25.3用频率估计概率教学设计
- 格式:doc
- 大小:337.00 KB
- 文档页数:9
25. 3用频率估计概率教学目标(1)知识与技能目标学会依据问题特点,用频率来估计事件发生的概率。
(2)过程与方法目标提高发现问题、提出问题、分析问题、解决问题的能力,体会概率的基本思想,感受到概率在问题决策中的重要作用,进一步树立数据的观念。
(3)情感态度价值观目标养成学数学、用数学的意识,体验数学的应用价值。
目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.教学重、难点重点:了解用频率估计概率的必要性和合理性.难点:教师要注意提问的准确性,并且举恰当的例子,使学生深入理解用频率估计概率,避免出现不必要的枝节。
三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学流程(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)火箭队VS老鹰队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.同学们,你们同意谁的观点?学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.师:姚明的命中率从何而来?(统计结果)怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)在此基础上,导出课题.(二)试验探究问题2:怎样用频率估计概率?1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?2、试验一(掷硬币试验)(配合亲切童声播放)全班共分10个小组,每小组8人,共抛50次,推荐组长一名,组长不参与抛掷.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.观察频率在0. 5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.(三)揭示新知问题4:为什么可以用频率估计概率?师:其实,不仅仅是掷硬币有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.问题5:频率与概率有什么区别与联系?学生思考、讨论后全班交流. 此处重点强调学生理解,若不能概括、归纳,则直接出示答案. (四)巩固练习牛刀小试某射击运动员在同一条件下的射击成绩记录如下:①计算表中相应的“射中9环以上”的频率(精确到0. 01);②这些频率稳定在哪一个常数附近?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1). 伶牙俐齿(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对吗?(2)小明投篮5次,命中4次,他说一次投中的概率为5分之4对吗?(3)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”设计方案1、老王投资在鱼塘里放了一些鱼苗,秋天了,他准备出售这些鱼,但要想卖一个好价钱就必须估计鱼塘里有多少条鱼,这可难住了老王。
人教版数学九年级上册教学设计25.3《用频率估计概率》一. 教材分析《人教版数学九年级上册》第25.3节“用频率估计概率”是学生在学习了概率的基本概念和原理后,进一步运用实验和数据来估计事件发生的概率。
这部分内容旨在让学生通过实际操作,感受概率的客观存在,培养他们的数据分析能力和数学应用能力。
本节课的主要内容包括:利用频率来估计事件的概率,理解概率与频率之间的关系,掌握用频率估计概率的方法,以及如何通过大量实验来提高概率估计的准确性。
二. 学情分析九年级的学生已经具备了一定的概率基础知识,对概率的概念和基本原理有了初步的了解。
但是,他们在运用频率来估计概率方面可能还存在一些困难,比如对频率与概率之间关系的理解不够深入,以及对大量实验的意义和作用认识不足。
三. 教学目标1.理解频率与概率之间的关系,掌握用频率估计概率的方法。
2.能够通过实验和数据分析,估计简单事件的发生概率。
3.培养学生的数据分析能力和数学应用能力,提高他们的逻辑思维能力。
四. 教学重难点1.教学重点:频率与概率之间的关系,用频率估计概率的方法。
2.教学难点:如何通过大量实验来提高概率估计的准确性,对频率与概率关系的深入理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实验和数据分析来探索频率与概率之间的关系。
2.运用案例教学法,让学生通过具体的案例来理解和掌握用频率估计概率的方法。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学案例和数据,用于引导学生进行实验和分析。
2.准备多媒体教学设备,用于展示案例和数据。
3.准备足够的时间,让学生进行实验和讨论。
七. 教学过程1.导入(5分钟)通过一个简单的实验,引导学生思考频率与概率之间的关系。
例如,抛硬币实验,让学生观察和记录硬币正反面出现的频率,然后引导学生思考这个频率是否能准确地估计硬币正反面出现的概率。
2.呈现(10分钟)呈现相关的案例和数据,让学生通过观察和分析,探索频率与概率之间的关系。
25.3 用频率估计概率前面教材中已给出了概率的统计学定义及利用列举法求等可能事件的概率,但是当试验的结果不是有限个,或各种结果发生的可能性不相等时,我们可以利用频率估计概率.本节主要通过试验操作,观察、总结、归纳概率的意义,并能利用所学知识解决一些实际问题.概率与人们的日常生活密切相关,应用十分广泛.了解和掌握一些概率统计的基本知识,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置.【置疑导入】某篮球运动员在最近的几场大赛中罚球投篮的结果如下:你能求出他投篮一次进球的概率吗?是否能用列举法求出?为什么?【说明与建议】说明:通过罚球投篮试验的引入,观察频率值的变化特点,体会频率与概率的关系.建议:给一枚硬币,让学生两个人合作抛硬币,进行多次重复试验,一人记录,一人抛,让学生亲自参与活动,并引导学生思考结果与试验次数的关系.命题角度1 正确理解频率与概率的关系1.做大量重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为(B)A.0.22 B.0.44 C.0.5 D.0.56命题角度2 频率估计概率的实际应用2.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:(1)根据表中的数据,估计这种树苗移植成活的概率为0.9(精确到0.1). (2)如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约5万棵.2.在一个不透明的袋子里,装有6枚白色棋子和若干枚黑色棋子,这些棋子除颜色外都相同.将袋子里的棋子摇匀,随机摸出一枚棋子,记下它的颜色后再放回袋子里.不断重复这一过程,统计发现,摸到白色棋子的频率稳定在0.1,由此估计袋子里黑色棋子的个数为(C)A.60 B.56 C.54 D.523.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是(C)A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的点数之和是74.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度教学方式0.2~0.4 0.4~0.6 0.6~0.8 0.8~1录播 4 16 12 8直播 2 10 16 12(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1∶3,估计参与度在0.4以下的共有多少人?解:(1)“直播”教学方式学生的参与度更高,理由:。
人教版九年级上册25.3用频率估计概率教学设计一、教学背景本教学设计针对人教版九年级上册数学课程中的第25章第3节“用频率估计概率”进行教学设计。
该章节主要讲解了如何通过频率来确定一个事件的概率。
针对该知识点,我们可以通过数学实验、模拟实验、统计数据等方式来进行教学。
二、教学目标1.了解事件、样本空间、随机事件等概念;2.掌握用频率确定概率的方法;3.能运用频率估计概率解决实际问题;4.培养学生的实验设计和数据分析能力。
三、教学内容1.概率的基本概念:事件、概率、样本空间、随机事件等;2.频率和概率的关系;3.实验设计和数据分析。
四、教学方法本课程采用教师授课、板书讲解、实验演示、小组讨论等多种教学方法,其中重点是实验演示。
五、教学过程设计1. 导入环节教师通过一个简单的实例引出概率的基本概念,引导学生进行思考和讨论,从而明确概率的相关概念和定义。
2. 概念讲解教师讲解事件、样本空间、随机事件等基本概念,借助板书进行图示并联系实际问题进行解释。
3. 实验演示教师组织学生进行实验演示,通过抛硬币、掷色子等实验来探究频率与概率的关系,帮助学生更好地理解该知识点。
4. 讨论学生在小组讨论中交流实验结果,探究在实际问题中如何应用频率估计概率,并结合具体问题进行实践演练。
5. 总结评价教师进行课程总结,回顾重点和难点,测试学生的掌握情况,并针对不同情况进行帮助和指导。
六、教学反思通过本次教学,学生掌握了用频率确定概率的方法,能够应用频率估计概率解决实际问题,并且锻炼了实验设计和数据分析能力。
需要注意的是,实验设计时要注意控制变量,保证实验结果的可靠性和准确性。
作者简介本篇文章由智能助手自动生成,作者身份仅为虚拟身份。
《25.3 用频率估计概率》教案【教学目标】1.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16 .探究点二:用频率估计概率【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B、C、D不一定正确,选项A正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计【教学反思】教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.《25.3 用频率估计概率》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
人教版九年级上册25.3用频率估计概率一、课程设计背景概率论是数学中的重要分支,从初中开始就开始接触,九年级上册的第25章介绍了用频率估计概率的方法。
频率是指某种事件在总事件中出现的次数与总事件次数之比,我们可以通过多次试验来计算出频率,从而估计出概率。
本课程设计旨在通过一些实际的案例,引导学生灵活使用用频率估计概率的方法,进一步理解概率的概念和应用。
二、教学目标1.掌握用频率估计概率的方法;2.理解大数定律的概念;3.通过实际案例,掌握如何利用频率估计概率;4.进一步理解概率的应用和意义。
三、教学内容3.1 概率的概念回顾回顾概率的概念和计算方法,强化基础理论知识。
3.2 大数定律介绍大数定律,引导学生理解随着试验次数的增加,频率逐渐接近概率的原理。
3.3 频率估计概率的方法介绍频率估计概率的方法,通过小组合作讨论,掌握具体计算方法。
3.4 应用案例分析通过实际案例,引导学生灵活应用频率估计概率的方法。
例如,从掷硬币、掷骰子、抽球等实际问题出发,设计多组实验,通过计算频率来估计概率。
四、教学过程4.1 导入通过实际问题引入频率估计概率的方法,如:小张很喜欢吃饼干,他从饼干罐里一口气吃了6个,其中有3个是巧克力味的,那么小张下一个拿到的饼干是巧克力味的概率是多少?4.2 理论知识讲解讲解概率的概念、计算方法和大数定律的原理。
4.3 课堂小组讨论根据老师的安排,将学生分成小组,让他们通过小组讨论的方式,掌握频率估计概率的具体计算方法。
4.4 实际案例分析引导学生灵活应用频率估计概率的方法,设计多组实验,通过计算频率来估计概率。
例如:案例1:掷硬币掷10次硬币,正面朝上的次数是6次,那么下一次掷硬币正面朝上的概率是多少?案例2:抽球一个盒子里有30个球,其中10个红色球,20个白色球。
从盒子中抽出1个球,放回后再抽1个球。
如果第一个球为红色,那么第二个球为红色的概率是多少?案例3:掷骰子掷骰子3次,得到的点数为1、2、5,那么下一次掷骰子点数为4的概率是多少?在实际应用中,还需引导学生分析各种事件之间的独立性和相关性,理解概率计算的复合事件原理。
25.3 用频率估计概率教学目标:知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
过程与方法:通过分析试验结果、、处理数据、得出结论的过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
重点:讲清用频率估计概率的条件及方法;难点:比较用列举法求概率与用频率求概率的条件与方法.教学过程复习引入1.什么是概率?各种事件的概率情况是?2.用列举法求概率的条件是什么?3.用列举法求概率的方法是什么?4.列表法、树形图法是不是列举法,它在什么时候运用这种方法.5. 统计意义下的概率?老师口答点评:1.概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),那么0<P(A)<1.2.用列举法求概率的条件是:(1)每次试验中,可能出现的结果有限多个;•(2)每次试验中,各种结果发生的可能性相等.3.每次试验中,有n 种可能结果(有限个),发生的可能性相等;事件A•包含其中m 种结果,则P(A)=. 4.列表法、树形图法是列举法,•它是在列出的所有结果很多或一次试验要涉及3个或更多的因素所用的方法.5. 同一条件下,在大量重复试验中,如果某随机事件A 发生的 频率稳定在某个常数p 附近,那么这个常数就叫做事件A 的概率. 二、探索新知前面的列举法只能在所有可能是等可能并且有限个的大前提下进行的,如果不满足上面二个条件,是否还可以应用以上的方法呢?不可以.也就是:当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率. 两个材料引入(学生活动),请同学们独立完成下面题目:某林业部门要考查某种幼树在一定条件的移植成活率. (1)它能够用列举法求出吗?为什么? (2)它应用什么方法求出?(3)请完成下表,并求出移植成活率.mn(老师点评)解:(1)不能.理由:移植总数无限,每一棵小苗成活的可能性不相等.(2)它应该通过填完表格,用频率来估计概率.(3)略所求的移植成活率这个实际问题的概率是为:0.9.例1:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率如下两个表格所示:A类树苗:B类树苗:1、从表中可以发现,A类幼树移植成活的频率在_____左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计A类幼树移植成活的概率为____,估计B类幼树移植成活的概率为___.2、张小明选择A类树苗,还是B类树苗呢?_____,若他的荒山需要10000株树苗,则他实际需要进树苗________株?3、如果每株树苗9元,则小明买树苗共需________元.例2.某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.解:从填完表格,我们可得,柑橘损坏的概率为0.1,则柑橘完成的概率为0.9. 因此:在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克. 完好柑橘的实际成本为:=2.22(元/千克) 设每千克柑橘的销价为x 元,则应有: (x-2.22)×9000=5000 解得:x ≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元. 练习 教材 练习.1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.2. 动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?例3 在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人? 解:根据概率的意义,可以认为其概率大约等于250/2000=0.125. 该镇约有100000×0.125=12500人看中央电视台的早间新闻. 练习1.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下: (1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10 000名同学时,红色的频率是多少吗? (3)若你是该厂的负责人,你将如何安排生产各种颜色的产量? 三、归纳小结21000290000.9⨯=本节课应掌握:1.用频率估计概率的条件及方法.2.应用以上的内容解决一些实际问题.四、布置作业略。
人教版数学九年级上册25.3《利用频率估计概率》教学设计一. 教材分析人教版数学九年级上册25.3《利用频率估计概率》是学生在学习了概率的基本概念和计算方法后,进一步学习利用频率来估计概率的一节内容。
通过本节课的学习,学生能够理解频率与概率之间的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于概率的基本概念和计算方法已经有了一定的了解。
但是,学生在利用频率估计概率方面可能还存在一些困难,如对频率与概率之间的关系理解不深,以及对实际问题解决方法的掌握不够熟练。
三. 教学目标1.让学生理解频率与概率之间的关系,能够利用频率来估计概率。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对数学的兴趣和自信心。
四. 教学重难点1.频率与概率之间的关系。
2.利用频率估计概率的方法。
3.实际问题中如何运用频率估计概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究问题来理解频率与概率之间的关系。
2.利用多媒体演示和实例分析,帮助学生直观地理解频率估计概率的方法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.结合课后练习和实际问题,巩固学生对频率估计概率的理解和应用。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与概率相关的日常生活实例,引导学生回顾概率的基本概念和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)展示教材中关于利用频率估计概率的内容,引导学生理解频率与概率之间的关系。
通过实例分析,让学生直观地感受利用频率估计概率的方法。
3.操练(10分钟)学生进行小组讨论,探讨如何利用频率来估计概率。
然后,让学生进行课堂练习,巩固对频率估计概率的理解。
4.巩固(10分钟)针对学生在练习中遇到的问题,进行讲解和解答。
第二十五章概率初步25.3 用频率估计概率教学设计第1课时一、教学目标1.知道通过大量重复试验,可以用频率来估计概率.2.经历抛掷硬币试验,对数据进行收集、整理、描述与分析,体验频率的随机性与规律性。
了解用频率估计概率的合理性和必要性,培养随机观念.二、教学重点及难点重点:用频率估计概率.难点:用频率估计概率方法的合理性.三、教学用具多媒体课件.四、相关资源无.五、教学过程【合作探究】1.实验操作把全班同学分成10组,每组同学抛掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中.根据上表中的数据,在下图中标注出对应的点.师生活动:学生实验操作,教师要求全体学生参与试验,每名同学都要亲自感受规律的发现过程;必须强调学生态度端正,认真记录实验数据,以培养学生一丝不苟,严谨求实的科学精神.活动中教师要注意培养学生相互合作、沟通的能力.第一组的数据和填在第一列,第二组的数据和填在第二列,第三组的数据和填在第三列,…,第10组的数据和填在第10列.设计意图:让学生亲身经历抛掷硬币的随机试验,收集和描述数据,培养随机观念,为揭示频率的随机性和稳定性作准备.【知识点解析】用频率估计概率,微课全面的介绍用频率估计概率,使学生能够理解频率和概率.2.回望历史历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些试验结果见下表:试验者抛掷次数(n )“正面向上”的次数 (m )“正面向上”的频率(nm )师生活动:教师课件展示历史人物的数据,学生观察.3.整理数据(1)随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么?师生活动:教师利用课件出示问题,学生独立观察,思考,回答问题.归纳总结:随着抛掷次数的增加,“正面向上”的频率的变化在0.5这个数字左右摆动.一般地,随着抛掷次数的增加,频率呈现出一定的稳定性:在0.5附近摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.它与用列举法得到的“正面向上”的概率是同一个数值.(2)随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度有何规律?师生活动:教师提出问题,学生进一步仔细观察,思考,分组交流,讨论.归纳总结:如果随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度不完全是越来越小,本次实验依然不能称为严格意义上的大量重复实验.设计意图:通过逐步深入的一系列问题的提出,使学生加深对随机事件的统计规律性的认识,即随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.(3)从以上试验你能得到怎样的结论?师生活动:学生相互讨论、交流,总结规律.教师巡查,指导学困生.归纳总结:一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.(4)频率与概率有什么区别与联系?师生活动:教师提出问题,学生思考,讨论,相互交流.归纳总结:频率是随着试验次数的改变而变化的.而概率是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.设计意图:全体学生通过亲身参与大量重复试验,统计数据,分析,总结试验结果,又经过充分讨论,探究,最终得出规律.这种处理方式,深化了学生对数学方法(特别是概率论的方法)的理解,发展了学生的数学能力,培养了学生对于学习数学的积极性.【例题分析】例某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?师生活动:学生先独立计算填表,完成解答,教师适时点拨,归纳解题方法,规范解题步骤.解:(1)填表如下:(2)这位运动员投篮一次,进球的概率约为0.75.设计意图:通过该问题,进一步培养学生解决实际问题的能力,让学生感受到概率在问题决策中的重要作用,培养学生学数学用数学的精神和合作意识.【练习巩固】1.下列说法正确的是( ).A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚质地均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在16附近2.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的频率是35,这个35的含义是( ).A.只发出5份调查卷,其中三份是喜欢足球的答卷B.在答卷中,喜欢足球的答卷与总问卷的比为3︰8C.在答卷中,喜欢足球的答卷占总答卷的3 5D.在答卷中,每抽出100份问卷,恰有60份答卷是喜欢足球3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ).A.16个B.15个C.13个D.12个4.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.2,那么可以推算出n大约是.5.某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n100150200500800 1 000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(2)请估计,当n很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少(精确到1°)?参考答案1.D2.C3.D4.105.解:(1)填表如下:(2)当n很大时,频率将会接近0.7.(3)转动该转盘一次,获得铅笔的概率约是0.7.(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是:0.7×360°=252°.设计意图:用频率估计概率,在实际问题中应用广泛,通过自主练习,激发学生的学习热情,调动学生的积极性,培养学生独立解答问题的能力,进一步深化学生用频率估计概率解决实际问题的能力.六、课堂小结1.一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率.2.频率与概率有什么区别与联系?频率是随着试验次数的改变而变化的.而概率是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.设计意图:小结和反思,不同的学生会有不同的体会,要尊重学生的个体差异,激发学生主动参与的意识,为每个学生创造在数学活动中获得活动经验的机会.七、板书设计25.3 用用频率估计概率(1)1.用频率估计概率2.频率与概率区别与联系。
25.3 用频率估计概率教学设计引言在概率论和统计学中,我们经常需要对概率进行估计。
而常用的一种估计方法是用频率来估计概率。
本文将介绍一个针对初学者的教学设计,旨在帮助学生理解和应用用频率估计概率的方法。
目标•了解频率估计概率的基本原理和方法•理解统计量和样本大小对频率估计的影响•能够通过样本数据进行概率的估计教学步骤步骤一:引入概念在开始教学之前,首先要引入概率的概念,包括基本概率原理和事件发生的可能性等内容。
可以通过举例子来说明概率的应用,帮助学生理解概率的概念和意义。
步骤二:介绍频率估计概率的原理在学生对概率的基本概念有一定了解后,我们可以引入频率估计概率的原理。
解释频率估计概率是通过观察事件发生的频率来估计概率的方法。
同时,需要强调样本的大小对估计结果的影响。
步骤三:示例演示为了帮助学生更好地理解频率估计概率的方法,我们可以进行一些示例演示。
以掷骰子为例,我们可以先让学生进行实际的掷骰子实验,记录每个点数出现的频率。
然后,我们可以让学生根据实验结果估计掷出每个点数的概率,并与理论概率进行比较。
步骤四:讨论限制和误差在示例演示后,我们可以引导学生讨论频率估计概率的限制和误差。
例如,样本大小越大,估计结果越接近真实概率;同时,样本的选择也可能对估计结果产生影响。
步骤五:练习和作业为了巩固学生对频率估计概率的理解和应用,可以设计一些练习和作业。
例如,让学生利用现有的样本数据,对某一事件的概率进行估计,并与真实概率进行比较。
步骤六:复习和总结在教学结束前,进行一次复习和总结。
回顾频率估计概率的原理和方法,强调样本大小和样本选择对估计结果的影响。
同时,可以提供一些额外的练习题,供学生继续巩固和应用所学知识。
结论本文介绍了一个针对初学者的用频率估计概率的教学设计。
通过引入概率的基本概念,介绍频率估计概率的原理,以及示例演示和讨论限制和误差等内容,帮助学生理解和应用用频率估计概率的方法。
通过逐步引导学生进行练习和作业,巩固和应用所学知识。
25、3 用频率估计概率教学目标【知识与技能】理解每次试验可能得结果不就是有限个,或各种可能结果发生得可能性不相等时,利用统计频率得方法估计概率、【过程与方法】经历利用频率估计概率得学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生得频率所逐渐稳定到得常数,可以估计这个事件发生得概率、【情感态度】通过研究如何用统计频率求一些现实生活中得概率问题,培养使用数学得良好意识,激发学习兴趣,体验数学得应用价值、【教学重点】对利用频率估计概率得理解与应用、【教学难点】利用频率估计概率得理解、教学过程一、情境导入,初步认识问题1400个同学中,一定有2个同学得生日相同(可以不同年)吗?那么300个同学中一定有2个同学得生日相同吗?有人说:“50个同学中,就很可能有2个同学得生日相同、”这话正确吗?调查全班同学,瞧瞧有无2个同学得生日相同、问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了、但要估计一个鱼塘里有多少条鱼,该怎么办呢?【教学说明】在前面我们学习了能列举所有可能得结果,并且每种结果得可能性相等得随机事件得概率得求法、那么这里得两个问题情境中,很容易让学生想到这些事件得结果不容易完全列举出来,而且每种结果出现得可能性也不一定就是相同得、从而引发学生得求知欲,对于这类事件得概率该怎样求解呢,引入课题、二、思考探究,获取新知1、利用频率估计概率试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得得试验数据,并记录在下表中:填表方法:第1组得数据填在第1行;第1,2组得数据之与填在第2行,…,10个组得数据之与填在第10行、如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上”出现得频率为m/n、【教学说明】分组就是为了减少劳动强度加快试验速度,当然如果条件允许,组数分得越多,获得得数据就会越多,就更容易观察出规律、让学生再次经历数据得收集,整理描述与分析得过程,进一步发展学生得统计意识,发现数据中隐藏得规律、请同学们根据试验所得数据想一想:“正面向上”得频率有什么规律?历史上,有些人曾做过成千上万次抛掷硬币得试验,试验结果如下:思考随着抛掷次数得增加,“正面向上”得频率变化趋势有何规律?在学生讨论得基础上,教师帮助归纳,使学生认识到每次试验中随机事件发生得频率具有不确定性,同时发现随机事件发生得频率也有规律性,在试验次数较少时,“正面向上”得频率起伏较大,而随着试验次数逐渐增加,一般地,频率会趋于稳定,“正面向上”得频率越来越接近0、5,也就就是说,在0、5左右摆动得幅度越来越小、我们就用0、5这个常数表示“正面向上”发生得可能性得大小、【归纳结论】一般地,在大量重复试验中,如果事件A发生得频率m/n稳定于某个常数P,那么事件A发生得概率P(A)=P、思考对一个随机事件A,用频率估计得概率P(A)可能小于0吗?可能大于1吗?答:都不可能,它们得值仍满足0≤P(A)≤1、2、利用频率估计概率得应用问题1某林业部门要考查某种幼树在一定条件下得移植成活率,应采用什么具体做法?幼树移植成活率就是实际问题中得一种概率,这种实际问题中得移植试验不属于各种结果可能性相等得类型、因而要考查成活率只能用频率去估计、在同样得条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活得频率,若随着移植棵树n得越来越大,频率m/n越来越稳定于某个常数、则这个常数就可以作为成活率得近似值、上述问题可设计如下模拟统计表,补出表中空缺并完成表后填空、从表中可以发现,幼树移植成活得频率在左右摆动,且随着统计数据得增加,这种规律愈加明显,所以估计幼树移植成活得频率为:、答案:(1)表中空出依次填:0、940,0、923,0、883,0、897(2)0、9,0、9问题2某水果公司以2元/千克价格购进10000千克得水果,且希望这些水果能获得税前利润5000元,那么在出售这些水果(已去掉损坏得水果)时,每千克大约定价为多少元较合适?解:要定出合适得价格,必须考虑该水果得“完好率”或“损坏率”,如考查“损坏率”就需要从水果中随即抽取若干,进行损坏数量得统计,并把结果记录下来,为此可仿照上述问题制定如下表格:从表格可瞧出,水果损坏率在某个常数(例如0、1)左右摆动,并且随统计量得增加,这种规律逐渐明显,那么可以把水果损坏得概率估计为这个常数,如果估计这个概率为0、1,则水果完好得概率为0、9、∴在10000千克水果中完好水果得质量为10000×0、9=9000(千克)设每千克水果得销售价为x元,则有:9000x-2×10000=5000x≈2、8∴出售这批水果得定价大约为2、8元/千克,可获利5000元、思考为简单起见,能否直接把上表中500千克对应得损坏率作为损坏得概率?答:可以、【教学说明】用频率估计概率时,一般就是通过观察所计算得各频率数值得变化趋势,即观察各数值主要集中在哪个常数得附近,这个常数就就是所求概率得估计值、三、运用新知,深化理解1、小新抛一枚质地均匀得硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上得概率为( )2、一只不透明得袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出得这2个小球上得数字之与,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“与为7”得频率将稳定在它得概率附近,试估计出现“与为7”得概率;(2)根据(1),若x就是不等于2、3、4得自然数x,试求x得值、【教学说明】第1题较简单,可由学生自主完成,第2题稍难,由师生共同完成、【答案】1、A2、(1)随着试验次数得增加,出现“与为7”得频率稳定在0、33附近摆动,因此可以知道当试验继续进行下去它得频率会稳定在0、33附近,故可估计“与为7”得概率为0、33、(2)甲、乙两人同时从袋中各摸出一个球所有可能得结果就是(2,3)、(2,4)、(2,x)、(3,4)、(3,x)、(4,x)共6个,由于(3,4)这一结果得与为7,再根据“与为7”得概率为0、33≈1/3,所以其中(2,x)、(3,x)、(4,x)这三个结果中一定还有一个与为7,当2+x=7,则x=5,当3+x=7,则x=4,当4+x=7,x=3,显然后两种均不符合题意,故x=5、四、师生互动,课堂小结1、您知道什么时候用频率来估计概率吗?2、您会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回顾总结,师生再共同完善、课后作业1、布置作业:从教材“习题25.3”中选取、2、完成练习册中本课时练习得“课后作业”部分、教学反思。
人教版(广西版)九年级数学上册教学设计:25.3 用频率估计概率一. 教材分析《人教版(广西版)九年级数学上册》第25.3节“用频率估计概率”是概率论的一个基础知识点。
本节内容通过大量的实验和观察,让学生了解频率与概率的关系,掌握用频率来估计概率的方法,为学生进一步学习概率论打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对实验观察和数据分析有一定的认识。
但学生在学习概率论时,可能会觉得抽象难以理解,因此,在教学过程中,需要通过大量的实例和实践活动,帮助学生建立起频率与概率之间的联系。
三. 教学目标1.理解频率与概率的概念,掌握用频率来估计概率的方法。
2.能够通过实验观察,分析实验结果,估计事件的概率。
3.培养学生的动手操作能力和数据分析能力。
四. 教学重难点1.重点:频率与概率的关系,用频率估计概率的方法。
2.难点:如何通过实验观察和数据分析,估计事件的概率。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实验观察和数据分析,探索频率与概率的关系。
2.利用多媒体教学,展示实验过程和结果,增强学生的直观感受。
3.小组讨论和合作交流,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.实验器材:如硬币、骰子等。
3.教学课件和教案。
七. 教学过程1.导入(5分钟)通过一个简单的实验,如抛硬币实验,引导学生观察实验结果,并提出问题:“硬币正反面出现的频率与概率之间有什么关系?”2.呈现(10分钟)呈现教材中关于频率与概率的定义和例子,让学生理解频率与概率的概念,并引导学生思考如何用频率来估计概率。
3.操练(10分钟)让学生分组进行实验,如抛硬币实验、掷骰子实验等,要求学生记录实验结果,并计算各小组实验的频率。
4.巩固(10分钟)让学生根据实验结果,分析频率与概率的关系,并用频率来估计概率。
教师巡回指导,解答学生的问题。
5.拓展(10分钟)引导学生思考:如何通过实验观察和数据分析,估计复杂事件的概率?让学生举例说明,并进行小组讨论。
25.3用频率估计概率教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。
【设计理念】激发学生的学习兴趣,发展学生的数学才能,在教学过程中充分运用启发和讨论方式,发扬教学民主,关注知识的形成和发展过程,创设情境,培养学生用数学的眼光看世界的意识,发展搜集和处理信息的能力,运用所学的数学知识解释生活中发生的某些现象,从中建立起数学模型,抽象为数学问题,探究和发展其中的变化规律。
【教师准备】《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.(2)根据表中数据填空:完好柑橘的质量为千克,完好柑橘的实际成本为______ 元/千克,总价为______元/千克,(3)柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.,例2、一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机的抽取3人参加几项测试,并且每名学生都可以被重复抽取,你能设计一种实验来估计:“被抽取的3人中有2名男生1名女生”的概率吗?巩固训练,拓展提高1、某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重 2.5千克,第二网捞出25条,称的平均每条鱼重2.2千克,第三网捞出35条,称的平均每条鱼重2.8千克,试估计这池塘中鱼的重量。
2、王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总质量进行估计.第一次捞出100条鱼,称得质量约为184㎏,并将每条鱼都做上记号,在回鱼塘中.当它们混合与鱼群后,又捞出200条,称得质量为416㎏,且有记教师设计填空题引导学生完成大题的解答。
学生设计实验,用摸取卡片代替实际抽取学生,这样称模拟实验。
学生独立完成,教师巡视过程中注意个别指导。
学生动手解题,教师通过投影评讲答案。
让两个同学板书帮助学生理解,降低难度。
学生自己解决问题,使学生对问题发生兴趣,唤起他们的求知欲,使课堂效果大大提高。
综合应用,巩固提高的问题,因此设计该分层推进的补充题,对本节课所学内容分进行检测《25.3用频率估计概率教学设计问题导读——评价单》设计者: 班级: 姓名:【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面: 知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2.进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力。
方法与过程目标:1.选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系.2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法. 情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
1.一枚质量分布均匀的骰子,抛掷后出现“1”的概率大约为___________.2.掷两个骰子,求投掷出点数之和为7的概率.3.已知|a|=2,|b|=5,求|a+b|的值为7的概率.4.请设计一个摸球游戏,使得摸到红球的概率是21,摸到白球的概率是31.5.下列说法正确的是( )①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较好的概率值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的概率均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”“两个反面”“一正一反”的概率相同.A.①②B.②③C.③④D.①③通过预习本节内容你未解决的问题有:自我评价: 小组评价: 教师评价:《25.3用频率估计概率教学设计问题生成——评价单》请同学们在预习的基础上,将生成的问题充分交流后,在单位时间内完成下列题目,并准备多元化展示.带着问题走进丰富多彩的数学世界1、从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列举法列举可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.2、袋子中装有蓝、白、红三个球,从中摸出一个再放回去,共摸三次,摸到三个红色球,摸到两个蓝色球、一个红色球,摸到一个蓝色球、一个红色球、一个白色球的概率各是多少?画树形图说明3、在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?分析在上述问题中我们可以看出当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率。
归纳利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
注意利用频率估计出的概率是近似值。
例1、某水果公司以2元/千克新进了10000千克柑橘,如果公司希望这些柑橘能够获得税前利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析:(1)从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.(2)根据表中数据填空:完好柑橘的质量为千克,完好柑橘的实际成本为______ 元/千克,总价为______元/千克,(3)柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.,例2、一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机的抽取3人参加几项测试,并且每名学生都可以被重复抽取,你能设计一种实验来估计:“被抽取的3人中有2名男生1名女生”的概率吗?小组评价:教师评价:柑橘总质量(n)/千克损坏柑橘质量(m)/千克柑橘损坏的频率( )50 5.50 0.110100 10.50 0.105150 15.15200 19.42250 24.25300 30.93350 35.32400 39.24450 44.57500 51.54设计者: 班级: 姓名1、下列说法中不正确的是( )A.试验中,随着试验次数的增加,随机事件发生的频率逐渐稳定到一个数值,这个数值可以作为这一随机事件发生概率的估计值B.通过试验的方法用频率估计概率的大小,必须要求试验是在相同条件下进行C.抛两枚硬币的试验,可用这样的试验替换:在两个袋子中各放一黑一白两球,闭上眼睛分别从两个袋子中各摸一只球,若摸出两个黑球,代表两个正面D.转除半径大小不同外其他都一样的两个转盘(如图),转大转盘时指针落入红色的概率比转小转盘时指针落入红色的概率大.2、某批乒乓球产品质量检查情况如下表:抽取球数n 50 100 200 500 1 000 2 000 优等品数m 45 92 194 470 954 1 902优等品频率nm(1)算出各种情况下的优等品频率nm;(2)估计这批乒乓球的优等率. 3、一个硬币抛起后落地时“正面朝上”的概率有多大?(1)写出你的猜测.(2)一位同学在做这个试验时说:“我只做了10次试验就得到了正面朝上的概率约为30%.”你认为他说的对吗?为什么?(3)还有一位同学在做这个试验中觉得用硬币麻烦,改用可乐瓶盖做这个试验,你认为他的做法科学吗?为什么?4、准备10张小卡片,上面分别写上数1到10,然后将卡片放在一起,每次随意抽出一张,然后放回洗匀再抽.试验次数2040 60 80 100 120 140 160 出现3的倍数的次数 出现3的倍数的频率(2)从上面的图表中可以发现出现了3的倍数的频率有何特点?(3)这十张卡片的10个数中,共有________张卡片上的数是3的倍数,占整个卡片张数的________,你能据此对上述发现作些解释吗?1、61 2、总共36种结果,点数之和为7;有6种,则其概率是61. 3、P(|a+b|=7)=42=21.4、解:除颜色外都相同的小球6个,其中红的3个,白的2个,蓝的1个.求任意摸一个球的概率.5、B《25.3用频率估计概率教学设计问题生成——评价单》答案【夯实基础】 1、D 2、解:(1)抽取球数n 50 100 200 500 1 000 2 000 优等品数m 45 92 194 470 954 1 902 优等品频率nm 0.90.920.970.940.9540.951(2)这批乒乓球的优等率接近0.95. 3、解:(1)21; (2)不对,试验次数较小,事件出现的频率与事件出现的概率有较大差距,不能据此估计事件发生概率;(3)不对,试验条件不同. 【拓展提升】4、(1)因为每个人的试验都是随机的,所以只要是自己动手试验的数据都可;(2)出现3的倍数的频率逐渐稳定于30%左右;(3)3 , 103 ,出现3的倍数的机会是103,当试验次数很大时,出现3的倍数的频率非常接近103.。