(完整版)第三章压水堆核电站
- 格式:ppt
- 大小:1.80 MB
- 文档页数:10
压水堆核电站组成上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。
2-1 压水堆主要部件2-1-1 堆芯堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。
因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。
压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。
用富集度为2%—4.4%的低富集铀为燃料。
所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。
燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。
棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。
图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。
图2-1(a) 压水堆堆芯横剖面图图2-1(b) 压水堆燃料组件燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。
烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。
燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。
燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。
定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。
堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。
第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。
第一个运行周期的长度一般为1.3—1.9年。
以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。
压水堆核电站1942年费米在世界第一座反应堆上首次实现了可控裂变链式反应。
但是核能这柄双刃剑却首先使用于研制原子弹、氢弹、核潜艇和核航母。
直到20世纪50年代人类才开始开发核能的和平利用——核能发电技术。
1957年底,美国首先将核潜艇压水堆和常规蒸汽发电技术结合,建成了世界上第一座60MW希平港原型压水堆核电厂。
原子核裂变时产生的中子,有的被易裂变核吸收产生新的裂变,有的被某些原子核如(结构材料、减速剂、冷却剂、控制棒等的原子核)俘获后不发生裂变,有的漏到堆芯外面去了。
在裂变时,只有当中子的产生率等于消失率时,裂变反应才能进行下去,通常把这种状态叫临界状态。
达到临界时的堆芯质量叫临界质量。
实际上,核反应堆的燃料装载量比临界质量大,这是因为除了要“烧掉”大部分核燃料外,在堆芯换料时,核燃料的质量也要大于临界质量,还要留有一定的后备反应性,以便控制裂变反应。
压水堆(pressurized waterreactor)使用加压轻水(即普通水)作冷却剂和慢化剂,且水在堆内不沸腾的核反应堆。
燃料为低浓铀。
使用加压轻水作冷却剂和慢化剂,水压约为15.5MPa,水在堆内不沸腾,驱动汽轮发电机组的蒸汽在反应堆以外产生,借助于蒸汽发生器实现,蒸汽压力为6~7MPa。
燃料为浓缩铀或MOX燃料。
20世纪80年代前,被公认为是技术最成熟,运行安全、经济实用的堆型。
最早用作核潜艇的军用反应堆。
1961年,美国建成世界上第一座商用压水堆核电站。
压水堆由压力容器、堆芯、堆内构件及控制棒组件等构成。
压力容器的寿命期为40年,堆芯装核燃料组件。
压水堆核电站以压水堆为热源的核电站。
它主要由核岛和常规岛组成。
压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯。
在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。
常规岛主要包括汽轮机组及二回路等系统,其形式与常规火电厂类似。
压水堆核电站组成上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。
2-1 压水堆主要部件2-1-1 堆芯堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。
因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。
压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。
用富集度为2%—4.4%的低富集铀为燃料。
所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。
燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。
棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。
图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。
图2-1(a) 压水堆堆芯横剖面图图2-1(b) 压水堆燃料组件燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。
烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。
燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。
燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。
定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。
堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。
第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。
第一个运行周期的长度一般为1.3—1.9年。
以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。
目录摘要 ................................................................................................................................. I Abstract ........................................................................................................................... III 第1章绪论 .. (1)1.1 研究背景及意义 (1)1.2 国内外研究现状及发展趋势 (2)1.3二回路热力系统简介 (3)1.4 主要研究工作 (4)第2章计算方法及工况的选取 (5)2.1 计算方法的选取 (5)2.2 工况选定 (6)2.2.1 汽轮机机组各工况简介 (6)2.2.2本设计的工况选定 (6)第3章CNP1500压水堆核电站热力计算 (7)3.1 计算目的及主要内容 (7)3.2 计算所需原始资料 (7)3.2.1 电厂原始参数 (7)3.2.2 其他数据 (8)3.2.3 简化条件 (9)3.3 热平衡法分析计算 (9)3.3.1 汽轮机进汽参数计算 (9)3.3.2 凝汽器参数计算 (9)3.3.3 制作回热系统汽水参数表 (9)3.3.4 制作系统汽态线 (11)3.3.5 定功率法原则性热力计算 (12)第4章二回路热力系统初步设计 (23)4.1 主蒸汽系统(一次蒸汽系统) (23)4.1.1 设计概述 (23)4.1.2 系统功能 (23)4.1.3 系统设计分析 (24)4.2 再热蒸汽系统 (24)4.2.1 设计概述 (24)4.2.2 系统功能 (25)4.2.3 主要系统设备 (25)4.2.4 正常运行工况 (26)4.2.5 低负荷工况 (27)4.3 给水回热系统 (27)4.3.1 设计概述 (27)4.3.2 系统功能 (28)4.3.3 系统设计分析 (29)4.4 旁路系统 (31)4.4.1 设计概述 (31)4.4.2 CNP1500的旁路系统 (31)4.4.3 系统功能 (32)4.4.4 系统的控制模式 (32)4.5 加热器疏水系统 (33)4.5.1 设计概述 (33)4.5.2 疏水方式 (33)4.5.3 危机疏水 (33)4.5.4 排汽系统设计 (34)4.6 蒸汽发生器排污利用系统 (34)4.6.1 设计概述 (34)4.6.2 系统功能 (34)4.6.3 系统示意图 (35)4.6.4 控制阀、隔离阀及放射性监测点 (35)4.6.5 系统运行 (36)4.7 辅助蒸汽系统 (36)4.7.1 设计概述 (36)4.7.2 系统功能 (36)4.8 凝结水系统 (37)4.8.1 设计概述 (37)4.8.2 系统组成及阀门的布置 (37)第5章各蒸汽管道的管径计算及选型 (38)5.1 管径的选取 (38)5.1.1 相关计算公式 (38)5.2 具体管道管径计算 (38)5.2.1 主蒸汽相应管道 (38)5.2.2高压加热器H1相关抽汽管道计算 (40)5.2.3 除氧器H2抽汽管道相关抽汽管道计算 (41)5.2.4 低压加热器H3相关抽汽管道计算 (41)5.2.5 低压加热器H4相关抽汽管道计算 (42)5.2.6 低压加热器H5相关抽汽管道计算 (42)5.2.7 低压加热器H6相关抽汽管道计算 (43)5.2.8 各蒸汽管道和抽汽管道管径 (43)5.3 管材选取 (44)5.3.1 管材选取特点 (44)5.3.2 管材选取原则 (45)5.3.3 各管道材料的选择 (45)第6章总结与展望 (47)参考文献 (49)致谢 (50)附录 (51)CNP1500压水堆核电站热力计算及二回路热力系统初步设计摘要本设计分为三个部分,分别进行了CNP1500压水堆核电站热力计算及二回路热力系统初步设计。
压水堆核电站压水堆核电站用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
这就是最普通的压水反应堆核电站的工作原理。
压水堆核电站由反应堆、一回路系统、二回路系统以及电站的配套设施等主要部分组成。
压水堆燃料是高温烧结的圆柱形二氧化铀陶瓷块,直径约8毫米,高13毫米,称之为燃料芯块。
其中铀-235的浓缩度约3%。
燃料芯块-个一个地重叠着放在外径约9.5毫米,厚约0.57毫米的锆合金管内,锆管两端有端塞。
燃料芯块完全封闭在锆合金管内,构成燃料元件。
这种锆合金管称为燃料元件包壳。
这些燃料元件用定位格架定位,组成横截面是正方形的燃料组件(见图4-2)。
每一个燃料组件包括两百多根燃料元件。
一般是将燃料元件排列成横十七排、纵十七行的17×17的组件,中间有些位置空出来放控制棒。
控制棒的上部连成-体成为棒束。
每一个棒束都在相应的燃料组件内上下运动。
控制棒在堆内布置得很分散,以便堆内造成平坦的中子通量分布。
燃料组件外面不加装方形盒,以利于冷却剂的横向流动。
加上端部构件,整个组件长约四米,横截面为边长约20厘米的正方形。
图4-3是典型压水堆压力容器与堆芯结构原理图;图4-4为压力容器的结构布置图。
由燃料组件组成的堆芯放在一个很大的压力容器内。
控制棒由上部插入堆芯。
在压力容器顶部有控制棒的驱动机构。
作为慢化剂和冷却剂的水,由压力容器侧面进来后,经过吊篮和压力容器之间的环形间隙,再从下部进入堆芯。
冷却水通过堆芯后,温度升高,密度降低,再从堆芯上部流出压力容器。
一般入口水温300C ο,出口水温332C ο,堆内压力15.5Mpa 。
一座100万千瓦的压水堆,堆芯每小时冷却水的流量约6万吨。
这些冷却水并不排出堆外,而是在封闭的-回路内往复循环。
堆芯放了一百多个燃料组件,这些组件总共包括四万多根三米多长、比铅笔略粗的燃料元件。
我国压水堆核电站主要设备及原理完整文档(可以直接使用,可编辑完整文档,欢迎下载)压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。
容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。
堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。
它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。
堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。
压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。
该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。
原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。
蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。
这样不断地循环往复,构成一个密闭的循环回路。
一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。
一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。
做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。
这样构成第二个密闭循环回路。
二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。
汽轮发电机机组是二回路系统的主要设备。
它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。