三阶系统的阶跃响应曲线的数据
- 格式:xls
- 大小:13.50 KB
- 文档页数:1
实验四三阶系统的瞬态响应及稳定性分析引言:实际工程中经常遇到三阶系统,对三阶系统的瞬态响应及稳定性进行分析能够帮助我们更好地设计和优化控制系统。
本实验旨在通过实验,研究三阶系统的瞬态响应及稳定性,并加深对其理论知识的理解和掌握。
实验一:三阶系统的瞬态响应1.实验目的:通过三阶系统的瞬态响应实验,观察系统的输出响应情况,了解系统的动态特性。
2.实验仪器:示波器、波形发生器、三阶系统实验箱3.实验原理:三阶系统的瞬态响应是指系统在初始状态发生突变时,输出的响应情况。
三阶系统的瞬态响应主要涉及到系统阶跃响应、系统脉冲响应。
4.实验步骤:a.将波形发生器的正弦波信号输入三阶系统实验箱。
b.设置示波器的观测通道,将示波器的探头连接到三阶系统实验箱的输出端口。
c.调节波形发生器的频率和幅度,观察示波器上得到的输出响应波形。
5.数据处理:a.根据示波器上输出的响应波形,可以观察到系统的超调量、调整时间等指标,根据公式可以计算得到这些指标的具体数值。
b.将实验得到的数据记录下来,进行分析和比较。
1.实验目的:通过三阶系统的稳定性分析实验,了解系统的稳定性及稳定性判据。
2.实验仪器:示波器、三阶系统实验箱3.实验原理:三阶系统的稳定性是指系统在初始状态发生突变或受到外部扰动时,系统是否能够回到稳定状态。
常见的稳定性分析方法包括极点判据、频率响应法等。
4.实验步骤:a.将示波器的探头连接到三阶系统实验箱的输出端口。
b.调节系统的输入信号,观察示波器上得到的系统输出响应波形。
c.根据观察到的输出波形,分析系统的稳定性。
5.数据处理:a.根据实验得到的数据和观察到的波形,可以从输入输出关系中提取出系统的稳定性信息,比如振荡频率、稳定的输出值等。
b.根据提取出的信息,判断系统的稳定性。
实验三:实验结果和分析1.通过实验一,我们可以观察到三阶系统的瞬态响应,并根据输出波形,计算得到系统的超调量、调整时间等指标。
通过对比不同输入频率和幅度下的响应波形,可以分析系统的动态特性。
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
六个典型环节的阶跃响应曲线详解1. 引言在信号处理领域中,阶跃响应曲线是描述系统对单位阶跃输入信号的输出响应的一种常用方法。
通过分析阶跃响应曲线,我们可以了解系统的动态特性、稳态误差和稳定性等重要信息。
本文将详细探讨六个典型环节的阶跃响应曲线,以帮助读者更好地理解信号处理中的阶跃响应。
2. 一阶惯性环节让我们来讨论一阶惯性环节的阶跃响应曲线。
一阶惯性环节由一个惯性成分和一个系数组成,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。
在阶跃输入信号下,一阶惯性环节的输出响应会经历一个指数衰减的过程。
初始阶段,响应曲线呈现出较大的上升斜率,接近输入信号的增量。
随着时间的推移,响应逐渐趋于稳定的平衡状态。
通过观察阶跃响应曲线的时间常数τ,我们可以推断系统的动态特性以及稳态稳定性。
3. 一阶积分环节接下来,我们将研究一阶积分环节的阶跃响应曲线。
一阶积分环节的传递函数可以表示为G(s) = k / s,其中k为增益。
与一阶惯性环节不同,一阶积分环节的阶跃响应曲线呈现出线性增长的特点。
输出信号随时间的增加而持续积分,并逐渐达到稳态。
在实际应用中,一阶积分环节常用于控制系统中,以改善系统的稳定性和对常数误差的补偿。
4. 一阶滞后环节第三个环节是一阶滞后环节,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。
一阶滞后环节的阶跃响应曲线表现出一种惰性的特点。
初始阶段,响应曲线的上升斜率较小,逐渐接近输入信号的增量。
随着时间的推移,响应曲线逐渐逼近稳定的平衡状态。
一阶滞后环节常用于减小系统的动态响应,并提高稳态精度。
5. 二阶过阻尼环节接下来,我们将研究二阶过阻尼环节的阶跃响应曲线。
二阶过阻尼环节的传递函数可以表示为G(s) = k / (τ^2s^2 + 2ζτs + 1),其中k为增益,τ为时间常数,ζ为阻尼比。
二阶过阻尼环节的阶跃响应曲线表现出较小的震荡和较快的收敛特性。
2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。
3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。
4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。
三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。
5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。
实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。
不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。
实验二.二、三阶系统动态分析一.实验目的:1.学习二、三阶系统的电模拟方法及参数测试方法;2.观察二、三阶系统的阶跃响应曲线,了解参数变化对动态特性的影响; 3.学习虚拟仪器(超抵频示波器)的使用方法; 4.使用MATLAB 仿真软件进行时域法分析; 5.了解虚拟实验的使用方法。
二.实验设备及仪器1.模拟实验箱; 2.低频信号发生器;3.虚拟仪器(低频示波器); 4.计算机;5.MATLABL 仿真软件。
三.实验原理及内容实验原理:1、二阶系统的数学模型系统开环传递函数为系统闭环传递函数为2、 二阶系统暂态性能(a) 延迟时间t d : 系统响应从 0 上升到稳态值的 50% 所需的时间。
)2s (s n 2nςω+ω为阻尼比(,为无阻尼自然振荡频率其中:ςωω+ςω+ω==n 2nn 22ns 2s )s (G )s (R )s (C(b) 上升时间t r : 对于欠阻尼系统是指 , 系统响应从 0 上升到稳态值所需的时间 ; 对于过阻尼系统则指 , 响应从稳态值的 10% 上升到 90% 所需的时间。
(c) 峰值时间t p : 系统响应到达第一个峰值所需的时间。
(d) 最大超调量σp ( 简称超调量 ) : 系统在暂态过程中输出响应超过稳态值的最大偏离量。
通常以单位阶跃响应稳态值的百分数来表示 , 即%100e e esin 1e)t sin(1e1)y(t )y()y()y(t σ22pn pn pn 11t 2t p d 2t p p p ⨯===-=+--=-=∞∞-=-------ζπζζπζζωζωζωϕζϕωζ超调量)t sin(1e 1)t (y d 2tn ϕωζζω+--=- 2n d p d 1ωπωπt 0)t sin()t (y ζω-==∴= 峰值时间求导可得对dr t t ωπt 1y(t)rϕ-=== 可令2n21n πϕωξ-=-t ≈n2d n d 2.06.01t 7.01ως+ς+ως+≈或n2d n d2.06.01t 7.01t ως+ς+≈ως+≈或(e) 调节时间t s : 系统响应到达并不再越出稳态值的容许误差带±Δ所需的最短时间 , 即通常取Δ为稳态值的 5% 或 2% 。
目录摘要1 1 设计容11.1 设计题目1 1.2 设计任务12绘制三阶系统的根轨迹22.1 常规方法绘制根轨迹2 2.2用MATLAB 绘制根轨迹4 3 不同条件下K 的取值53.1 当-8为闭环系统的一个极点时,K 的取值5 3.2 主导极点阻尼比为0.7时的k 值5 4 求系统的稳态误差64.1 位置误差系数7 4.2 速度误差系数7 4.3 加速度误差系数84.4 输入信号为25.2)(1)(t t t t r ++=时的稳态误差85 绘制单位阶跃响应曲线96 频域特性分析96.1绘制Bode 图和Nyquist 曲线10 6.2相角裕度和幅值裕度12 7 加入非线性环节判断稳定性137.1 求死区特性环节的描述函数137.2 根据负倒描述函数和Nyquist 图判断系统的稳定性14 8 设计体会15 参考文献 (17)摘要三阶系统是以三级微分方程为运动方程的控制系统。
在控制工程中,三阶系统非常普遍,其动态性能指标的确定是比较复杂。
在工程上常采用闭环主导极点的概念对三阶系统进行近似分析,或直接用MATLAB软件进行高阶系统分析。
在课程设计中,要掌握用MATLAB绘制闭环系统根轨迹和系统响应曲线,用系统的闭环主导极点来估算三系统的动态性能,以及在比较点与开环传递函数之间加一个非线性环节判断其稳定性。
1 设计容1.1 设计题目三阶系统的综合分析和设计初始条件:某单位反馈系统结构图如图1-1所示:图1-1 图1-21.2 设计任务要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、试绘制随根轨迹2、当-8为闭环系统的一个极点时,K=?3、求取主导极点阻尼比为0.7时的K 值(以下K 取这个值)4、分别求取位置误差系数、速度误差系数、加速度误差系数及输入信号为25.2)(1)(t t t t r ++=单位阶跃信号、斜坡信号及单位加速度信号时的稳态误差5、用Matlab 绘制单位阶跃相应曲线6、绘制Bode 图和Nyquist 曲线,求取幅值裕度和相角裕度7、如在比较点与开环传递函数之间加1个死区非线性环节,如图1-2所示,其中2,10==k e ,试求取非线性环节的描述函数,并根据负倒描述函数和Nyquist 图判断系统的稳定性8、认真撰写课程设计报告。
三阶系统.doc这时,调节时间s t 近似为: ns t ωξξ)1(42--=(3-13)图3-3 二阶系统模拟电路K K K K R100,40,20,10=图3-3是图3-1的模拟电路图。
表3-1列出有关二阶系统在三种情况(欠阻尼、 临界阻尼、过阻尼)下具体参数的表达式,以便计算理论值。
表3-12、图3-4是典型三阶系统原理方框图图2-4 典型三阶系统t )开环传递函数为:)1)(1()1)(1()()(2121021++=++=S T S T S KS T S T S T K K S H S G (3-14)其中,021K K K= (开环增益)图3-5是典型三阶系统模拟电路图。
op1op2op3op5r(t)200k200k200k500k2μ1μ100k 1μ500k10k10kC(t)图2-5 三阶系统模拟电路100k R-----op6三阶系统模拟电路的开环传递函数为:)1)(1()15.0)(11.0(500)()(21++=++=S T S T S KS S S R S H S G (3-15)式中R 的单位为K Ω,比较式(1-14)和(2-15)得⎪⎪⎩⎪⎪⎨⎧====RK T T T 5005.01.01210 (3-16) 系统的特征方程为0)()(1=+S H S G ,由式(2-14)可得0)1)(1(21=+++K S T S T S展开得到:0)(221321=++++K S S T T S T T (3-17)将式(2-16)代入式(2-17)得到06.005.023=+++K S S S或020201223=+++K S S S (3-18)用劳斯判据求出系统稳定、临界稳定和不稳定时的开环增益 3S 1 202S 12 20K图图1S12202012K-⨯ 00S 20K由0202012>-⨯K020>K得到系统稳定范围: 120<<K由0202012=-⨯K得到系统临界稳定时: 12=K 由0202012<-⨯K得到系统不稳定范围 12>K将R K500= 代入上式得到:Ω>K R 7.41 系统稳定Ω=K R 7.41 系统临界稳定 Ω<K R 7.41 系统不稳定系统稳定、临界稳定和不稳定时输出波形如图3-6A,3-6B,3-6C 所示。
实验四 控制系统的阶跃响应一、实验目的1. 通过实验了解参数ξ(阻尼比)、Wn (阻尼自然频率)的变化对二阶系统动态性能的影响2. 掌握各阶系统动态性能测试方法 3. 掌握参数调节系统性能的方法。
二、实验内容1. 观测二阶系统的阻尼比分别在0<ξ<1, ξ=1,ξ>1三种状态下的单位阶跃响应曲线2. 调节二阶系统的开环增益K ,使系统的阻尼比ξ=1/√2,测量此时系统超调量,调节时间。
3. ξ一定时,观测系统在不同Wn 时的响应曲线。
4. 一阶及三阶系统的响应 三、实验步骤典型二阶系统结构方框图所示闭环传递函数1222110)()(11)(K s T s T T K s H s G s G ++=+=其相应模拟电路图如图所示C(s)1.连接系统2.系统输入单位阶跃信号,C=1uF,R=100K,调节Rx阻值,观察不同ξ时试验曲线。
2.1系统处于欠阻尼状态,其超调量为53%左右;并计算ξ的值。
可以算出ξ=0.195,此时Rx的理论值为256KΩ,上图是Rx=260KΩ系统的曲线。
最高幅值2.72,峰值时间tp=1.416s,稳态值1.78,Mp=52.8%≈53%,上升时间tr=1.270s 2.2系统处于欠阻尼状态,其超调量为4.3%左右;并计算ξ的值。
计算得出ξ=0.707,此时Rx的理论值为70KΩ,上图为Rx=71KΩ时系统曲线,最高幅值1.877,峰值时间tp=1.108s,稳态值1.800,Mp=4.3%,上升时间tr=0.926s2.3系统处于临界阻尼状态,并计算ξ的值。
此时ξ=1,Rx的理论值为50 KΩ,如上图,最高幅值1.870,稳态值1.8642.4系统处于过阻尼状态,并计算ξ的值。
取ξ=1.5,Rx理论值为33 KΩ,如上图3.ξ值一定时,取R=100K,Rx=250K,此时ξ=0.2系统输入单位阶跃信号,在下列几种情况下,观察不同Wn时实验曲线,并观察系统的性能指标有何变化。
实验三系统的冲激响应和阶跃响应分析一、实验目的掌握系统的冲激响应和阶跃响应的概念及其时域求解方法二、原理说明在L TI系统的时域分析中,除了可以利用经典方法求解某些系统的零状态响应外,还可以利用卷积积分求解系统的零状态响应。
这就需要求解系统的单位冲激响应和单位阶跃响应。
单位冲激响应h(t) 定义为系统初始状态为零,系统在冲激函数δ(t)作用下所产生的零状态响应.即h(t)=T[{0},δ(t)]其中T 为系统的变换算子。
而系统在任意激励f(t)作用下所形成的零状态响应Yf(t)=f(t)*h(t).单位冲激响应不仅在此有重要意义,而且对于描述系统的时域特性也有非常重要的意义。
单位阶跃响应g(t)定义为系统初始状态为零且在单位阶跃信号ε(t)作用下产生的零状态响应,即g(t)═ T[{0},ε(t)]。
二阶系统是工程中最常见的系统,在不同阻尼比ξ下,系统的阶跃响应不同。
三、预习要求单位冲激响应及阶跃响应的经典求解方法四、内容和步骤1. 二阶系统的传递函数为:2222)(nn n s s s H ωξωω++= 可用如下程序作出其单位阶跃响应和冲激响应波形曲线.(简单起见令n ω=1).参考程序一、CloseHold onzeta=[0.1 0.2 0.4 0.7 1.0];num=[1];t=0:0.01:12;for k=1:5den1=[1 2*zeta(k) 1];printsys (num,den1,’s’);[y1(:,k),x]=step(num,den1,t);den2=[1 zeta(k) 1];[y2(:,k),x]=impulse(num,den2,t);subplot(2,1,1),plot(t,y1(:,k));hold onsubplot(2,1,2),plot(t,y2(:,k));hold onend2. 自己构造一四阶以上连续系统系统函数,并求其阶跃响应和冲激响应波形.五、报告要求1.调试四1中程序,记录运行结果.2.用解析法求解步骤四1中系统的冲激响应和阶跃响应.3.若步骤四1中给定系统增加一个0 s处零点,系统时域特性有什么变化?4.写出步骤四1程序中各主要部分的功能5.分析系统时域响应波形,得出系统时域参数(上升时间和误差)永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式2008-11-07 来源:internet 浏览:504主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。
课程实习报告课程名称:自动控制原理及专业软件应用课程实习题目名称:三阶系统校正年级专业及班级:姓名:学号:指导教师:评定成绩:教师评语:指导老师签名:年月日目录摘要 (3)一、课程实习任务和要求 (4)二、未校正系统的分析 (5)(一)未校正系统零极点图 (5)(二)未校正系统根轨迹分析 (5)(三)未校正系统时域分析 (8)(四)未校正系统频域分析 (9)三、校正系统的设计 (11)(一)理论分析 (11)(二)理论计算 (13)四、校正后系统性能分析 (15)(一)频域分析 (15)(二)时域分析 (16)五、电路设计 (18)(一)典型环节电路图 (18)(二)校正后系统电路设计 (27)小结 (28)摘要所谓校正,就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。
主要有两大类校正方法:分析法与综合法。
分析法把校正装置归结为易于实现的超前校正、滞后校正、超前—滞后校正等几种类型,它们的结构是已知的,而参数可调。
通过校正方法确定这些校正装置的参数。
综合法又称为期望特性法。
它的基本思路是按照设计任务所要求的性能指标,构造期望的数学模型,然后选择校正装置的数学模型,使系统校正后的数学模型等于期望的数学模型。
本次课程设计,要求我在掌握自动控制理论基本原理,一般电学系统自动控制方法的基础上,用MATLAB实现系统的仿真与调试。
在课程实习中,先对待校正装置进行时域分析和频域分析,在算出原装置的参数,与系统要求对比之后决定使用串联滞后校正。
计算出串联滞后校正参数,将参数带入待校正的系统。
校正后的系统经过校验满足了系统要求。
再Simulink对系统进行了仿真,之后画出了校正系统的电路图。
关键字:串联校正串联滞后时域分析频域分析一、课程实习任务和要求(一)初始条件:设一系统的开环传递函数为:1)1)(0.5s s(s k(s)G 0++=,试设计串联校正网络)(s G c 。
性能指标要求:(1)系统稳态速度误差系数v K =5s-1; (2)相角裕度γ≥400。
实验三高阶系统的瞬态响应和稳定性分析一、实验目的1. 通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,它与外作用及初始条件均无关的特性;2. 研究系统的开环增益K或其它参数的变化对闭环系统稳定性的影响。
二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。
三、实验内容1、观测三阶系统的开环增益K为不同数值时的阶跃响应曲线;2、观测三阶系统时间常数T(极点)不同数值时的阶跃响应曲线。
四、实验原理三阶系统及三阶以上的系统统称为高阶系统。
一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。
控制系统能投入实际应用必须首先满足稳定的要求。
线性系统稳定的充要条件是其特征方程式的根全部位于S平面的左方。
应用劳斯判断就可以判别闭环特征方程式的根在S平面上的具体分布,从而确定系统是否稳定。
本实验是研究一个三阶系统的稳定性与其参数K和T对系统性能的关系。
三阶系统的方框图如图3-1所示。
图3-1 三阶系统的方框图三阶系统模拟电路图如图3-2所示。
图3-2 三阶系统的模拟电路图图3-1的开环传递函数为)1)(1)(1(2)(321+++=S T S T S T K S G (XR K 100=) (3-1) 式中K 值可调节R X 的值来改变。
当取C 1=1μF ,C 2=1μF ,C 3=1μF ,时,三阶系统对应的闭环传递函数特征方程为:0.001S 3+0.03S 2+0.3S+1+2K=0根据劳斯稳定判据,欲使系统稳定,则K应满足:0<K<4。
即当K=4时,系统处于临界状态;K>4时,系统处于发散状态。
五、实验步骤1、根据图3-2所示的三阶系统的模拟电路图,设计并组建该系统的模拟电路(取C 1= C 2= C 3=1μF)。
当系统输入一阶跃信号时,在下列几种情况下,用上位软件观测并记录不同K 值时的实验曲线。
控制系统仿真与设计实验报告姓名:班级:学号:指导老师:刘峰7.2.2控制系统的阶跃响应一、实验目的1。
观察学习控制系统的单位阶跃响应;2。
记录单位阶跃响应曲线;3.掌握时间相应的一般方法;二、实验内容1.二阶系统G(s)=10/(s2+2s+10)键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。
(1)实验程序如下:num=[10];den=[1 2 10];step(num,den);响应曲线如下图所示:(2)再键入:damp(den);step(num,den);[y x t]=step(num,den);[y,t’]可得实验结果如下:实际值理论值峰值 1.3473 1.2975 峰值时间1。
0928 1。
0649 过渡时间+%5 2.4836 2.6352+%2 3.4771 3。
51362。
二阶系统G(s)=10/(s2+2s+10)试验程序如下:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[10];den1=[1 6.32 10];step(num1,den1);hold on;num2=[10];den2=[1 12.64 10];step(num2,den2);响应曲线:(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[2.5];den1=[1 1 2。
5];step(num1,den1);hold on;num2=[40];den2=[1 4 40];step(num2,den2);响应曲线如下图所示:3。
时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。