,a=___;(2)把频数分布直方图补充完整;(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.【答案】(1)样本容量为100,a=30;(2)见解析(3)【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于165cm的频率,然后利用样本估计总体和利用频率估计概率求解.【解析】解:(1)15÷=100,所以样本容量为100;B组的人数为100-15-35-15-5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于165cm的人数为15+30+35=80,样本中身高低于165cm的频率为,所以估计从该地随机抽取1名学生,估计这名学生身高低于165cm的概率为.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.24.某马拉松赛事共有三项:.“半程马拉松”、.“10公里”、.“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)求小明被分配到“迷你马拉松”项目组的概率;(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数501002005001000参加“迷你马拉松”人数214579200401参加“迷你马拉松”频率0.4200.4500.3950.4000.401①请估算本次赛事参加“迷你马拉松”人数的概率为_____________;(精确到0.1)②若本次参赛选手大约有30000人,请你估计参加“迷你马拉松”的人数是多少.【答案】(1)小明被分配到“迷你马拉松”项目组的概率为;(2)①0.4;②估计参加“迷你马拉松”的人数是12000人.【分析】(1)利用概率公式直接得出答案;(2)①利用表格中数据进而估计出参加“迷你马拉松”人数的概率;②利用①中所求,进而得出参加“迷你马拉松”的人数.【解析】解:(1)∵小明参加了该现赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组,∴小明被分配到“迷你马拉松”项目组的概率为.(2)①0.4.②30000×0.4=12000(人),∴估计参加“迷你马拉松”的人数是12000人.【点睛】此题主要考查了利用频率估计概率,正确理解频率与概率之间的关系是解题关键.25.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n20484040100001200024000摸到白球的次数m106120484979601912012摸到白球的频率0.5180.50690.49790.50160.5005(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率.【答案】(1)0.5;(2)2个;(3).【分析】(1)由表的第三行从左往右看,摸到白球的频率越来越接近0.5,所以答案是0.5;(2)由(1)得到的频率可以估算出概率,再用概率乘以球的总个数可以得到白球的个数;(3)用列表法把所有结果列举出来,再用两个球颜色相同的结果数目除以总的结果数目即可得到答案.【解析】解:(1)由题可得:当n很大时,摸到白球的频率接近0.5.故答案为:0.5;(2)由(1)摸到白球的概率为0.5,所以可估计口袋中白种颜色的球的个数=4×0.5=2(个);(3)列表得:第二次第一次白1白2黑1黑2白1(白1,白1)(白1,白2)(白1,黑1)(白1,黑2)白2(白2,白1)(白2,白2)(白2,黑1)(白2,黑2)黑1(黑1,白1)(黑1,白2)(黑1,黑1)(黑1,黑2)黑2(黑2,白1)(黑2,白2)(黑2,黑1)(黑2,黑2)由列表可得:共有16种等可能结果,其中两个球颜色相同的有8种可能,∴P(颜色相同)==.【点睛】本题考查概率的综合应用,熟练掌握用频率估计概率的方法、用列表法计算概率的方法及概率的应用是解题关键.26.某射击运动员在相同条件下的射击160次,其成绩记录如下:射击次数20406080100120140160射中9环以上的次数1533637997111130射中9环以上的频率0.750.830.800.790.790.790.81(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.【答案】(1)48 0.81;(2)0.8.【分析】(1)根据频数的计算方法计算即可;(2)根据频率估计概率.【解析】解:(1)答案为:48,0.81;(2)解:P(射中9环以上)=0.8从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.。
25.3 用频率估计概率1.一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数P 附近,那么事件A 发生的概率P(A)=__mn___,__0___≤P(A)≤__1___.2.用频率估计概率,其适用范围更广,既可以用于有限的等可能性事件,也可以用于无限的或可能性不相等的事件.只要试验的次数n 足够大,频率mn就可以作为概率P 的__近似值___.知识点1:频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( B ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相等2.某人做投硬币试验时,投掷m 次,正面朝 n 次(即正面朝上的频率P =mn),则下列说法正确的是( D )A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .投掷次数逐渐增加,P 稳定在12附近3.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”和“6”,如果试验的次数增多,出现数字“6”的频率的变化趋势是接近__16___.知识点2:用频率估计概率4.在一所有2000名学生的小学学校中,随机调查了300名学生,其中269人认为月球上有水,那么在这所小学学校里随机问1名学生,认为月球上有水的概率约是( A )A .0.9B .0.10C .0.8D .0.2__0.8___6.在一个不透明布袋中,红色、黑色、白色乒乓球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后,发现其中摸到红色、黑色乒乓球的频率稳定在5%和15%,则口袋中白色乒乓球的个数很可能是__16___.7.一个不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲,乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之(1)如果试验继续进行下去,根据上表数据,“和为8”出现的频率稳定在它的概率附近,估计“和为8”出现的概率是__0.33___;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 的值.解:x 不可以取7,画树状图(略),从图中可知,数字和为9的概率为212=16.当x =6时,摸出的两个小球上数字之和为9的概率是138.为了估计水塘中的鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放回鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数估计为( C)A.3000条B.2200条C.1200条D.600条9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量的摸球试验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此试验,他总结出下列结论:①若进行大量的摸球试验,摸出白球的频率应稳定于30%;②若从布袋中随机摸出一球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B)A.①②③B.①②C.①③D.②③10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的频率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为__1.88___平方米.(精确到0.01平方米)11.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在__0.9___,成活的概率估计值为__0.9___;(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活__4.5___万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:18÷0.9-5=15(万棵)12.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少? (2)盒中有红球多少个?解:(1)红球占40%,黄球占60% (2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40,即盒中红球有40个13.小红和小明在操场做游戏,他们先在地上画了半径分别2 m 和3 m 的同心圆(如图),蒙上眼睛,在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)解:(1)不公平,因为P(阴影)=9π-4π9π=59.即小红获胜的概率为59,则小明获胜的概率为49,所以游戏对双方不公平 (2)能用频率估计概率的方法估算非规则图形的面积.设计方案:①如图,设计一个可测量面积的规则图形,将非规则图形围起来(如正方形面积为S);②往图形中掷点(如蒙上眼睛往图形中随意掷石子,掷在图形外不作记录);③当掷点数充分大(如1万次)记录并统计结果,设掷入正方形内m 次,其中n 次掷入非规则图形内;④设非规则图形面积为S′,概率P(掷入非规则图形内)=S′S ,故n m ≈S′S ,∴S ′≈nSm专题训练(九) 概率的求法及应用一、用列举法求概率 (一) 两步概率1.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是__14___;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.解:画树状图(略),∵共有12种可能的结果,他恰好买到雪碧和奶汁的有2种等可能情况,∴P(他恰好买到雪碧和奶汁)=212=162.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.解:(1)P(恰好选中绳子AA 1)=13(2)画树状图(略),可知分别在两端随机任选两个绳头打结,总共有9种等可能情况,其中能连接成一根长绳的有6种,故P(这三根绳子连接成一根长绳)=69=233.在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取了不同的摸取方法,分别是:小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号; 小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号. (1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果; (2)分别求出小明和小强两次摸球的标号之和等于5的概率.解:(1)略 (2)由树状图可知:小明摸取小球,可能出现的结果有16个,它们出现的可能性相等,其中满足标号之和为5(记为事件A)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(A)=416=14;小强摸取小球,可能出现的结果有12个,它们出现的可能性相等,其中满足标号之和为5(记为事件B)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所以P(B)=412=134.(2014·黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率. 解:(1)画树状图(略),一共有12种选派方案 (2)恰有一男一女参赛,共有8种可能,∴P(一男一女)=812=23(二) 三步概率5.如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.解:画树状图(略),所有等可能的情况有8种,其中A ,C 两个区域所涂颜色不相同的有4种,则P =48=126.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么? 解:(1)略 (2)对于乙,共有6种等可能结果,乘上等车的有3种,所以乙乘上等车的可能性为36=12,而甲乘上等车的可能性为13,故乙乘上等车的可能性大二、概率的应用7.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?解:(1)P(转动一次转盘获得购物券)=1020=12(2)200×120+100×320+50×620=40(元).∵40元>30元,∴选择转转盘对顾客更合算8.(2014·怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一个球,标号是1的概率;(2)从袋中随机摸出一个球然后放回,摇匀后再随机摸出一个球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏公平吗?请说明理由.解:(1)P(标号是1)=13 (2)这个游戏不公平,理由如下:列表(略),P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平三、统计与概率9.某校九年级有10个班,每班50名学生,为调查该校九年级学生一学期课外书籍的阅读情况,准备抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n ,当0≤n <5时为一般读者;当5≤n <10时为良好读者;当n ≥10时为优秀读者.(1)下列四种抽取方法最具有代表性的是__B ___; A .随机抽取一个班的学生 B .随机抽取50名学生 C .随机抽取50名男生 D .随机抽取50名女生(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读本数的数据如下: 8 10 6 9 7 16 8 11 0 13 10 5 8 2 6 9 7 5 7 6 4 12 10 11 6 8 14 15 7 12 13 8 9 7 10 12 11 8 13 10 4 6 8 13 6 5 7 11 12 9根据以上数据回答下列问题: ①求样本中优秀读者的频率;②估计该校九年级优秀读者的人数;③在样本为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4的概率.解:①25 ②200人 ③1610.每年3月12日,是中国的植树节.某街道办事处为进一步改善人居环境,准备在街道两边种植行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘成如图中扇形统计图,其中∠AOB =126°.请根据扇形统计图,完成下列问题:(1)本次调查了多少名居民?其中喜爱“香樟”的居民有多少人?(2)请将条形统计图补全;(在图中完成)(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄葛树”的也有四人,其中三名男生.若街道办事处准备分别从这两组中随机选出一名同学参与到街道植树活动中去,请你用列表或画树状图的方法求出所选两名同学恰好一名女生和一名男生的概率.解:(1)800人;40人(2)补图略(3)错误!。
初中数学用频率估计概率解答题专题训练含答案试卷主标题姓名:__________班级:__________考号:__________一、解答题(共20题)1、一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个。
已知从袋中摸出一个球是红球的概率是。
(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率。
2、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图5所示的统计图,根据统计图提供的信息解决下面问题:⑴柑橘损坏的概率估计值为,柑橘完好的概率估计值为;⑵估计这批柑橘完好的质量为千克;⑶如果公司希望销售这些柑橘能够获得25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?3、小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定。
游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营。
(1)用画树状图的方法表示三次抛掷硬币的所有结果。
(2)小刚任意挑选两球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?4、在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.5、有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?6、下面第一排表示了十张扑克牌中不同情况,任意摸一张,请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.7、一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?8、小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 (1)分别计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?9、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)10、甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?11、网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了??个评价;②请将图1补充完整;③图2中“差评”所占的百分比是??;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.12、在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率 0.65 0.62 0.593 0.604 0.601 0.599 0.601 (1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(3)试估算盒子里黑、白两种颜色的球各有多少只?13、某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)则样本容量容量是,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.发言次数n A 0≤n<3 B 3≤n<6 C 6≤n<9 D 9≤n<12 E 12≤n <15 F 15≤n<1814、甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.15、有五张卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?16、宜城市2016年体育考试即将开始,某中学为了预测本校应届毕业生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为六个小组,每小组含最小值,不含最大值)和扇形统计图。
拓展训练2020年人教版九年级上册数学25.3用频率估计概率
基础闯关全练
1.(2018吉林长春期末)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,下表是试验中的数据,通过数据估计摸到白球的概率是( )
A.0.4 B.0.5 C.0.6 D.0.7
2.(2018广东深圳宝安期末)在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(4)班的数学学习小组做了摸球试验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表巾的统计数据:
(1)请估计:当摸球的次数凡足够大时,摸到红球的频率将会接近_________;(精确到0.1)
(2)假如你去摸一次,则摸到红球的概率的估计值为_________;
(3)试估算盒子里红球的个数为_______,黑球的个数为____.
3.(2018河南新乡长垣期末)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9.下列说法正确的是( )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活,10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
能力提升全练
如图25 -3-1,正方形ABCD内,有一个内切圆.电脑可设计程序:在正方形内可随机产生
一系列点,当点数很多时,电脑自动统计正方形内的点数a,内的点数b(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是( )
图25-3-1
A. B. C. D.
b
a
a
b4
a
b
b
a4
三年模拟全练 一、选择题
1.(2018河北承德兴隆期末.4,★☆☆)为了估计图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是试验总次数的40%,下列说法错误的是( ) A .钉尖着地的频率是0.4
B .随着试验次数的增加,钉尖着地的频率稳定在0.4附近
C .钉尖着地的概率约为0.4
D .前20次试验结束后,钉尖着地的次数一定是8 二、填空题
2.(2018北京延庆一模改编,16,★☆☆)某农科所在相同条件下做玉米种子发芽试验,结果如图25-3-2:
图25-3-2
某位顾客购进这种玉米种子10千克,那么大约有__________千克种子能发芽.
3.(2018江苏盐城神州路中学期末,11,★☆☆)在一个口袋中,装有白色、黑色、红色球共
36
个,小红通过多次摸球试验后,发现摸到白色、黑色、红色球的频率依次为,则
口袋中三种球的数目依次大约是_____________. 五年中考全练 一、选择题
1.(2017甘肃兰州中考,7,★☆☆)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )
A .20
B .24
C .28
D .30
2.(2018内蒙古呼和浩特中考,5.★★☆)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了折线统计图如图25-3-3,则符合这一结果的试验最有可能的是( )
1276141、
、
图25-3-3
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都反面朝上
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
二、填空题
3.(2018湖南郴州中考,14,★☆☆)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
则这个厂生产的瓷砖是合格品的概率估计值是___________.(精确到0.01)
三、解答题
4.(2015广东广州中考,22,★★☆)4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率:
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率:
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95.可以推算出x的值大约是多少?
核心素养全练
1.(2019广东深圳罗湖月考)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,正面朝上的概率
D.抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是5 2.“中秋节”前夕,某商店推出“迎中秋,赠月饼”活动,活动规则:在一个装有6个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸出一个球,摸到一个红球就获得精美
月饼一盒.已知当天参加活动的有1000人,该商店共发放了200盒精美的月饼,清你估计袋中白球的数量是_______个.
25.3用频率估计概率 基础闯关全练
1.C 由题中表格可知,摸到白球的频率稳定在0.6附近,则估计摸到白球的概率是0.6.故选C . 2.答案(1)0.3 (2)0.3 (3)18;42
解析估算盒子里红球的个数为60x0.3= 18,黑球的个数为60-18= 42.
2.D 某种幼树在一定条件下移植成活的概率为0.9,是在大量重复试验中得到的频率的稳定值,故选D . 能力提升全练
B 设圆的半径为r ,则正方形的边长为2r ,根据题意得≈,故
,故选B . 三年模拟全练 一、选择题
1.D 钉尖着地的频率是40%= 0.4,故选项A 中说法正确,不符合题意;随着试验次数的增加,钉尖着地的频率稳定在0.4附近,故选项B 中说法正确,不符合题意;∵钉尖着地的频率是0.4,.∴钉尖着地的概率大约是0.4,故选项C 中说法正确,不符合题意:随着试验次数的增加,钉尖着地的频率稳定在0.4附近,但前20次试验结束后,钉尖着地的次数并不一定是8.故选项D 中说法错误,符合题意.故选D . 二、填空题 2.答案 8.8
解析 ∵大量重复试验后,种子发芽率逐渐稳定在0.88左右.∴估计这批玉米种子发芽的概率为0. 88,∴10千克种子中能发芽的种子的质量是10x0.88= 8.8(千克). 3.答案 9个、6个、21个
解析 ∵白色、黑色、红色球共36个,摸到白色、黑色、红色球的频率依次为
,∴估计白色球有36×=9个,黑色球有36×=6个,红色球有36×=21个.
五年中考全练 一、选择题
1.D 根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完
全相同的小球.故选D .
2.D 由题中的折线统计图可知,该试验发生的频率稳定在0.33附近,可估计事件发生的概率为0.33.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为
,故A 不符合题意;掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,
2
2
4r r πa b a b 4 π1276141、、4161
127n 9
5321
故B 不符合题意;先后两次掷一枚质地均匀的硬币,两次都反面朝上的概率为,故C 不符合
题意;先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之
和
是7或超过9的概率
为,故D 符合题意.故选D .
二、填空题 3.答案0.95
解析因为合格品的频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0. 95. 三、解答题
4.解析(1)P (抽到不合格品)=.
(2)设1件不合格品为A ,3件合格品分别为Bl ,B2,B3.根据题意,画出数状图如下, 由树状图可知,共有12种等可能的结果,其中抽到的都是合格品的结果有6种,
∴P (抽到的都是合格品)
. (3) ∵抽到合格品的频率稳定在0.95. ∴估计抽到合格品的概率为0.
95. 根据题意,得,解得x=16.经检验,x= 16是原方程的解且符合题意,
答:可以推算出石的值大约是16.
1.B 由题中表格看出,试验发生的频率随着试验次数的增加.逐渐稳定在0.333附近,故估计该事件发生的概率为0.333.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红
桃的概率为,故A 不符合题意;从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,故B 符合题意;抛一枚硬币,正面朝上的概率为,故C 不符合题意;抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是5的概率是,
故D 不符合题意,故选B .
41
31
4
1
21126==
95
.031x
3=+++x 41
3121
61
2.答案24
解析设白球有z 个,由题意知参加活动获得月饼的频率是
,因为参加的人数众多,频率接近概率,故可得,解得x=24.经检验x=24是原方程的解且符合题意.
51
1000200=51
x 66=
+。