第三章金属材料的结构
- 格式:ppt
- 大小:1.18 MB
- 文档页数:90
第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。
§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。
结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。
结构起伏是金属结晶的结构条件。
二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。
单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。
由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn低于理论结晶温度Tm的现象称为过冷。
液态金属过冷是结晶的必要条件。
过冷度:△T=Tm-Tn, 其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。
四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。
热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。
利用最小自由焓原理分析结晶过程。
两相自由焓差是相变的驱动力。
金属结晶的热力学条件:固相自由焓必须低于液相自由焓。
热力学条件与过冷条件的一致性。
§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。
一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。
金属材料微观结构及其力学性能分析第一章介绍金属材料是工业生产中应用最广泛的材料之一。
金属材料的性能取决于其微观结构。
了解金属材料的微观结构对于优化其力学性能具有重要的意义。
本文将对金属材料的微观结构及其力学性能进行分析。
第二章金属材料的微观结构2.1 金属晶体结构金属材料的微观结构是由晶体结构组成的。
金属晶体结构分为三类:立方晶系、六方晶系和正交晶系。
立方晶系又分为面心立方和体心立方两种,六方晶系和正交晶系则分别只有一种。
2.2 晶体缺陷金属材料的晶体中经常存在一些缺陷,如点缺陷、线缺陷和面缺陷。
点缺陷包括空位、间隙原子和杂质原子。
线缺陷包括位错和螺旋位错。
面缺陷包括晶界、孪晶和堆垛层错。
2.3 热处理对微观结构的影响热处理可以改变金属材料的微观结构,从而改变其力学性能。
常见的热处理方式包括退火、淬火、正火和强化退火等。
其中,在退火和淬火过程中,晶体内部的点缺陷和线缺陷会发生移动和重新排列,从而形成新的晶界和位错,改变晶粒的大小和形状。
在正火和强化退火过程中,则会使晶粒的尺寸和形状发生变化。
第三章金属材料的力学性能3.1 强度金属材料的强度是指材料在受到外力作用时能够承受的最大应力。
强度取决于晶体的结构和缺陷,晶粒的尺寸和形状,以及金属材料的化学成分和加工工艺。
3.2 塑性塑性是指材料在受到外力作用时能够发生塑性变形的能力。
塑性也是晶体的结构和缺陷、晶粒尺寸和化学成分、加工工艺等因素综合作用的结果。
3.3 韧性韧性是指材料在受到外力作用时能够发生韧性断裂前的能量吸收能力。
韧性既受材料的强度和塑性限制,也受材料的微观结构和缺陷限制。
3.4 硬度硬度是指材料对于压入针或滚动球的抵抗能力。
硬度取决于晶体的结构和缺陷,晶粒尺寸和化学成分等因素的综合作用。
第四章金属材料的力学性能分析方法4.1 确定力学性能的试验方法金属材料的强度、塑性、韧性、硬度等性能可以通过试验来测定。
常见的试验方法包括拉伸试验、压缩试验、弯曲试验、冲击试验和硬度试验等。
第三章金属材料在一百多种化学元素中,金属大约占80%。
金属材料具有许多宝贵的机械-力学、物理、化学性能,是迄今为止使用最为广泛且用量最多的一种材料。
3.1 金属键金属呈现特有的金属光泽,不透明,是电与热的良导体,具有延性和展性,比重大,强度高,可以焊接和形成合金。
金属的性能是其特定结构的外在反映。
由金属从单原子气态生成液态或固态时所释放出相当大的能量,可以断定金属原子在液态或固态中的相互结合力不是一般原子间的范德瓦耳斯力,而是一种相当强的化学键。
它又是由电负性小的同类原子所组成,从而也排除生成离子键的可能性。
X射线衍射测定结果表明,金属材料中每个金属原子与周围8至12个同等或接近同等距离的原子相紧邻,而每个金属原子的价电子层中只有少数的价电子,显然以这少数价电子来生成8至12个通常的共价键也是难以想象的。
因此,就需要另外提出“金属键”(metallic bond),即使金属原子结合成金属相互作用的模型。
一、“自由电子”模型金属晶体中,金属原子外层价电子受原子核束缚较弱,即电离能低,很容易失去这些价电子而形成正离子和自由电子。
所谓自由电子是指被电离的电子不再束缚于某一原子,而在整个晶体内“自由”运动。
正离子整体共同吸收自由电子而结合在一起。
自由电子就像胶泥似地将许多排列整齐的正离子胶合在一起。
自由电子在金属中的活动范围很大,因此可将金属看成是自由电子气和沉浸在其中的正离子的结合体。
这就是金属键的“自由电子”模型。
用量子力学处理金属键的自由电子模型,就相当于一个三维势箱问题。
在“箱”中的电子可近似作为平动子在整个晶体中作较自由的运动,但在总体上还受由正离子组成的电场所束缚。
由于金属中电子离域范围很大,将会产生很显著的能量降低效应,便成为金属键能的起源。
要指出的是,金属键和离域π键是不很相同的:参与离域π键的原子数一般是有限的,且离域电子的活动范围是沿二维空间,即平面伸展的;而参与金属键的原子数量则是很大的,且离域电子活动范围是沿三维空间伸展的。
第三章金属材料及热处理金属材料是现代机械工业使用最广泛的材料,品类繁多,性能各不相同,合理选用金属材料和正确运用热处理方法,可以充分发挥金属材料的机械性能,提高产品的质量。
金属可以分为黑色金属和有色金属,黑色金属主要是指钢和铸铁,以铁和碳为基本组成元素形成铁碳合金,即碳素钢。
在铁碳合金中加入一定量的合金元素,如铬、锰、镍、钴等成为合金钢。
有色金属是指非铁金属及其合金,如铝、铜、铅、锌等金属及其合金。
一、碳素钢的分类、编号和用途碳素钢简称碳钢,是含碳量小于 2.11%的铁碳合金,具有较好的机械性能、良好的锻压性能、焊接性能和切削加]:性能,价格比合金钢低,在机械工业中得到广泛使用。
(一)碳素钢的分类1.按钢的含碳量分类低碳钢——含碳量≤0.25%;中碳钢——含碳量:0.30%-0.55%;高碳钢——含碳量≥0.60%。
2.按钢的质量分类普通碳素钢:硫、磷含量分别≤O.055%和 O.045%优质碳素钢:硫、磷含量均≤0.040%;高级优质碳素钢:S、P含量 0.030%-0.035%。
3.按钢的用途分类碳素结构钢:主要用于制造各种工程构件和机器件,这类钢一般属于低碳钢和中碳钢。
碳素工具钢:主要用于制造各种刀具、量具、模具,这类钢含碳量较高,一般属于高碳钢。
(二)碳素钢牌号和用途1.普通碳素结构钢甲类钢:这类钢出厂时按保证机械性能供应,除硫、磷外不保征化学成分。
甲类钢的牌号以“甲”或“A”字加上阿拉伯序数表示,共 1-7级,即甲 l、甲 2、…、甲 7(或 A1、A2、…、A7),数字越大,强度越高,塑性越差,主要用来制造钢板、角钢、圆钢和工字钢等。
乙类钢:这类钢出厂时按化学成分供应,不保证机械性能。
乙类钢的牌号用“乙”或“旷加上阿拉伯数字表示,也分为 1-7级,即乙 1、乙 1、…、乙 7(或 Dl、u2、…、B7),数字越大,含碳量越高,主要用于制造不重要的零件,一般须经热处理。
2.优质碳素结构钢优质碳素结构钢既要保证钢的化学成分,还要保证机械性能其机械性能,用于制造比较重要的零什。
第三单元金属材料的晶体结构与结晶一、名词解释1.晶体晶体是指其组成微粒(原子、离子或分子)呈规则排列的物质。
2.晶格抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。
3.晶胞组成晶格的最小几何单元称为晶胞。
4.单晶体如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。
5.多晶体由许多晶粒组成的晶体称为多晶体。
6.晶界将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。
7.晶粒多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。
8.结晶通过凝固形成晶体的过程称为结晶。
9.变质处理变质处理就是在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的方法。
10.合金合金是指两种或两种以上的金属元素或金属与非金属元素组成的金属材料。
11.组元组成合金最基本的、独立的物质称为组元。
12.相相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。
13.组织组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。
14.定向结晶定向结晶是通过控制冷却方式,使铸件沿轴向形成一定的温度梯度,从而可使铸件从一端开始凝固,并按一定方向逐步向另一端结晶的过程。
15.滑移单晶体塑性变形时,在切应力作用下,晶体内部上下两部分原子会沿着某一特定的晶面产生相对移动,这种现象称为滑移。
二、填空题1.晶体与非晶体的根本区别在于原子排列是否规则。
2.金属晶格的基本类型有体心立方晶格、面心立方晶格与密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷三类。
4.金属结晶包括:晶核形成和晶核长大两个过程。
5.金属结晶的必要条件是过冷,金属的实际结晶温度不是一个恒定值。
6.金属结晶时冷却速度越大,过冷度越大,金属的实际结晶温度越低。
7.金属的晶粒愈细小,其强度、硬度越高,塑性、韧性也越好。
第三章《铁金属材料》教学设计第二节金属材料第一课时铁合金铝和铝合金教学思路问题线活动线任务类型关键能力培养指向核心素养培养意图生活中的眼镜介绍,1.你希望你的眼镜架有什么性能?学生思考并回答。
观察体验证据推理。
培养学生发现与提出问题的能力?进一步培养学生利用各种证据(已有知识、生活经验、文献查询)进行推理的能力和意识。
1.眼镜架选什么材料更好?2.合金为什么比纯金属更坚硬?驱动学生思考它们微观结构的差异。
学生结合铁、铝等金属性能思考回答。
观察体验证据推理。
观察微观认知模型。
化学方法和分析能力。
宏观辨识到微观探析的学科素养培养。
从眼镜架材料看人类对材料的认识、改造和使用问题2:你认为哪种材料更适合作为眼镜架?问题1:你希望你的眼镜架有什么性能?问题3:阅读教材,小组讨论选择适宜作眼镜架的材料?问题4:铝合金为何耐腐蚀?能否耐强酸、强碱腐蚀?问题5:了解还有哪些新型合金?问题6:设想未来的眼镜架还可能使用哪些材料?从眼镜架材料看人类对材料的认识、改造和使用第三章第二节金属材料【学习目标】1.结合生活中常见合金的认识经验,阅读教材中合金的结构介绍,了解合金的概念,并能联系纯金属和合金的微观结构解释二者性能的差异。
2.以铁合金为例,能从元素组成上对合金进行分类,并认识不同类型金属材料组成、性能与应用的联系,强化结构决定性能、性能决定用途的观念。
3.了解储氢合金、钛合金等新型合金,感受化学科学对创造更多新材料以满足人类生活需要和促进科技发展的重要作用。
【学习过程】活动一:自主学习展示1.合金的概念和特性概念由两种或两种以上的________(或_____________)熔合而成的具有_____________________特性的物质,如导电性、导热性等。
性能硬度硬度一般____________它的纯金属成分熔点熔点一般_______________它的成分金属与纯金属材料相比,合金具有优良的______________________________2.合金的形成条件形成条件合金是金属在_________状态时相互混合形成的,熔化时的温度需达到成分金属中熔点_____________的金属的熔点,但又不能高__________成分金属中沸点__________的金属的沸点。