初四数学典型题练习
- 格式:doc
- 大小:134.00 KB
- 文档页数:5
初四数学练习题 一、选择: 1、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是52,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为41,则原来盒里有白色棋子( ) A .1颗 B .2颗 C .3颗D .4颗 2、下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是( )A .B .C .D .3、若一个圆锥的母线长是它底面半径的3倍,则它的侧面展开图的圆心角等于( )A .120°B .135°C .150°D .180°4.半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为( )A . 465或14 B .465或4 C .14 D .4或14 5.若x 1,x 2是方程x 2-2x-4=0的两个不相等的实数根,则代数式2x 12-2x 1+x 22+3的值是( ) A .19 B .15 C .11 D .36.如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm的速度运动,同时动点N 自A 点出发沿折线AD-DC-CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2).运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空: 7、方程(x+2)(x+3)=20的解是__________8.如图,图1,图2,图3,…是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是__________.9、如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC=150°,则∠θ的度数是______度.10.如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (5,3),则这束光从点A 到点B 所经过的路径的长为_______三、解答题11、如图,小明在大楼45米高(即PH=45米,且PH ⊥HC )的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处得俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1:3.(点P 、H 、B 、C 、A 在同一个平面上.点H 、B 、C 在同一条直线上)(1)∠PBA 的度数等于______度;(直接填空)(2)求A 、B 两点间的距离(结果精确到0.1米,参考数据:2≈1.414,3≈1.732).12、如图,已知抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(4,-32),且与y 轴交于点C (0,2),与x 轴交于A ,B 两点(点A 在点B 的左边).(1)求抛物线的解析式及A 、B 两点的坐标;(2)在(1)中抛物线的对称轴l 上是否存在一点P ,使AP+CP 的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)以AB 为直径的⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE的解析式.(选做)4、(选做)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.课题:初四数学练习题讲评重点:1、二次函数的综合应用2、几何图形的性质难点:圆及图形的变换教学目标:1、巩固基础知识2、函数的图象及其应用3、图形变换题目的分析与解决教学过程:一、作业小结:二、重点题目分析点评:5、欲求2x12-2x1+x22+3的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解:由题意可得x12-2x1=4,x1x2=-4,x1+x2=2.∴2x12-2x1+x22+3 =x12-2x1+x12+x22+3 =x12-2x1+(x1+x2)2-2x1x2+3=4+4+8+3=19.6、当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,的面积关系式为一个一次函数;当N在BC上时,但底边在增大,所以S△AMN表示出S的关系式,根据开口方向判断出相应的图象即可.△AMN9、根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,∵△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,∠BAC=150°,∴∠DAC=∠BAE=∠BAC=150°.∴∠DAE=∠DAC+∠BAE+∠BAC-360°=150°+150°+150°-360°=90°.∴∠θ=∠EAC=∠DAC-∠DAE=60°.10、先过点B作BD⊥x轴于D,由A(0,2),B(5,3),即可得OA=2,BD=3,OD=5,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.解答:11、(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC 的长即为AP+CP 的最小值;(3)连接ME ,根据CE 是⊙M 的切线得到ME ⊥CE ,∠CEM=90°,从而证得△COD ≌△MED ,设OD=x ,在RT △COD 中,利用勾股定理求得x 的值即可求得点D 的坐标,然后利用待定系数法确定线段CE 的解析式即可. 解:(1)由题意,设抛物线的解析式为y=a (x-4)2-32 求得∴y=61(x-4)2-32,令y=0可求得A (2,0),B (6,0);(2)因为A 、B 两点关于l 对称,连接CB交l 于点P ,则AP=BP ,所以AP+CP=BC 的值最小 BC=210(3)如图,连接ME∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE易证△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x ,则CD=DM=OM-OD=4-x则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2∴x=23∴D (23,0) 设直线CE 的解析式为y=kx+b (k≠0),∵直线CE 过C (0,2),D (23,0)两点,求得直线CE 的解析式为y=-34x+2 三、学生事理改错四、板书设计:五、反思:。
初四数学精选习题一、必做题1.如图,AB是⊙O的直径,C为⊙O上一点,过点C作⊙O的切线CD,切点为C,AD⊥CD,若CD=6,AD=10,则⊙O的直径AB的长为_________.2.如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=48°,∠DCF=36°,则∠A的度数是_________度.3.木匠师傅要把边长为16的正六边形木板桌面改成圆形桌面,则改成的圆形桌面的最大直径为4.如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,折痕分别交AB、AC于D、E,若BC=5,则线段DE的长为5. 如图,AB是圆O的直径,C是AB延长线上的一点,CD是圆O的切线,切点为D,CE平分∠ACD,交AD于点E,(1)∠A=30°,半径为5;求DC的长(2)求∠DEC的度数.6.如图,AB是⊙O的直径,过⊙O上的点E作⊙O的切线,交AB延长线于点C,过A点作AD⊥CE于点D,且与⊙O交于点F,连接AE、BF.(1)AE是否为∠CAD的平分线,说明理由;(2)若CB=4,CE=8,求⊙O的半径及BF的长.7.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O 于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=4,AC=4,求AE的长.8.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,且∠BAC=∠CAD,过点C作CE⊥AD,垂足为E.(1)试判断CE与⊙O的位置关系,并说明理由;(2)若AB=10,AC=8,求CE.二、选做题1.已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.(1)求证:PA是⊙O的切线;(2)若AF=6,BC=16,求AE的长.2.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=12 sinC=时,求⊙O的半径.。
初四期末数学试卷一.选择题(共12小题)1.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.若关于x一元二次方程x2-2x+kb+1=0有两个不相等实数根,则一次函数y=kx+b大致图象可能是()A.B.C.D.3.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠04.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B. C. D.5.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°7.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定8.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.10.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.411.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.6题图7题图10题图11题图12.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°二.填空题(共8小题)13.如图在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=14.规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°=.15.如图点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,则它的面积为.16.如图已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.17.关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=.18.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是.19.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个20.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.13题图15题图16题图20题图三.解答题(共10小题)21.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.22.如图所示抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.23.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=2.5.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.24.如图AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证BC是⊙O切线;(2)连接AF,BF,求∠ABF度数;(3)若CD=15,BE=10,sinA=,求⊙O半径.25.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.26.有三张卡片(形状,大小,颜色,质地都相等),正面分别写上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀.从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图或列表方法,写出代数式所有可能结果;(2)求代数式恰好是分式概率.27.如图在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数图象交于C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求出两个函数解析式;(2)求△OCD的面积.28.如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.29.如图一艘海上巡逻船在A地巡航,测得A地在观测站B的南偏东45°方向上,在观测站C的南偏西60°方向上,观测站B在观测站C的正西方向,此时A地与观测站B的距离为20海里.(1)求A地与观测站C的距离是多少海里?(2)现收到故障船D的求救信号,要求巡逻船从A地马上前去救援(C,A,D共线).已知D船位于观测站B的南偏西15°方向上,巡逻船的速度是12海里/小时,求巡逻船从A地到达故障船D处需要多少时间?(结果保留小数点后一位,参考数据≈1.41,≈1.73,≈2.24)30.阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为(﹣)2≥0,所以a﹣2+b≥0从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+;(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+10(x>﹣1),当x=时,的最小值为;问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)参考答案一选择题1.B;2.B;3.A;4.C;5.D;6.D;7.B;8.D;9.B;10.B;11.C;12.D 二.填空题13.;14.;15.2;16.16;17.26;18.k≥1;19.3;20.;三.解答题21.解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,+x2=-(2k+1)<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,解得:k>3/4;(2)∵k>3/4,∴x1∴PD/PC=PA/PD ,设OA=x ,∴PA=x ,PO=2x ,∴4/2X=X/4,∴2x =16,x=22,∴OA=2226.解:(1)画树状图:列表: (2,第二次第一次x 2+1-x 2-23 x 2+11222+--x x 132+x -x 2-22122--+x x 232--x 3 312+x 322--x。
初四数学测试题及答案测试题:1. 某商店以原价售卖商品,现在打8.5折出售。
如果一件商品原价100元,打折后的价格是多少?2. 小明用一根长度为12厘米的铁丝做了一个正方形,求这个正方形的面积。
3. 某班级共有30名同学,其中男生占总人数的40%。
女生人数是男生人数的3倍。
那么女生人数是多少?4. 一辆汽车以每小时80公里的速度行驶,如果行驶5小时,总共行驶了多少公里?5. 某书店共有480本书,其中2/5是故事书。
那么故事书的数量是多少?答案:1. 打折后价格 = 原价 ×折扣打折后价格 = 100元 × 0.85 = 85元所以,打折后的价格是85元。
2. 正方形的边长 = 铁丝总长度 ÷ 4正方形的边长 = 12厘米 ÷ 4 = 3厘米正方形的面积 = 边长 ×边长正方形的面积 = 3厘米 × 3厘米 = 9平方厘米所以,这个正方形的面积是9平方厘米。
3. 男生人数 = 总人数 ×男生比例男生人数 = 30人 × 0.4 = 12人女生人数 = 男生人数 × 3女生人数 = 12人 × 3 = 36人所以,女生人数是36人。
4. 总行驶公里数 = 速度 ×时间总行驶公里数 = 80公里/小时 × 5小时 = 400公里所以,总共行驶了400公里。
5. 故事书的数量 = 全部书的数量 ×故事书比例故事书的数量 = 480本 × 2/5 = 192本所以,故事书的数量是192本。
以上是初四数学测试题及答案,希望对你的学习有所帮助。
1.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=35,AB =4,则AD的长为( )A .3 B.163 C.203 D.165第1题图 第2题图 第3题图2.如图,菱形ABCD 的边长为10,sin ∠BAC =35,则对角线AC 的长为________.3.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是________.4.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,tan A =43,则CD =________.第4题图 第5题图 第6题图5.如图,在正方形ABCD 外作等腰直角△CDE ,DE =CE ,连接BE ,则tan ∠EBC =________.6.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =55cm ,且tan ∠EFC =34,那么矩形ABCD 的周长为________cm.7.如图,矩形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 于点E .(1)求证:∠BAM =∠AEF ;(2)若AB =4,AD =6,cos ∠BAM =45,求DE 的长.8.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值; (2)求线段AH 的长.9.如图,直线y =34x +3与x 、y 轴分别交于A 、B 两点,则cos ∠BAO 的值是( )A.45B.35C.43D.54第9题图 第10题图10.如图,P (12,a )在反比例函数y =60x 图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为________.11.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin E 的值为( )A.12B.22C.32D.33第11题图 第12题图 第13题图12.如图,四边形BDCE 内接于以BC 为直径的⊙A ,若BC =10,cos ∠BCD =35,∠BCE=30°,则线段DE 的长是( )A.89 B .73 C .4+3 3 D .3+4 313.如图,已知⊙O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则tan ∠OP A 的值是________.14.如图,圆O 的直径AB =8,AC =3CB ,过C 作AB 的垂线交圆O 于M ,N 两点,连接MB ,则∠MBA 的余弦值为________.第14题图 第15题图15.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径是4,sin B =14,则线段AC 的长为________.16.如图,在△ABC 中,∠C =90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连接EF .(1)求证:∠1=∠F ;(2)若sin B =55,EF =25,求CD 的长.17.如图,AB 为⊙O 的直径,CO ⊥AB 于O ,D 在⊙O 上,连接BD ,CD ,延长CD 与AB 的延长线交于E ,F 在BE 上,且FD =FE .(1)求证:FD 是⊙O 的切线;(2)若AF =8,tan ∠BDF =14,求EF 的长.。
初四中考数学试卷一、选择题(共12小题)1.(2012江西)-1的绝对值是(的绝对值是( )A. 1 B. 0 C.-1 D. ±1 绝对值。
考点:绝对值。
分析:根据绝对值的性质进行解答即可.根据绝对值的性质进行解答即可.解答:解:∵-1<0,∴|-1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.的绝对值是零.2.(2012南昌)在下列表述中,不能表示代数式“4a”的意义的是(的意义的是( )A. 4的a倍B.a的4倍C. 4个a相加相加 D. 4个a相乘相乘 代数式。
考点:代数式。
分析:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.要说出运算的最终结果.,故本选项正确;解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.有统一规定,以简明而不引起误会为出发点.3.(2012江西)等腰三角形的顶角为80°,则它的底角是(,则它的底角是( )A. 20°B. 50°C. 60°D. 80°考点:等腰三角形的性质。
等腰三角形的性质。
根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°-80°)÷2=50°.故选B.考查三角形内角和定理和等腰三角形的性质的运用,比较简单.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2012江西)下列运算正确的是(江西)下列运算正确的是( )A.a3+a3=2a6B.a6÷a-33=a3C.a3a3=2a3D.(-2a2)3=-8a6同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
初四数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是有理数?A. πB. -3C. 0.5D. √42. 如果一个数的平方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 以上都是3. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米4. 以下哪个表达式是正确的?A. (-2)^2 = -4B. √16 = 4C. (-3)^3 = -27D. √9 = -35. 如果a > b,且b > 0,那么下列哪个不等式是正确的?A. a + b < bB. a - b > 0C. a * b < 0D. a / b < 16. 下列哪个是二次根式?A. √2xB. 3x + 2C. 4x^2D. 5x^37. 一个三角形的三边长分别为3, 4, 5,这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形8. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 零D. 以上都是9. 以下哪个表达式是正确的?A. 2x + 3y = 5xB. 3x - 2y = 5x + 2yC. 4x^2 - 9y^2 = (2x + 3y)(2x - 3y)D. x^2 - y^2 = (x + y)(x - y)10. 一个数的倒数是1/4,这个数是:A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 如果一个数的相反数是-5,那么这个数是________。
12. 一个数的立方等于它本身,这个数可能是________、________、________。
13. 一个数的平方根是4,那么这个数是________。
14. 如果a + b = 10,且a - b = 2,那么2a的值是________。
15. 一个圆的周长是2πr,其中r是圆的半径,如果周长是12.56厘米,那么半径是________。
1. 下列各数中,正数是()A. -3B. 0C. 3D. -2.52. 下列各数中,无理数是()A. √9B. √16C. √25D. √-43. 下列各式中,正确的是()A. a^2 = b^2 => a = bB. a^2 = b^2 => a = -bC. a^2 = b^2 => a = ±bD. a^2 = b^2 => a = 04. 若a、b是方程2x^2 - 5x + 2 = 0的两根,则a + b的值为()A. 2B. 5C. 10D. -25. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)6. 若a、b、c是等差数列,且a + b + c = 9,则a^2 + b^2 + c^2的值为()A. 27B. 45C. 36D. 547. 下列各函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^58. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/29. 下列各三角形中,是直角三角形的是()A. 三边长分别为3、4、5B. 三边长分别为5、12、13C. 三边长分别为6、8、10D. 三边长分别为7、24、2510. 下列各数中,是二次根式的是()A. √4B. √-4C. √-1D. √011. 若x^2 - 4x + 3 = 0,则x的值为______。
12. 若sinα = 3/5,且α为锐角,则cosα的值为______。
13. 在等差数列{an}中,若a1 = 3,公差d = 2,则第10项an =______。
14. 若a、b、c是等比数列,且a + b + c = 24,ab = 48,则c的值为______。
15. 在直角坐标系中,点P(-3,2)到直线x + 2y - 1 = 0的距离为______。
1.为帮助贫困山区孩子学习,某学校号召学生自愿捐书.已知七、八年级同学捐书总数相等都是900本,八年级捐书人数比七年级多30人,七年级人均捐书数量是八年级人均捐书数量的1.2倍.求八年级人均捐书的数量.2.甲乙两人同驾一辆汽车出游,各匀速驾驶一半路程,共用3小时.到达目的地后,甲对乙说:“我用你所花的时间,可以行使”.乙对甲说:“我用你所花的时间,只能行使”.试求乙驾车的时长是多少小时.3.在疫情防控常态化背景下,每周需要对面积为4800平方米的仓库进行一次全面消毒工作.最初采用人工操作完成消毒任务.为提高效率采用机器人消毒,机器人消毒每分钟消毒面积比人工操作多60平方米,并且提前40分钟完成消毒任务.求人工操作每分钟消毒面积为多少平方米.4.有一面积为150平方米的长方形养鸡场,养鸡场的一边靠墙,墙对面设一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求养鸡场的长和宽各是多少米.5.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.6.某地计划对矩形广场进行扩建改造.如图,将一块面积为1000m2的原广场,向其四周扩充一条宽度相等的人行道,要求扩充后的矩形广场长60m、宽30m.试求扩充的人行道的宽度.7.平遥牛肉久负盛名.据史料记载,清代时已誉满三晋.其制作工艺独特,用料讲究,所产牛肉营养丰富,具有扶胃健脾之功效.某特产店以每千克110元的价格购进一批平遥牛肉,当按每千克140元的价格出售时,平均每天可销售30千克.“十一”期间,为了尽可能扩大销售量,商家决定降价销售.经调查发现,每千克降价1元,每天可多卖2千克.若该经销商想要每天获利1000元,则每千克应降价多少元?8.某小家电经销商销售一种成本为每个50元的台灯.当每个台灯的售价定为80元时,每周可卖出600个,为了尽可能让利于顾客,经销商决定降价销售.经市场调查发现,这种台灯每周的销量每增加100个,该台灯的售价相应降低2元.如果该经销商每周要获得利润22000元,那么这种台灯的售价应为多少元?9.某种商品标价500元/件,经过两次降价后售价为405元/件,并且两次降价的百分率相同.求这种商品每次降价的百分率.10.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方米提高到24.2平方米,求城镇居民住房面积的年平均增长率.11.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,以维护老百姓的利益.某种药品原价100元/瓶,经过连续两次降价后,现在仅卖81元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.17.甲、乙两支工程队修建公路,已知甲队每天修路的长度比乙队每天修路的长度多50米,甲队修路600米与乙队修路300米用的天数相同.(1)求甲、乙两支工程队每天各修路多少米?(2)计划修建长度为3600米的公路,因工程需要,甲、乙两支工程队都要参与这条公路的修建.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,在总费用不超过40万元的情况下,至少安排乙队施工________天.18.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成48万只口罩的生产比甲厂单独完成48万只口罩的生产多用4天.(1)求甲、乙厂每天分别可以生产多少万只口罩?(2)该地委托甲、乙两厂尽快完成100万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?答案解析部分一、解答题1.【答案】解:设八年级人均捐书x本.根据题意,得,解得:x=5经检验,x=5是原方程的解,且符合题意.答:八年级人均捐书5本.【解析】【分析】设八年级人均捐书x本,则七年级人均捐书1.2x本,根据捐书人数=捐书总量÷人均捐书数量,结合八年级捐书人数比七年级多30人,即可得出关于x的分式方程,解之经检验后即可得出结论.2.【答案】解:设乙驾车的时长为x小时,则甲驾车的时长为小时.由题知甲的速度为,乙的速度为,可得方程解得,.经检验,是原方程的解,当不合题意,舍去.答:乙驾车的时长为1.8小时.【解析】【分析】设乙驾车的时长为x小时,则甲驾车的时长为小时.由题知甲的速度为,乙的速度为,可得方程,解之即可。
初四数学试题一、选择题,每小题3分1、如果反比例函数的图象经过点(1.-2),则它还一定经过()A.(2,-1)B.(,2)C.(-2,-1)D.(,2)2、对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小3、已知二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()A.-3B.-1C.2D.54、将函数与函数的大致图像画在同一坐标系牟,正确的函数图像是()5、点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=−3x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y36、在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确7、在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于()A.B.C.D.8、如图,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()A. B. C. D.7 8 99、如图所示,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知AO=,AB=1,则点A1的坐标是()A.()B.()C.()D.()10、如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是( )A. B. C. D.11、下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=a x2+bx+cC.s=2t2-2t+1D.y=x2+1/x12、如果函数的图象是双曲线,而且在第二、四象限,那么k=().A. B.-1 C. D.113、当时,下列函数中,函数值y 随自变量x 增大而增大的是____________(只填写序号) ①;②;③;④y=x 214、若点A(m ,-2)在反比例函数y=1/x 的图象上,则当函数值y ≥-2时,自变量x 的取值范围是 .15、如图,在△ABC 中,∠A=30°,∠B=45°,AC=2√3,则AB 的长为 .16、在Rt △ACB 中,若∠C =90°,sin A =,b +c =6,则b=.17、小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为______米 18、函数y=√1−x √2x−1有意义,则x 的取值范围 。
初四数学圆典型题练习
1、如图,A是半径为的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦
BC∥OA,则BC的长为()
A.B. 2 C. D.4
2、如图,⊙O的半径为2,点A的坐标为(2,),
直线AB为⊙O的切线,B为切点.则B点的坐标
为()
A.
B.C. D.
3、如图,在直角坐标系中,四边形OABC为正方形,顶点A.C
在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐
标为(0,8),则圆心M的坐标为()
A.(4,5) B.(-5,4) C.(-4,6) D.(-4,5)
4、AB是半圆的直径,延长AB至C,使CB=BO,OC=4,点P是半圆上一动点(不与
A、B重合),∠ACP=a,则a的取值范围是()
A、0°<a≤30。
B、0°<a≤45°
C、0°<a≤60°
D、不确定
5、如下图,△ABC的三边分别切⊙O于D,E,F,若∠A=40°,
则∠DEF= 。
6、如下图,已知直线BC切⊙O于点C,PD为⊙O 的直
径,BP的延长线与CD的延长线交于点A,∠A=28°,
∠B=26°,则∠PDC等于()
A.34°B.36° C.38° D.40°
7、如图,已知点E是圆O上的点,B、C分别是劣弧的
三等分点,,则的度数
为.
8、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的
高是4cm,底面周长是6πcm,则扇形的半径为()
A.3cm B.5cm C.6cm D.8cm
9、如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧
面展开图所对应扇形圆心角的度数为()
A. B.C. D.
10、如图,已知圆锥的母线OA=8,底面圆的半径r=2,若一只小虫
从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的
最短路线的长是_______________。
11、如图2447,AB切⊙O于点B,OA=2 ,AB=3,弦BC∥OA,
则劣弧BC的弧长为( )
A.π
B.π C.π D.π
12、如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD在直线L上按顺时针方向不滑动的每秒转动900,转动3秒后停止,则顶点A经过的路线长为
13、如图3,边长为a的六角螺帽在桌面上滚动(没有滑
动)一周,则它的中心O点所经过的路径长为()
A.6a B.5a C.2aπD.aπ
14、如图,半径为cm的⊙O从斜坡上的A点处沿斜
坡滚动到平地上的C点处,已知∠ABC=120°,AB=10 cm,BC=20cm,那么圆心O运动所经过的路径长度为()
A.30cm B.29cm
C.28cm D.27cm
15、如图,反比例函数y=(k>0)的图象与以原
点(0,0)为圆心的圆交于A,B两点,且A(1,),
图中阴影部分的面积等于.(结果
保留π)
16、如图,扇形OAB是一个圆锥的侧面展开图,若
小正方形方格的边长为1,则这个圆锥的底面半径
为.
17、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)
的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()
A. B. C. D.
18、如图,在每个小正方形边长都为1的正方形网格中,经
过格点A、B、C的弧所在圆的面积为.(结
果保留准确值)
19、如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)
的面积是()
A.(10π﹣)米2 B.(π﹣)米2
C.(6π﹣)米2D.(6π﹣)米
20、如图,⊙O是正五边形ABCDE的外接圆,
则∠CAD= °.
21、一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是--------()
A 5:4 B.5:2
C.:4 D.:
22、如图,若干全等正五边形排成环状。
图中所示的是前3个五边形,要完成这一圆环还需要()个五边形。
A.7 B.8 C.9 D.10。