人工智能不确定性推理部分参考答案教学提纲
- 格式:doc
- 大小:37.00 KB
- 文档页数:7
3.1 概述一个人工智能系统,由于知识本身的不精确和不完全,采用标准逻辑意义下的推理方法难以达到解决问题的目的。
对于一个智能系统来说,知识库是其核心。
在这个知识库中,往往大量包含模糊性、随机性、不可靠性或不知道等不确定性因素的知识。
为了解决这种条件下的推理计算问题,不确定性推理方法应运而生。
归纳起来,不确定性推理方法研究产生的原因大致如下:·很多原因导致同一结果如多种原因引起同一种疾病。
例如,发烧可能因为感冒,也可能因为得了肺炎,需要进一步的知识才能作出具体判断。
·推理所需的信息不完备如勘探得到的地质分析资料不完备。
·背景知识不足由于人类认识水平的客观限制,客观世界的很多知识仍不为人们所认知。
在智能系统中,表现为所处理的知识的背景知识不完备。
如疾病的发病原因不十分明确。
·信息描述模糊这种现象十分普遍。
如"他不高不矮","今天不冷不热"等等。
在这类描述中,通常无法以一个量化的标准来描述,所描述的事物通常处在一个大致的范围。
比如,认为"身高在165cm-174cm 之间"的男士符合"不高不矮"的描述。
·信息中含有噪声噪声的存在干扰了人们对本源信息的认知,从而加大了认知上的难度。
如语音信号、雷达信号中的噪音干扰带来的信息模糊。
·规划是模糊的当需要对某个问题域进行划分时,可能无法找到一个清晰的标准。
如根据市场需求情况调节公司产品的内容和数量。
·推理能力不足必须考虑到实现的可能性,计算复杂度,系统性能。
如计算机的实现能力,推理算法的规模扩大能力有限等。
·解题方案不唯一没有最优方案,只有相对较优方案。
不实施,不能做出最后判断。
不精确思维并非专家的习惯或爱好所至,而是客观现实的要求。
在人类的知识和思维行为中,精确性只是相对的,不精确性才是绝对的。
知识工程需要各种适应不同类的不精确性特点的不精确性知识描述方法和推理方法。
第四章不确定性推理习题参考解答4.1 练习题4.1什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?4.2什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。
4.3什么是信任增长度?什么是不信任增长度?根据定义说明它们的含义。
4.4当有多条证据支持一个结论时,什么情况下使用合成法求取结论的可信度?什么情况下使用更新法求取结论可信度?试说明这两种方法实际是一致的。
4.5设有如下一组推理规则:r1:IF E1THEN E2(0.6)r2:IF E2AND E3THEN E4 (0.8)r3:IF E4THEN H (0.7)r4:IF E5THEN H (0.9)且已知CF(E1)=0.5,CF(E3)=0.6,CF(E5)=0.4,结论H的初始可信度一无所知。
求CF(H)=?4.6已知:规则可信度为r1:IF E1THEN H1(0.7)r2:IF E2THEN H1(0.6)r3:IF E3THEN H1(0.4)r4:IF (H1 AND E4) THEN H2(0.2)证据可信度为CF(E1)=CF(E2)=CF(E3)=CF(E4)=CF(E5)=0.5H1的初始可信度一无所知,H2的初始可信度CF0(H2)=0.3计算结论H2的可信度CF(H2)。
4.7设有三个独立的结论H1,H2,H3及两个独立的证据E1与E2,它们的先验概率和条件概率分别为P(H1)=0.4,P(H2)=0.3,P(H3)=0.3P(E1/H1)=0.5,P(E1/H2)=0.6,P(E1/H3)=0.3P(E2/H1)=0.7,P(E2/H2)=0.9,P(E2/H3)=0.1利用基本Bayes方法分别求出:(1)当只有证据E1出现时,P(H1/E1),P(H2/E1),P(H3/E1)的值各为多少?这说明了什么?(2)当E1和E2同时出现时,P(H1/E1E2),P(H2/E1E2),P(H3/E1E2)的值各是多少?这说明了什么?4.8在主观Bayes方法中,请说明LS与LN的意义。
《人工智能》课程习题与部分解答第1章 绪论什么是人工智能 它的研究目标是什么什么是图灵测试简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用 在人工智能的发展过程中,有哪些思想和思潮起了重要作用人工智能的主要研究和应用领域是什么其中,哪些是新的研究热点第2章 知识表示方法什么是知识分类情况如何什么是知识表示不同的知识表示方法各有什么优缺点 人工智能对知识表示有什么要求 用谓词公式表示下列规则性知识:自然数都是大于零的整数。
任何人都会死的。
[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。
李晓新比他父亲长得高。
产生式系统由哪几个部分组成 它们各自的作用是什么可以从哪些角度对产生式系统进行分类 阐述各类产生式系统的特点。
简述产生式系统的优缺点。
简述框架表示的基本构成,并给出框架的一般结构 框架表示法有什么特点试构造一个描述你的卧室的框架系统。
试描述一个具体的大学教师的框架系统。
[解] 一个具体大学教师的框架系统为: 框架名:<教师-1> 类属:<大学教师>姓名:张宇 性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。
[解]在基于语义网络的推理系统中,一般有几种推理方法,简述它们的推理过程。
人工智能不确定性推理部分参考答案不确定性推理部分参考答案1.设有如下一组推理规则:r1: IF E1 THEN E2 (0.6)r2: IF E2 AND E3 THEN E4 (0.7)r3: IF E4 THEN H (0.8)r4: IF E5 THEN H (0.9)且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。
求CF(H)=? 解:(1) 先由r1求CF(E2)CF(E2)=0.6 × max{0,CF(E1)}=0.6 × max{0,0.5}=0.3(2) 再由r2求CF(E4)CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}}=0.7 × max{0, min{0.3, 0.6}}=0.21(3) 再由r3求CF1(H)CF1(H)= 0.8 × max{0,CF(E4)}=0.8 × max{0, 0.21)}=0.168(4) 再由r4求CF2(H)CF2(H)= 0.9 ×max{0,CF(E5)}=0.9 ×max{0, 0.7)}=0.63(5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H)=0.6922 设有如下推理规则r1: IF E1 THEN (2, 0.00001) H1r2: IF E2 THEN (100, 0.0001) H1r3: IF E3 THEN (200, 0.001) H2r4: IF H1 THEN (50, 0.1) H2且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知:P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36请用主观Bayes方法求P(H2|S1, S2, S3)=?解:(1) 由r1计算O(H1| S1)先把H1的先验概率更新为在E1下的后验概率P(H1| E1)P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1)=(2 × 0.091) / ((2 -1) × 0.091 +1)=0.16682由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))= 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6)=0.091 + 0.18955 × 0.24 = 0.136492O(H1| S1) = P(H1| S1) / (1 - P(H1| S1))= 0.15807(2) 由r2计算O(H1| S2)先把H1的先验概率更新为在E2下的后验概率P(H1| E2)P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)=(100 × 0.091) / ((100 -1) × 0.091 +1)=0.90918由于P(E2|S2)=0.68 > P(E2),使用P(H | S)公式的后半部分,得到在当前观察S2下的后验概率P(H1| S2)和后验几率O(H1| S2)P(H1| S2) = P(H1) + ((P(H1| E2) – P(H1)) / (1 - P(E2))) × (P(E2| S2) – P(E2))= 0.091 + (0.90918 –0.091) / (1 – 0.6)) × (0.68 – 0.6)=0.25464O(H1| S2) = P(H1| S2) / (1 - P(H1| S2))=0.34163(3) 计算O(H1| S1,S2)和P(H1| S1,S2)先将H1的先验概率转换为先验几率O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011再根据合成公式计算H1的后验几率O(H1| S1,S2)= (O(H1| S1) / O(H1)) × (O(H1| S2) / O(H1)) × O(H1)= (0.15807 / 0.10011) × (0.34163) / 0.10011) × 0.10011= 0.53942再将该后验几率转换为后验概率P(H1| S1,S2) = O(H1| S1,S2) / (1+ O(H1| S1,S2))= 0.35040(4) 由r3计算O(H2| S3)先把H2的先验概率更新为在E3下的后验概率P(H2| E3)P(H2| E3)=(LS3× P(H2)) / ((LS3-1) × P(H2)+1)=(200 × 0.01) / ((200 -1) × 0.01 +1)=0.09569由于P(E3|S3)=0.36 < P(E3),使用P(H | S)公式的前半部分,得到在当前观察S3下的后验概率P(H2| S3)和后验几率O(H2| S3)P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)由当E3肯定不存在时有P(H2 | ¬ E3) = LN3× P(H2) / ((LN3-1) × P(H2) +1)= 0.001 × 0.01 / ((0.001 - 1) × 0.01 + 1)= 0.00001因此有P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)=0.00001+((0.01-0.00001) / 0.6) × 0.36=0.00600O(H2| S3) = P(H2| S3) / (1 - P(H2| S3))=0.00604(5) 由r4计算O(H2| H1)先把H2的先验概率更新为在H1下的后验概率P(H2| H1)P(H2| H1)=(LS4× P(H2)) / ((LS4-1) × P(H2)+1)=(50 × 0.01) / ((50 -1) × 0.01 +1)=0.33557由于P(H1| S1,S2)=0.35040 > P(H1),使用P(H | S)公式的后半部分,得到在当前观察S1,S2下H2的后验概率P(H2| S1,S2)和后验几率O(H2| S1,S2)P(H2| S1,S2) = P(H2) + ((P(H2| H1) – P(H2)) / (1 - P(H1))) × (P(H1| S1,S2) – P(H1))= 0.01 + (0.33557 –0.01) / (1 – 0.091)) × (0.35040 – 0.091)=0.10291O(H2| S1,S2) = P(H2| S1, S2) / (1 - P(H2| S1, S2))=0.10291/ (1 - 0.10291) = 0.11472(6) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)先将H2的先验概率转换为先验几率O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010再根据合成公式计算H1的后验几率O(H2| S1,S2,S3)= (O(H2| S1,S2) / O(H2)) × (O(H2| S3) / O(H2)) ×O(H2)= (0.11472 / 0.01010) × (0.00604) / 0.01010) × 0.01010=0.06832再将该后验几率转换为后验概率P(H2| S1,S2,S3) = O(H1| S1,S2,S3) / (1+ O(H1| S1,S2,S3))= 0.06832 / (1+ 0.06832) = 0.06395可见,H2原来的概率是0.01,经过上述推理后得到的后验概率是0.06395,它相当于先验概率的6倍多。
3 设有如下推理规则r1: IF E1 THEN (100, 0.1) H1r2: IF E2 THEN (50, 0.5) H2r3: IF E3 THEN (5, 0.05) H3且已知P(H1)=0.02, P(H2)=0.2, P(H3)=0.4,请计算当证据E1,E2,E3存在或不存在时P(H i | E i)或P(H i |﹁E i)的值各是多少(i=1, 2, 3)?解:(1) 当E1、E2、E3肯定存在时,根据r1、r2、r3有P(H1 | E1) = (LS1× P(H1)) / ((LS1-1) × P(H1)+1)= (100 × 0.02) / ((100 -1) × 0.02 +1)=0.671P(H2 | E2) = (LS2× P(H2)) / ((LS2-1) × P(H2)+1)= (50 × 0.2) / ((50 -1) × 0.2 +1)=0.9921P(H3 | E3) = (LS3× P(H3)) / ((LS3-1) × P(H3)+1) = (5 × 0.4) / ((5 -1) × 0.4 +1)=0.769(2) 当E1、E2、E3肯定存在时,根据r1、r2、r3有P(H1 | ¬E1) = (LN1× P(H1)) / ((LN1-1) × P(H1)+1) = (0.1 × 0.02) / ((0.1 -1) × 0.02 +1)=0.002P(H2 | ¬E2) = (LN2× P(H2)) / ((LN2-1) × P(H2)+1) = (0.5 × 0.2) / ((0.5 -1) × 0.2 +1)=0.111P(H3 | ¬E3) = (LN3× P(H3)) / ((LN3-1) × P(H3)+1) = (0.05 × 0.4) / ((0.05 -1) × 0.4 +1)=0.032。