知识点一
知识点二
解析:这个图形中折线的变化特点是随着实验次数增加,频率趋 于稳定于50%;符合这个特点的实物实验的例子(指出关注的结果) 如:抛掷一枚硬币实验中关注正面出现的频率. 答案:D
拓展点一
拓展点二
拓展点一 频率估计概率的综合应用 例1 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地 均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
6 1
拓展点一
拓展点二
随堂练习(P70) 1.提示 本问题与生日问题类似,借助课外调查的数据进行有关问 题的概率估算. 实际上,6个人中有2个人生肖相同的理论概率约为0.78. 2.解答 因为共摸100次球,发现有69次摸到红球,所以估计摸到红 69 球的概率是 100 ,所以估计这个口袋中有7个红球,3个白球. 习题3.4(P71) 1.解 小明的想法不对.因为有意识地避开第一次放进去的那个球, 正好破坏了“每个球被摸到的可能性都相同”. 2.提示 本题的模型与随堂练习一样,都是用试验的频率来估算概 率. 实际上,6个人中有2个人同月过生日的概率大约为0.78.
12 1
拓展点一
拓展点二
拓展点一
拓展点二
拓展点二 频率估计概率的实际应用 例2 “六一”期间,某公园游戏场举行活动.有一种游戏的规则 是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同) 的袋中,随机摸一个球,摸到一个红球就得到一个玩具.已知参加这 种游戏活动为40 000人次,公园游戏场发放的玩具为10 000个. (1)求参加一次这种游戏活动得到玩具的频率; (2)请你估计袋中白球大约有多少个? 分析:(1)由40 000人次中公园游戏场发放的玩具为10 000个,结合 频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任 意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.