真核生物基因组的特点
- 格式:ppt
- 大小:95.00 KB
- 文档页数:13
病毒、真核和原核生物的基因组结构特点病毒基因组结构特点:1.病毒基因组所含核酸类型不同2.不同病毒基因组大小相差较大3.病毒基因组可以是连续的也可以是不连续的4.病毒基因组的编码序列大5.基因可以是连续的也可以是间断的6.病毒基因组都是单倍体和单拷贝7.基因重叠8.病毒基因组功能单位或转录单位9.病毒基因组含有不规则结构基因(1)几个结构基因的编码区无间隔(2)结构基因本身没有翻译起始序列(3) mRNA没有 5’端的帽结构原核生物基因组结构特点:1.细菌等原核生物的基因组是一条双链闭环的DN A分子2.具有操纵子结构3.原核基因组中只有1个复制起点4.结构基因无重叠现象5.基因序列是连续的,无内含子,因此转录后不需要剪切6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基因组。
非编码区主要是一些调控序列7.基因组中重复序列很少8.具有编码同工酶的基因9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转录启动区和终止区等。
这些区域往往具有特殊的序列,并且含有反向重复序列真核生物基因组结构特点:1)真核基因组远远大于原核生物的基因组。
2)真核基因具有许多复制起点,每个复制子大小不一。
每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体,即含两份同源的基因组。
3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mR NA只能翻译成一种蛋白质。
4)真核生物基因组中含有大量重复顺序。
5)真核生物基因组内非编码的顺序(NCS)占90%以上。
编码序列占5%。
6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DN A,基因内非编码序列为内含子,被内含子隔开的编码序列则为外显子。
真核生物染色体基因组的结构和功能真核生物的基因组一般比较庞大,例如人的单倍体基因组由3×106bp硷基组成,但人细胞中所含基因总数大概会超过3万个。
这就说明在人细胞基因组中有许多DN A序列并不转录成mR NA用于指导蛋白质的合成。
研究发现这些非编码区往往都是一些大量的重复序列,这些重复序列或集中成簇,或分散在基因之间。
在基因内部也有许多能转录但不翻译的间隔序列(内含子)。
因此,在人细胞的整个基因组当中只有很少一部份(约占2-3%)的DNA序列用以编码蛋白质。
真核生物基因组有以下特点。
1.真核生物基因组DNA与蛋白质结合形成染色体,储存于细胞核内,除配子细胞外,体细胞内的基因的基因组是双份的(即双倍体,diploi d),即有两份同源的基因组。
2.真核细胞基因转录产物为单顺反子。
一个结构基因经过转录和翻译生成一个mRNA分子和一条多肽链。
3.存在重复序列,重复次数可达百万次以上。
4.基因组中不编码的区域多于编码区域。
5.大部分基因含有内含子,因此,基因是不连续的。
6.基因组远远大于原核生物的基因组,具有许多复制起点,而每个复制子的长度较小。
高度重复序列:高度重复序列在基因组中重复频率高,可达百万(106)以上。
在基因组中所占比例随种属而异,约占10-60%,在人基因组中约占20%。
高度重复顺序又按其结构特点分为三种(1)反向重复序列这种重复顺序约占人基因组的5%。
反向重复序列由两个相同顺序的互补拷贝在同一DNA链上反向排列而成。
变性后再复性时,同一条链内的互补的拷贝可以形成链内碱基配对,形成发夹式或“+”字形结构。
反向重复间可有一到几个核苷酸的间隔,也可以没有间隔。
没有间隔的又称回文结构,这种结构约占所有反向重复的三分之一。
真核生物基因组的主要特点
嘿,朋友们!今天咱来聊聊真核生物基因组那些超有意思的主要特点呀!
你知道吗,真核生物基因组那可真是个庞大而神秘的世界啊!就好比是
一个巨大的宝藏库。
比如说,人类的基因组,那包含的信息量简直惊人!它就像一本超级厚的百科全书,记载着我们身体的各种奥秘和密码。
真核生物基因组的第一个特点就是它很大呀!大到什么程度呢?就好像
是一望无际的宇宙,充满了无数的奥秘等待我们去探索。
想想看,那么多的基因都在里面呢,这得多复杂呀!“哎呀,这得有多少神奇的东西藏在里面呀!”
还有啊,它还有着复杂的结构呢!不是简单的一堆基因随便堆在一起。
这就好像是一座精心设计的大厦,不同的区域有着不同的功能。
“哇塞,这得是多么巧妙的安排呀!”
而且呢,真核生物基因组还有高度的重复性。
这就好像是一首曲子里不
断出现的旋律,看似重复却有着独特的意义。
“这重复性里肯定藏着什么重要的秘密吧!”
再说说它的可变性,这可太有意思啦!就像天气一样,有时阳光明媚,有时又会来点小变化。
比如在遗传过程中会发生一些突变,带来新的可能性。
“嘿,这可变性不就像是生活中的小惊喜或者小意外嘛!”
在探索真核生物基因组的道路上,科学家们就像勇敢的探险家,不断地去挖掘这些神秘之处。
而我们,也能从他们的发现中更好地了解生命的奥秘。
总之,真核生物基因组真的是非常神奇、非常复杂、非常有魅力的呀!我们应该对它充满好奇和敬畏,期待着更多关于它的惊人发现。
原核生物基因组和真核生物基因组的区别:1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。
还包括叶绿体、线粒体的基因组。
原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。
2、原核生物的染色体分子量较小,基因组含有大量单一顺序(unique-sequences),DNA仅有少量的重复顺序和基因。
真核生物基因组存在大量的非编码序列。
包括:.内含子和外显子、.基因家族和假基因、重复DNA序列。
真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。
3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。
质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。
转座因子一般都是整合在基因组中。
真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。
有的真核细胞中也存在质粒,如酵母和植物。
4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。
真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。
5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。
原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别由真核细胞构成的生物。
包括原生生物界、真菌界、植物界和动物界。
真核细胞与原核细胞的主要区别是:【从细胞结构】1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。
真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。
3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。
真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。
真核生物基因组的特点
x
一、真核生物基因组的特点
1、复杂的基因组
真核生物基因组通常非常复杂,其中含有各种各样的基因、控制序列和非编码序列。
真核生物基因组中存在的基因分布是非常分散的,而且基因的编码信息也相当复杂,所以被称为复杂的基因组。
2、高度信息密度
真核生物基因组的高度信息密度可以满足细胞机能的复杂性和
多样性。
真核生物基因组中的基因可作为特定机能的关键,其在基因组中的位置也很重要,因为基因的表达在基因组的某个特定位置受到其他一些基因的控制。
3、高基因重复率
真核生物基因组中存在一定水平的基因重复,这些重复序列的存在大大提高了基因组的复杂性和密度。
这些基因重复也可以用来检测基因定位因子及其功能。
4、特定的基因组结构
真核生物基因组的结构一般按照特定的模式进行组织,以适应生物体的特定需求。
这种结构使基因组中的基因能够更有效地执行其功能,这样就可以保证生物体的正常运行。
5、动态平衡
真核生物基因组具有非常复杂的结构,但它们之间仍然具有一定
程度的动态平衡。
这种动态平衡使得基因组能够不断地随着环境和活动变化进行改变和调节,从而保证生物体的正常运行和进化。
基因组的特点真核生物基因组的特点:1.基因组较大。
真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点;2.不存在操纵子结构。
真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上;3.存在大量的重复序列。
真核生物的基因组里存在大量重复序列,通过其重复程度可将其分成高度重复序列、中度重复序列、低度重复序列和单一序列;4.有断裂基因。
大多数真核生物为蛋白质编码的基因都含有“居间序列”,即不为多肽编码,其转录产物在mRNA前体的加工过程中被切除的成分;5.真核生物基因转录产物为单顺反子;6.功能相关基因构成各种基因家族。
原核生物基因组的特点:1.基因组较小,通常只有一个环形或线形的DNA分子;2.通常只有一个DNA复制起点;3.非编码区主要是调控序列;4.存在可移动的DNA序列;5.基因密度非常高,基因组中编码区大于非编码区;6.结构基因没有内含子,多为单拷贝,结构基因无重叠现象;7.重复序列很少,重复片段为转座子;8.有编码同工酶的等基因;9.基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;10.功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子。
病毒基因组的特点:1.不同病毒基因组大小相差较大;2.不同病毒基因组可以是不同结构的核酸;3.除逆转录病毒外,通常为单倍体基因组;4.有的病毒基因组是连续的,有的病毒基因组分节段;5.有的基因有内含子;6.病毒基因组大部分为编码序列;7.基因重叠,即同一段DNA片段能够编码两种或两种以上的蛋白质分子,这种现象在其他生物细胞中仅见于线粒体和质粒DNA。
真核生物是一类拥有真正的细胞核的生物。
它们的基因组结构与原核生物不同,具有以下几个特点:1.基因组大小不一:真核生物的基因组大小不一,从数百万到数十亿个碱基对不等。
这是因为真核生物的基因组中不仅包含编码蛋白质的基因,还包含其他功能基因,如调控基因、功能未知基因等。
2.基因组有组织结构:真核生物的基因组呈现出组织结构,分布在染色体上。
染色体是由DNA 和蛋白质构成的,在细胞核内进行染色体分离和细胞分裂过程中发挥重要作用。
3.基因组中含有多种基因:真核生物的基因组中含有多种基因,包括编码蛋白质的基因、调控基因、功能未知基因等。
这些基因在基因组中的分布不均匀,有的集中在染色体的某些区域,有的分布在整个基因组的各个部分。
4.基因组中含有冗余信息:真核生物的基因组中含有大量冗余信息,即同一基因的多个副本。
这是因为真核生物的基因组经常经历染色体重组,使得同一基因的多个副本分布在染色体的不同位置,从而增加了基因组的冗余度。
冗余信息在基因组的稳定性中起着重要作用,可以在基因组遭受损伤时提供替代品。
5.基因组中含有跨基因区:真核生物的基因组中含有跨基因区,即与编码蛋白质无关的DNA 序列。
这些序列可能具有调控基因表达的功能,也可能是遗传信息的载体。
跨基因区在基因组的结构和功能中发挥着重要作用。
总的来说,真核生物的基因组结构具有复杂性和多样性,与原核生物相比具有较大的差异。
这些差异决定了真核生物的生物学特征,如多倍体、染色体分离、细胞分裂、发育等。
研究真核生物的基因组结构,不仅有助于我们了解真核生物的生物学特征,还能为我们提供重要的基础知识,帮助我们解决生物学问题。
简述真核基因组的特点
1. 包含多个线性或环形染色体:真核生物的基因组由多个线性或环形染色体组成,每个染色体都包含一些基因序列。
2. 多态性:由于基因组中的染色体数量和长度在物种之间不同,所以基因组的大小和结构也会有很大的差异。
3. 含有非编码DNA:真核基因组中的非编码DNA占据较大比例,其中包括起调控作用的微小RNA和长链非编码RNA等。
4. 转录后修饰:真核生物的核糖体需要在转录后修饰RNA分子才能参与蛋白质的合成。
这样的修饰包括剪切、剪接、降解等过程。
5. 含有不连续基因:真核基因组中的基因序列通常不是连续的,而是由多个内含子和外显子组成,其中外显子的序列会被翻译成蛋白质序列。
6. 具有单倍性:真核细胞中的每个染色体都是来自配子的一个单倍体,在合子中形成双倍体。
这种单倍性也是真核基因组的一个重要特点。
真核生物细胞核基因组的特点
真核生物细胞核基因组与原核生物基因组相比,具有以下主要特点:
1.基因组大小更大
真核生物细胞核基因组的大小通常在几百万到几十亿碱基对之间,大大超过原核生物。
这是由于真核基因组包含大量的非编码DNA序列。
2.线性分子结构
真核生物的DNA分子以线性形式存在于细胞核内,而不是环状结构。
3.含有间隔子
真核基因的编码序列常常被非编码的内含子序列所间隔,需要剪切才能形成成熟mRNA。
而原核基因一般不含内含子。
4.基因组分为多条染色体
真核基因组通常由多条线性染色体DNA分子组成,每条染色体携带成百上千个基因。
5.含有大量重复序列
真核基因组中存在大量的高度重复和中度重复的非编码DNA序列。
6.基因表达受精细调控
真核生物基因的转录和翻译过程受多种调控机制的复杂调节,如染色质重塑、转录因子等。
7.存在序列可移动性
真核基因组中存在转座子和反转录病毒等可移动的DNA序列元件。
8.基因组进化较缓慢
由于真核生物有性生殖,其基因组进化速率较原核生物慢。
总的来说,真核生物细胞核基因组不仅规模大、结构复杂,而且基因表达和进化模式也与原核生物有所不同,反映了真核生物更高级的遗传调控水平。
真核生物基因组的特点 -回复
真核生物基因组的特点有以下几个方面:
1. 基因组大小:真核生物的基因组通常比原核生物和病毒的基因组要大。
真核生物基因组的大小范围广泛,从几万个碱基对到几十亿个碱基对不等。
2. 基因密度:相比于原核生物,真核生物的基因密度较低。
真核生物的基因通常具有较多的非编码区域和间隔序列。
3. 基因副本数:真核生物的基因组中存在许多基因家族,即多个亲缘关系密切的基因。
这些基因可能会经历基因重复、基因家族扩张等过程。
4. 内含子:真核生物基因组的基因通常具有内含子,即非编码序列片段,它们在基因转录后会被剪切掉。
5. 组蛋白修饰:真核生物基因组的DNA通常被染色质蛋白修饰,以调控基因的表达。
这些修饰包括DNA甲基化、组蛋白乙酰化、甲基化等。
6. 染色体结构:真核生物的基因组通常以染色体的形式存在,染色体是DNA与蛋白质组成的复杂结构,能够保护和组织基因。
总的来说,真核生物基因组相比于原核生物基因组更为复杂。
这些特点反映了真核生物对更高级的基因调控和功能的需求。