初四上学期数学期末质量检测试题及答案
- 格式:pdf
- 大小:528.51 KB
- 文档页数:6
初四第一学期期末学业水平测试数学试卷一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,每小题3分,共36分,错选、不选或选出的答案超过一个,均记0分) 1.如下图,在Rt △ABC 中,23B tan =,32BC =,则AC 等于A .3B .4C .34D .62.把抛物线2x y =向右平移2个单位得到的抛物线是A .22+=x yB .22-=x yC .2)2(+=x yD .2)2(-=x y3.二次函数c bx ax y ++=2)0(≠a 的图像如下图所示,当0<y 时,x 的取值范围是A .31<<-xB .3>xC .1-<xD .3>x 或1-<x4.桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左视图是5.下列图形中的曲线不表示y 是x 的函数的是6.二次函数c bx ax y ++=2)0(≠a 的图像如下图所示,则下列结论:①0>ac ;②0>b ;③042>-ac b ,其中正确的个数是A .0个B .1个C .2个D .3个7.如下图,在⊙O 中,AB 是弦,OC ⊥AB ,垂足为C ,若AB=16,OC=6,则⊙O 的半径OA 等于A .16B .10C .12D .88.下列说法正确的是A .垂直于半径的直线是圆的切线B .过三点A 、B 、C 一定可以确定一个圆 C .平分弦的直径垂直于弦D .相等的弦所对的弧不一定相等9.一个函数的图像如下图,给出以下结论:①当0=x 时,函数值最大;②当20<<x 时,函数y 随x 的增大而减小;③存在100<<x ,当0x x =时,函数值为0。
其中正确的结论是 A .①②B .①③C .②③D .①②③10.如下图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则EAB sin ∠的值为A .34B .43 C .54 D .53 11.若同一个圆的内接正三角形、正方形、正六边形的边心距分别为643r r r ,,,则643::r r r等于A .3:2:1B .1:2:3C .1︰2︰3D .3︰2︰112.如下图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿AO 所在的直线行走14米到点B 时,人影长度A .变长3.5米B .变短3.5米C .变长2.5米D .变短2.5米二、填空题(本题共5小题,满分20分,只要求填写最后结果,每小题填对,得4分) 13.一名滑雪运动员从坡比为1︰5的山坡上滑下.如果这名运动员滑行的距离是150米,那么他下滑的高度是_________米(用精确值表示)。
2018—2019学年度第一学期期末质量检测初四数学试题答案(仅供参考)一、选择题(各小题的四个选项中,只有一项符合题意,每小题3分,共30分,请把答案写在答题框内)1.A2.B3.D4.B5.B6.C7.B8.A9.D 10.B二、填空题(每小题3分,共15分)2 15.②③④11.2000米 12.2.4 13.24 14.216.(本题满分6分)解:(1)如图所示:(2)根据题意得出:0.8×0.8×5+0.8π×0.8=(0.64π+3.2)(m2),40×(0.64π+3.2)≈208.4(元),答:一共需要花费207.4元.17. (本题满分6分)解:画树状图如下:由树状图可知,共有6种等可能结果,其中选修地理和生物的只有1种结果,所以选修地理和生物的概率为,故答案为:.18. (本题满分6分)解:(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.19.(本题满分6分)解:(1)∵∠EDC+∠EDA=180°、∠B+∠EDA=180°,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠EDC=∠C,∴ED=EC;(2)连接AE,∵AB是直径,∴AE⊥BC,又∵AB=AC,∴BC=2EC=43,∵∠B=∠EDC、∠C=∠C,∴△ABC∽△EDC,∴AB:EC=BC:CD,又∵EC=23、BC=43、CD=3,∴AB=8.20. (本题满分7分)解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D.C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=21. (本题满分8分)解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴,(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(3)S=24x﹣3x2=﹣3(x﹣4)2+48∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.即:x=m,最大面积为:=24×﹣3×()2=46.67m222. (本题满分8分)解:(1)如图作PF⊥x轴于F,QE⊥x轴于E.则OF=OP•cosα,PF=OP•sinα,∴x1=cosα,y1=sinα,故答案为cosα,sinα;(2)①结论:y1=﹣x2.理由:过点P作PF⊥x轴于点F,过点Q作QE⊥x轴于点E.∴∠PFO=∠QEO=∠POQ=90°,∴∠POF+∠OPF=90°,∠POF+∠QOE=90°,∴∠QOE=∠OPF,∵OQ=OP,∴△QOE≌△OPF,∴PF=OE,∵P(x1,y1),Q(x2,y2),∴PF=y1,OE=﹣x2,∴y1=﹣x2②当P在x轴上时,得到y1+y2的最小值为1,∵y1+y2=PF+QE=OE+OF=EF,∵四边形QEFP是直角梯形,PQ=,EF≤PQ,∴当EF=PQ=时,得到y1+y2的最大值为,∴1<y1+y2≤.故答案为1<y1+y2≤.23. (本题满分8分).(2)PB=PE,理由是:如图2,连接OB,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°,∵∠OBN+∠COB=90°,∴∠PBN=∠COB,∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN,∴PB=PE;。
密封 线内不 许 答 题考号班 级 姓 名2019~2020学年度上学期期末质量监测初 四 数 学 试 题(全卷满分120分,考试时间120分钟)题号 一 二 19 20 21 22 23 24 25 26总分 得分一、选择题(本大题共10小题,每小题3分,共30分.1.在Rt △ABC 中,∠C =90°,cos A =53,AC =6cm ,那么BC 的长度是( )A .8cmB .524cmC .518cmD .56cm2.已知,点A (1,y 1),B (2,y 2)在抛物线y =-(x +1)2+2上,则下列结论正确的是( )A. 2> y 1> y 2B. 2 > y 2 > y 1C. y 1> y 2>2D. y 2 > y 1>2 3.对二次函数236y x x =-的图像,下列说法不正确的是( )A .开口向上B .对称轴为直线x =1C .顶点坐标为(1,-3)D .最小值为3 4.如图,A 、B 、P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .2C .2D .45.平面内一点P 到⊙O 的最大距离和最小距离分别为2cm 和6cm ,则⊙O 的直径长为( )A .4cmB .8cmC .4cm 或8cmD .6cm 6.将抛物线216212y x x =-+向左平移2个单位后,得到新抛物线解析式为( )A .5)8(212+-=x y B .5)4(212+-=x y C .3)8(212+-=x y D .3)4(212+-=x y7.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆 心在格点上,则∠BED 的正切值等于( ) A .255 B .55 C .2 D .128.如图,AB 是半圆的直径,点D 是AC 的中点,∠ABC =50°,则∠DAB 的度数是( )A .55°B .60°C .65°D .70°9.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .B .C .D .10.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,分析下列五个结论:①abc <0;②b 2-4ac >0;③3a +c >0;④(a +c )2<b 2;⑤b <2a . 其中结论正确的个数是( )A .1个B .2个C .3个D .4个密封 线内不许 答题二、填空题(本大题共8小题,每小题3分,共24分)11.二次函数y =(x -1)2+3图象的顶点坐标是__________12.在⊙O 中,圆心角∠AOB 的度数为100°,则弦AB 所对的圆周角度数为_______. 13.若tan (α-15°)=3,则锐角α的度数是_________.14.在平面直角坐标系中,⊙C 的圆心为C (a ,0),半径长为2,若y 轴与⊙C 相离,则a 的取值范围为_________.15.如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,CD =6,OA 交BC 于点E ,则AE 的长度是_________.16.一个水平放置的圆锥的主视图为底边长2cm 、腰长3cm 的等腰三角形,则该圆锥的表面积是_________.17.已知一个半圆形工件,未搬动前如图中阴影部分所示,其直径平行于地面l ,现将其按图示方法翻滚一周,使其直径依然平行于地面l ,已知半圆的直径为2m ,则圆心O 所经过的路线长是_________.18.如图,在以A 为直角顶点的等腰直角三角形纸片ABC 中,将B 角折起,使点B 落在AC 边上的点D (不与点A ,C 重合)处,折痕是EF .如图1,当CD =AC 时,tan α1=; 如图2,当CD =AC 时,tan α2=;如图3,当CD =AC 时,tan α3=;……依此类推,当CD =AC (n 为正整数)时,tan αn = .三、解答题(本大题共8小题,共66分.) 19.(本题6分)2tan 60sin 60cos 302sin 45︒︒︒︒⋅-⋅20. (本题4分)计算:001)3(30tan 2)21(3π-+--+-21.(本题6分)二次函数24y ax x c =-+的图象经过坐标原点,与x 轴交于点 A (-4,0)(1)求此二次函数的解析式,并求出抛物线的顶点坐标;(2)在抛物线上存在点P ,使△AOP 的面积为10,求出点P 的坐标.密封 线内不 许 答 题考号班 级 姓 名22.(本题8分)如图,四边形ABCD 中,对角线AC 、BD 交于点E ,∠DAB =∠CDB =90°,∠ABD =45°,∠DCA =30°,AB =6,求CD 的长度.23.(本题10分)某商场试销一种成本为60元/件的夏季服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的50%,经市场试销调研发现,日销售量y (件)与售价x (元/件)符合一次函数y =kx +b ,且当售价80元/件时,日销量为70件,当售价为70元/件时,日销量为80件.(1)求一次函数y =kx +b 的表达式;(2)若该商场每天获得利润为w 元,试写出利润w 与售价x 之间的关系式,并求出售价定为多少元时,商场每天可获得最大利润,最大利润是多少元?(利润=销售收入-进货成本,不含其他支出)24.(本题9分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E ,延长CA 交⊙O 于点F .(1)求证:DE 是⊙O 切线;(2)若AB =10cm ,DE +EA =6cm ,求AF 的长度.密封 线内不许答 题25.(本题9分)如图,河边有幢高楼,某数学实践小组准备测量楼高和河宽.上午某一时刻该楼的一部分影子落在河对岸堤坝的斜坡CD 上,此时在点M 处测得楼顶A 的仰角为30°,在斜坡底端C 处测得楼顶A 的仰角为60°,大楼落在斜坡上的影子长CM 为10米.已知斜坡CD 的坡角正切值为34,求河宽CB 和楼高AB .26.(本题14分)如图,△OAP 是等腰直角三角形,∠OAP =90°,点A 在第四象限,点P 坐标为(8,0),抛物线2y ax bx c =++经过原点O 和A 、P 两点.(1)求抛物线的函数关系式;(2)点B 是y 轴正半轴上一点,连接AB ,过点B 作AB 的垂线交抛物线于C 、D 两点,且BC =AB ,求点B 坐标;(3)在(2)的条件下,点M 是线段BC 上一点,过点M 作x 轴的垂线交抛物线于点N ,求△CBN 面积的最大值.密封 线内不 许 答 题考号班 级 姓 名初四数学参考答案一、选择题1~10:AACDC ADCA B 二、填空题 11.(1,3);12.50°或130°13. 75°;14. a >2或a <﹣2;15. 3;16.42cm π;17. 2πm ;18.三、解答题 19.原式=2333()22222⨯-⨯………………………………………………….……………4=538- (6)20分分解:4 (13)32................. .1332(-2)3)3(30tan 2)21(3 001-=+⨯-+=-+--+-π21.解(1)将(0,0)和(-4,0)分别代入24y ax x c =-+得 20(4)4(4)0ca c =⎧⎨--⨯-+=⎩ 解得a=-1,c =0……………………………………………………………………..…1分∴二次函数的解析式为24y x x =--…………………………………………………..2分 24y x x =--=2(2)4x -++∴抛物线的顶点坐标为(-2,4)…………………………………………………………..3分 (2)由题意得OA =4,△AOP 的面积为10∴1102p OA y ⋅=,即14102p y ⨯⨯= 解得5P y =∵抛物线的顶点坐标为(-2,4)∴5P y =-………………………………………………………………………………4分令245x x --=- 解得:15x =-,21x =∴点P的坐标是(-5,-5)或(1,-5)……………………………………………….6分22.解:∵∠D A B =90°,∠A B D =45°,∴A B =A D (1)分 在△A B D 中,BD =AB ÷cos 45°=6÷22=23 (2)分作AF ⊥BD 于点F , ∴点F 是BD 中点 ∴D F = A F =12BD =3,……………………………………………………….………….4分∵∠CDB =90°, ∴CD ∥AF∴∠CAF =∠DAC =30°∴EF =tan 30°×AF = 33×3=1∴DE =DF -EF =3-1………………………………………………………………….………….6分密封 线内不 许答 题在Rt △C D E 中,CD=31333033DE tan -==-︒……………………………………………..…….8分23. 解:(1)根据题意得: 80707080k b k b +=⎧⎨+=⎩, 解得: k =−1,b =150,……………………………………………………4 所求一次函数的表达式为y =-x +150;(2)w =(x -60)(-x +150)= 222109000(105)2025x x x -+-=--+………………………….6 ∵销售单价不低于成本单价,且获利不得高于成本的50%, ∴6060(150%)x ≤≤⨯+,即6090x ≤≤………………………………………..……….8 ∵a =-1<0,抛物线的对称轴为直线x =105>90 ∴当6090x ≤≤时,w 随x 的增大而增大…………………………………………….……9 ∴当x =90时,w 有最大值为2(90105)2025--+=1800(元)………………………….…..10 24. (1)证明:∵OB =OD ,……………………………………………………..…………..1 ∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴∠ODB =∠ACB ,∴O D ∥AC .………………………………………………………………………………...…2 ∵DE ⊥AC∴D E ⊥OD ………………………………………………………………….………..…..…..…3 ∵OD 是⊙O 的半径,∴D E 是⊙O 切线………………………………………………………………………..…..…4 (2)如图,过点O 作OH ⊥AF 于点H ,则∠ODE =∠DEH =∠OHE =90º,∴四边形O D E H 是矩形, (5)∴OD =EH ,OH =DE . 设AH =x .∵DE +AE =6,OD= 12AC= 12AB=5,∴A E =5﹣x ,O H =D E =6-(5﹣x )=x +1.………………………………………..……………6 在R t △A O H 中,由勾股定理知:A H 2+O H 2=O A 2,即x 2+(x +1)2=52,………..……....…7 解得x =3.∴AH =3.…………………………………………………………………………………………8 ∵OH ⊥AF , ∴AH =FH =AF ,∴AF =2AH =2×3=6(cm). (9)25.解:作ME ⊥BC 于点E ,MF ⊥AB 于点F设ME =x ,则CE =ME ÷34=43x在Rt △CME 中,由勾股定理得,2224()103x x +=解得,x =6……………………………………………...2分∴CE =43x =8…………………………………………...3分设BC=a ,则MF =BE =a +8在Rt △AMF 中,AF =tan 30°×MF =33(a +8)……….5分∴AB =AF +BF =AF +ME =33(a +8)+6在Rt △ABC 中,AB =tan 60°×BC 3,密封 线内不 许 答 题考号班 级 姓 名33(a +8)+6=3a ……………………………………………………………………..…….7分 解得a =433+………………………………………………………………………………8分 ∴AB =3a =43+9………………………………………………………………………….9分 答:河宽(433+)米,楼高(43+9)米. 26.(1)2124y x x =-………………………………………………………………………….…3 (2)分别作AE ⊥y 轴于点E ,CF ⊥y 轴于点F ∵AB ⊥BC , ∴∠ABC =90°∴∠ABE +∠CBF =90° ∴∠ABE =∠BCF ∵AB =BC ∴△A B E ≌△BCF (4)∴AE =BF =4................................................................................................5 CF =BE =OB +OE =OB +4=OB +BF =OF (6)∴设C (x ,2124x x -)x =2124x x - 解得x =0(舍去)或x =12…………………………………………………………..…….…….7 ∴OF =12 ∴OB =8 ∴B (0,8)……………………………………………………………………………..……….8 (3)分别作BG ⊥MN 于点G ,CH ⊥MH 于点H则1122CBN CMN BMN S S S BG MN CH MN ∆∆∆=+=⋅+⋅=1()2MN BG CH + ∵BG +CH =12…………………………………………………………………..………….…10 ∴当MN 取最大值时,CDN S ∆有最大值设直线BC 为y kx b =+ 代入B (0,8)和C (12,12)解得k =13,b =8∴183y x =+ (11)设M (m , 183m +),N (m , 2124m m -)MN =(183m +)-(2124m m -)=2114121()439m --+当m =143时,M N 有最大值1219………………………………………………………..…….13 此时△C B N 的最大值为112124212293⨯⨯= (14)。
初四第一学期期末数学试题(第Ⅰ卷)一、 选择题(每小题3分,共60分)1、下列函数中,y 是x 的反比例函数的是( )A 、 1)1(=-y xB 、11+=x yC 、21xy = D 、 x y 31=2、若A (-3,y 1),B (-2,y 2),C (1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 3<y 1<y 2 3、若反比例函数22)12(--=mx m y 的图象在第二、四象限,则m 的值是( )A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 4、在Rt △ABC 中∠C=90°,BC=2,AB=22 ,则∠A=( )A.30° B.45° C.60° D.90° 5、下列命题是真命题的是( )A .垂直于圆的半径的直线是圆的切线B .经过半径外端的直线是圆的切线C .直线上一点到圆心的距离等于圆的半径的直线是圆的切线D .到圆心的距离等于圆的半径的直线是圆的切线6、如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底点G 为BC 的中点, 则矮建筑物的高CD 为( )A .20米B .103米C .153米D .56米7、 抛物线22(1)3y x =+-的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3) 8、一个不透明的袋子里装有2个黑球,2个白球,这些球除颜色外其余都完全相同。
小明同学做摸球试验,将球搅匀后,从中随机摸出一个球,记下它的颜色后不放回袋中, 然后再重复进行下一次试验,当摸球次数很大时,摸到两个白球的概率为( ) A .21B .31 C .41 D . 619、在同一坐标系中,函数xky =和 ( )A B C D10、二次函数y =mx 22-m 有最低点,则m =( ). A 、2 B 、 2 C 、﹣2 D 、±2 11、下列几何体,主视图和俯视图都为矩形的是( )A .B .C .D .12、如图AC 是电杆AB 的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC 长为 ( )A.︒526sin 米 B. ︒526tan 米 C. 6·cos52°米 D. ︒526cos 米13、如图,抛物线y=﹣2x 2+8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上 方的部分记作C 1,将C 1向右平移得C 2,C 2与x 轴交于点B ,D .若直线y=x+m 与C 1、C 2共有3个不同的交点,则m 的取值范围是( )BA C 北东ABC ┐A.﹣2<m <B.﹣3<m <﹣C.﹣3<m<﹣2 D.﹣3<m<﹣14、已知α为锐角,tan(90°-α)=3,则α的度数为()A.75°B.60°C.45°D.30°15.在同一坐标系中一次函数y ax b=+和二次函数2y ax bx=+的图象可能为()16、已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为()A.y=32(1)x--2 B.y=32(1)x++2 C.y=32(1)x+-2 D.y=-32(1)x+-2 17、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().A.②④ B.①④ C.②③ D.①③18、如图,△OAB中,C是AB的中点,反比例函数xky=(k>0)在第一象限的图象经过A、O xyO xyO xyO xy AC 两点,若△OAB 面积为6,则k 的值为( ) A 、2B 、4C 、6D 、819、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、 正比例函数 B 、 反比例函数 C 、 一次函数 D 、 不能确定20、如图,AB 、CD 是⊙O 的直径,⊙O 的半径为R ,AB ⊥CD ,以B 为圆心,以BC为半径作弧CED ,则弧CED 与 弧CAD 围成的新月形ACED 的面积为 ( )平方单位.A 、()21R -π B 、2R C 、()21R +π D 、2R π(请将你认为正确的选项填入第Ⅱ卷选择题相应答案栏内)ACDE O初四第一学期期末数学试题(第Ⅱ卷)一 二2526272829总分题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 答案二. 填空题(每小题3分,共12分)21、如图,正方形ABOC 的边长为2,反比例函数y =kx 的图象经过点A , 则k 的值是22、如图,在圆内接四边形ABCD 中,O 为圆心,∠BOD=160°,则∠BCD= 度. 23、将抛物线3)3(22+-=x y 向右平移2个单位后,再向下平移5个单位后所得抛物线表达式为_______ 。
鲁教版初四数学上学期期末检测题(一)一、选择题(本大题共12个小题,每小题3分,共36分。
)1、图中几何体的主视图是( )2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( ) A.45B .35C .43D .543、函数xx --=13y 中自变量x 的取值范围是( )A .x ≤3 B.x ≠1 C .x ≤3且x ≠1 D .x<3且x≠14.将如右图所示的R t ABC △绕直角边A C 旋转一周,所得几何体的主视图是( )5.已知:A 点坐标是(-2,2),B 点的坐标为(3,3),⊙A 半径为2,⊙B的半径为3,则⊙A 与⊙B 的位置关系是( )A. 外离B. 外切C. 相交D. 内切6、已知点A( -2 ,y 1 ) , ( -1 ,y 2 ) , ( 3 ,y 3 )都在二次函数y=2(x+1)2-3的图象上,则( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3 <y 1<y 2D. y 2<y 1<y 37.抛物线y=x 2一3x+2与y 轴交点的坐标是( ) A .(0,2) B .(1,O) C .(0,一3) D .(0,O)8.如图,有一圆心角为120 o、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( ) A .24cm B .35cm C .62cm D .32cm9.右边是二次函数c bx ax y ++=2的y 与x 的部分对应值:则下列判断中正确的是( )A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 10.二次函数y = ax 2+ bx + c 的图象如图所示,那么关于此二次函数的下列四个结论:a <0;②c>0;③b 2-4ac>0;④ba <0中,正确的结论有( ).A .1个 B .2个 C .3个 D .4个11.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩 底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进 6cm (如箭头所示),则木桩上升了( )A .6sin15°cmB .6cos15°cmC .6tan15° cmD .6tan 15cm12、如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器, 它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样 的监视器( )台.A 、3; B 、4; C 、5; D 、6.正面 A B C D (第8题) BA B(第11题)BCA .B .C .D .(第10题)(第12题)二 、填空题(本大题共5个小题,共20分) 13、102tan 601)--︒++=14. 如图5,△ABC 是等腰直角三角形,∠ACB=90°,AC=2,⊙O 是以AC 为直径的圆,则图中阴影部分的面积是 。
初四期末数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 计算下列表达式的结果:\[ \frac{2}{3} + \frac{1}{2} \]A. 1B. \(\frac{7}{6}\)C. \(\frac{5}{6}\)D. \(\frac{4}{3}\)答案:B3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25B. 50C. 100D. 200答案:C4. 一个等腰三角形的底角是45度,那么它的顶角是多少度?A. 45B. 90C. 135D. 180答案:B5. 下列哪个选项表示的是一次函数?A. \(y = 3x + 2\)B. \(y = 3x^2 + 2\)C. \(y = \frac{1}{x}\)D. \(y = x^2 + 3x + 2\)答案:A6. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 4D. -4答案:A7. 一个长方体的长、宽、高分别是2厘米、3厘米、4厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A8. 一个数的绝对值是5,那么这个数可以是下列哪个?A. 5B. -5C. 5和-5D. 0答案:C9. 计算下列表达式的结果:\[ 3^2 - 2^3 \]A. 1B. 5C. 7D. 9答案:B10. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的斜边是多少厘米?A. 5B. 6C. 7D. 8答案:A二、填空题(每题4分,共20分)1. 一个数的立方是-27,那么这个数是______。
答案:-32. 一个数的倒数是\(\frac{1}{4}\),那么这个数是______。
答案:43. 一个数的平方是25,那么这个数是______。
答案:±54. 一个数的绝对值是8,那么这个数可以是______。
答案:8或-85. 一个数的平方根是2.5,那么这个数是______。
初四上学期数学期末质量检测试题数 学 试 题注意:1、全卷共3页28题;总分120分; 2、请用黑色墨水笔在答题卡书写作答.一.选择题(每题3分,共10小题30分)1.的倒数是( )A .B .2C .﹣2D .﹣212. 资料显示,“五·一”全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是( )A.810463⨯ B.81063.4⨯ C.101063.4⨯ D.1110463.0⨯ 3.下列命题为真命题的是( ) A .若a 2=b 2,则a=b B .n 边形的外角和为(n ﹣2)•180°C .等弧所对的圆心角相等D .若乙甲x x =,S 2甲>S 2乙,则甲数据更稳定.4.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .5.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( ) A .5个 B .6个 C .7个 D .8个6.函数y=k (x ﹣k )与y=kx 2,y=(k ≠0),在同一坐标系上的图象正确的是( )A .B .C .D .7.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x 个,则可列方程( )A .66090-=x xB .x x 60690=-C .x x 60690=+D .66090+=x x 8.如图,巳知A 点坐标为(5,0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为( ) A .3 B .C .4D .9.若,则在同一直角坐标系中,直线a x y -=41与双曲线xa y 12+=的交点个数为( ) A .0 B .1 C .2 D .310.已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB ,AC 相交于D 点,双曲线xky =(x >0)经过D 点,交BC 的延长线于E 点,且OB ·AC=160,有下列四个结论:①双曲线的解析式为xy 20=(x >0);②E 点的坐标是(4,8);③sin ∠COA=54;④AC+OB=512,其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题(共10小题30分)11.函数312+-=x y 中自变量x 的取值范围是 . 12.分解因式:=+-x x x 9623 .13.如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD= .( 8题图) (10题图) (13题图)14.如图,Rt △ABC ,∠C=90°,BC=3,点O 在AB 上,OB=2,以OB 长为半径的⊙O 与AC 相切于点D ,交BC 于点F ,OE ⊥BC 于点E ,则弦BF 的长为 cm .15. 已知21,x x 是方程0422=--x x 的两实数根,则2121x x x x -+的值为 . 16. 已知关于x 的分式方程13-=-+x mmx 无解,则m 的值为 . 17. 将Rt △ABC 绕点B 逆时针旋转到C B A ''∆,使A 、B 、C '在同一条直线上,若∠BAC=30°,AB=4cm , 则图中阴影部分的面积为 2cm . 18.若函数y=(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为 .19. 菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,O),点B 的坐标为()3,0,动点P 从点A 出发,沿 →→→→→→B A D C B A 的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P 的坐标为 .(14题图) (17题图) (19题图)20.如图,在四边形ABCD 中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°, 则BD 的长为 .三.解答题(共8小题60分) (20题图)21.计算: .30tan )31()12(|132|010---+--(5分)22.先化简,再求值:31x ,11)121(122=++---+÷其中x x x x x x (5分)23.某学校在推进新课改的过程中,开设的体育选修课有:A ﹣篮球,B ﹣足球,C ﹣排球,D ﹣羽毛球,E ﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(4分) (2)求出“足球”在扇形的圆心角是多少度;(2分)(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.(3分)24. 为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A 岛测得B 岛在北偏西30°,C 岛在北偏东15°,航行100海里到达B 岛,在B 岛测得C 岛在北偏东45°,求A ,C 两岛的距离(结果用根号表示)(6分))25.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(6分)(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.(4分)26.如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF 交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(3分)(2)求tan∠ABG的值;(3分)(3)求EF的长.(3分)27.如图,⊙O是△ABC的外接圆,圆心O在AB上,且∠B=2∠A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线.(3分)(2)设⊙O的半径为2,且AC=CE,求AM的长(3分).28.在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(3分)(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC 方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(4分)(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.(3分)初四上学期期末质量检测数学参考答案1.B2.C3.C4.D5.A6.C7.C8.B9.C 10.C 11.x ≤2 12. 2)3(-x x 13.95° 14.2 15. 62 19.(43,43-) 20..21.原式=3331132--+-=332 22.原式=122-x x ;当31=x 时,原式=431)31(3122-=-⨯23.解:(1)∵C 有12人,占24%, ∴该班的总人数有:12÷24%=50(人), ∴E 有:50×10%=5(人), A 有50﹣7﹣12﹣9﹣5=17(人), 补全频数分布直方图为:(2)“足球”在扇形的圆心角是:360°×=50.4°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况, ∴选出的2人恰好1人选修篮球,1人选修足球的概率为:=.24. 解:由题意知:∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里; 过B 点作BD ⊥AC 于点D , ∵∠BAC=45°,∴△BAD 为等腰直角三角形; ∴BD=AD=50,∠ABD=45°;∴∠CBD=180°﹣30°﹣45°﹣45°=60°, ∴∠C=30°;∴在Rt △BCD 中CD=50, ∴AC=AD+CD=50+5025. 解:(1)∵点A (3,2)在反比例函数y=,和一次函数y=k (x ﹣2)上; ∴2=,2=k (3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x ﹣4;∵点B 是一次函数与反比例函数的另一个交点,∴=2x ﹣4,解得x 1=3,x 2=﹣1; ∴B 点的坐标为(﹣1,6); (2)∵点M 是一次函数y=2x ﹣4与y 轴的交点,∴点M 的坐标为(0,﹣4),设C 点的坐标为(0,y c ),由题意知×3×|y c ﹣(﹣4)|+×1×|y c ﹣(﹣4)|=10, 解得|y c +4|=5, 当y c +4≥0时,y c +4=5,解得y c =1,当y c +4≤0时,y c +4=﹣5,解得y c =﹣9, ∴点C 的坐标为(0,1)或(0,﹣9).26. 1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD ×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.27. 1)证明:连接OC,如图,∵⊙O是△ABC的外接圆,圆心O在AB上,∴AB是⊙O的直径,∴∠ACB=90°,又∵∠B=2∠A,∴∠B=60°,∠A=30°,∵EM⊥AB,∴∠EMB=90°,在Rt△EMB中,∠B=60°,∴∠E=30°,又∵EF=FC,∴∠ECF=∠E=30°,又∵∠ECA=90°∴∠FCA=60°,∵OA=OC,∴∠OCA=∠A=30°,∴∠FCO=∠FCA+∠ACO=90°∴OC⊥CF,∴FC是⊙O的切线;(2)解:在Rt△ABC中,∵∠ACB=90°,∠A=30°,AB=4,∴BC=AB=2,AC=BC=2,∵AC=CE,∴CE=2,∴BE=BC+CE=2+2,在Rt△BEM中,∠BME=90°,∠E=30°∴BM=BE=1+,∴AM=AB﹣BM=4﹣1﹣=3﹣.28.解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC 方向滑动距离时,到达P′,作P′M ∥y轴,PM∥x轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵PP′=,∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣x2+2x﹣1=﹣(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣(x﹣3)2+2,令y=0,则0=﹣(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解,得或∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==2.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2.。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001……D. 3/22. 如果a、b是方程x^2 - 5x + 6 = 0的两个根,那么a + b的值是()A. 5B. 6C. 2D. -53. 在等差数列{an}中,如果a1 = 3,d = 2,那么a10的值是()A. 21B. 22C. 23D. 244. 下列函数中,在定义域内是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = 2x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)7. 下列各式中,正确的是()A. sin 30° = 1/2B. cos 45° = 1/√2C. tan 60° = √3D. cot 45° = √28. 在平面直角坐标系中,直线y = 2x + 1与y轴的交点坐标是()A.(0,1)B.(1,0)C.(0,-1)D.(-1,0)9. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 210. 在等腰三角形ABC中,如果AB = AC,那么顶角A的度数是()A. 45°B. 60°C. 90°D. 120°二、填空题(每题5分,共50分)11. 计算:(-2)^3 × (-3) ÷ 2 = _______12. 如果x^2 - 5x + 6 = 0,那么x的值是 _______13. 等差数列{an}中,如果a1 = 1,d = 2,那么a5的值是 _______14. 函数y = 2x - 3的图像与x轴的交点坐标是 _______15. 计算sin 60° × cos 30° = _______16. 在平面直角坐标系中,点P(-3,4)关于原点的对称点坐标是 _______17. 下列各数中,有理数是 _______18. 如果a、b是方程x^2 - 4x + 3 = 0的两个根,那么a - b的值是 _______19. 在等腰三角形ABC中,如果AB = AC,那么底角B的度数是 _______20. 计算tan 45° + cot 45° = _______三、解答题(每题20分,共80分)21. 解一元二次方程:x^2 - 6x + 9 = 022. 已知等差数列{an}中,a1 = 2,d = 3,求前10项的和S10。
山东省烟台市2019-2020年初四数学第一学期期末考试试题及答案一、选择题(每题3分,共36分)1、如图所示的几何体是由12个大小相同的小正方体组成的,将其中的小正方体①移走后,所得几何体的三视图没有发生变化的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .主视图、左视图、俯视图2. 如图,属于物体在太阳光下形成的影子的图形是 ( )A. B . C . D .3.物理某一实验的电路图如图所示,其中K1,K2,K3 为电路开关,L1,L2为能正常发光的灯泡.任意闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时发光的概率为( ) A.31 B. 32 C. 21 D. 41 4.如果将抛物线y=x 2+1向右平移2个单位,再向下平移2个单位,那么所得新抛物线的表达式是( ) A . y=(x-2)2-2 B . y=(x+2)2-2 C . y=(x-2)2-1 D . y=(x +2)2-15. 已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A. B. C. D.6.已知二次函数y =ax 2+bx+c (a ≠0)的图象如右图所示,则直线y =ax +b 与反比例函数xacy =在同一坐标系内的大致图象为( )A. B. C. D. 7. 如图,AB 为⊙O 的直径,点D ,C 在⊙O 上,∠D=62°,则∠ACO 的度数为( ) A. 26° B. 28° C. 30° D. 32°8. 如图,港口A 在观测站O 的正东方向,某船从港口A 出发,沿北偏东15°方向航行2km 到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向.则观测站O 距港口A 的距离为( )A .22kmB . 23kmC .32kmD .33km9.如图,⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD=120°,AB=AD=2,则⊙O 半径长为( )A. 23B. 26C. 332D. 22310.如图,抛物线y =ax 2+bx+c ,若M=4a+2b+c ,N=a-b+c ,P=4a+2b ,则( )A. M >0,N >0,P >0B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <011.如图所示,已知△ABC 中,BC=12,BC 边上的高h=6,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC于点F ,设点E 到边BC 的距离为x ,则△DEF 的面积y 关于x 的函数图象大致为( )12. 如图,AB 是⊙O 的直径,直线DE 与⊙O 相切于点C ,过A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足为点D ,E ,连接AC ,BC ,若AD =3,CE =3,则弧AC 的长为( ) A.332 B. π33 C. π23 D. π332二、填空题(本题共6个小题,每小题3分,满分18分).13. 在△ABC 中,若角A 、B 满足()23sin 1tan 02A B -+-=,则∠C 等于 .14. 如图,有一圆内接正八边形ABCDEFGH,若△ADE 的面积为4,则正八边形ABCDEFGH 的面积为_____ .15. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为_____米.(结果精确到1m ,参考数据:3≈1.73)16. 已知二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x= -31,下列结论:①ab >0 ②a+b+c <0 ③b+2c <0 ④a+4c <2b ,其中正确结论是__ _____.17.在正方形ABCD 中,AB=8,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是 .18. 一段抛物线y= -x (x-3)(0≤x≤3),记为C1,它与x 轴交于两点O ,A1;将C1绕A1旋转180°得到C2,交x 轴于A2;将C2绕A2旋转180°得到C3,交x 轴于A3;…如此进行下去,直至得到Cn,若点P (2019,b )在其中某段抛物线上,则b=_________.三、解答题(满分66分). 19. (满分6分)(1)221sin 60cos302sin 45tan 6023-︒︒+︒-︒+ (2)21sin 60cos 60tan 4512tan 30tan 302-︒⋅︒+-︒+︒20. (满分6分)已知二次函数y= -21x 2+bx+c 的图象经过A (0,-8),B (-2,-20)两点.(1)求b ,c 的值; (2)二次函数y = -21x 2+bx+c 的图象与x 轴是否有交点?若有,求公共点的坐标;若没有,请说明理由.21. (满分7分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为40cm ,与水平面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平面所形成的夹角∠OCA ,∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC (不考虑其他因素,结果精确到0.1cm .温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).22.(满分7分)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO=90°,∠AOB=60°,OB=4,反比例函数y=()0<x x k的图象经过OA 的中点C ,交AB 于点D. (1)求反比例函数的关系式;(2)连接CD ,求四边形CDBO 的面积.23 .(满分8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题: (1)请将条形统计图补全;(2)求“二等奖”所对的圆心角的度数; (3)获得一等奖的同学中有41来自七年级,有41来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24、(满分10分)某班同学参加社会公益活动,准备用每斤6元的价格购进一批水果进行销售,并将所得利润捐给孤寡老人.这种水果每天的销售量y (千克)与销售单价x (元/千克)之间的对应关系如表所示:(1)按照满足表中的销售规律,求y 与x 之间的函数表达式;(2)按照满足表中的销售规律,求每天销售利润W (元)与销售单价x (元/千克)之间的函数表达式; (3)在销售单价不低于10元及满足问题(2)条件下,每天销售水果多少千克时,该天获得最大利润?25、(10分)如图,在Rt △ABC 中,∠C=90°,点D 在线段AB 上,以AD 为直径的⊙O 与BC 相交于点E ,与AC 相交于点F ,∠B=∠BAE=30°. (1)求证:BC 是⊙O 的切线; (2)若AC=3,求⊙O 的半径r ;(3)在(1)的条件下,判断以A 、O 、E 、F 为顶点的四边形为哪种特殊四边形,并说明理由.26、(12分)已知抛物线y = ax 2+23x+4的的对称轴是直线x =3,与x 轴相交于A ,B 两点(点B 在点A 的右侧),与y 轴交于点C .(1)求抛物线的解析式和A ,B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由;(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.x 10 11 12 13 14 …… y 200 180 160 140 120 ……2019-2020学年度第一学期期末学业水平考试初四数学试题参考答案及评分建议(如有错误请组长及时更正)一、选择题(每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 1112 答案CAACABBACDDD17、解:作FH ⊥BC 于H ,连接FH ,如图,∵∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=4, AE 2=64+16=80, 易得Rt △ABE ≌△EHF , ∴∠AEB=∠EFH , 而∠EFH+∠FEH=90∘, ∴∠AEB+∠FEH=90∘,∴∠AEF=90∘,∴∴图中阴影部分的面积=S 正方形ABCD+S 半圆−S △ABE−S △AEF =8+8π.二、填空题(每小题3分,满分18分)13.75o 14.16 15.104 16.①② 17 . 88π+ 18.0 三、解答题(共6道题,满分66分) 19.计算(满分6分)(1)原式=2+332112(3)22234⨯+⨯-⨯ …………………………………1分=3111+44+-1=………………………………3分 (2)原式=2)331(2112123-+⨯-…………………………………………1分 =333212123-⨯+- =33.……………………3分 20.(6分)解:(1)把A (0,-8),B (-2,-20)分别代c bx x y ++-=221,得()⎪⎩⎪⎨⎧-=+----=20222182c b c ,……………………………2分 解得⎩⎨⎧-==85c b ;………………………………………………………………………3分 (2)由(1)可得,该抛物线解析式为:85212-+-=x x y .∵△=()821452-⨯⎪⎭⎫ ⎝⎛-⨯-=9>0,∴二次函数图象与x 轴有公共点.…………4分 令y =0,则085212=-+-x x解得,x 1=2,x 2=8 ………………5分∴公共点的坐标是(2,0)或(8,0). …………………………………………6分 21.(满分7分)解:在Rt △ACO 中,97.04075sin ≈==︒OCOA OC ................................................2分解得OC≈38.8,. .................................................................................................3分在Rt △BCO 中,3383830===︒BC .BC OC tan . .................................................5分解得1673838..BC ≈⨯=..................................................................................6分 答:该台灯照亮水平面的宽度BC 大约是67.1cm .................................................7分22.(满分7分)解:(1)∵∠ABO=90°,∠AOB=60°,OB=4, ∴AB=34=43⨯.……………………………………………1分 作CE ⊥OB 于E , ∵∠ABO=90°,∴CE ∥AB ,∵OC=AC ,∴OE=BE=12OB=2. CE=12AB=23,∴C (-2,23). …………………………………………2分 ∵反比例函数的图象经过OA 的中点C , ∴k=22343-⨯=-,∴反比例函数的关系式为y= -43x ; ……………………......……………………3分(2)∵OB=4,∴D 的横坐标为-4,代入y=-43x 得,y=3,∴D (-4,3). …………………………………………………………………4分 ∴BD=3,∵AB=43,∴AD=33,∴S △ACD=12AD•BE=12×33×2=33. ……………………………………………5分 ∴S 四边形CDBO=S △AOB-S △ACD=12OB•AB -33=12×4×43-33=53. ………7分23. (满分8分)(1)2510÷%=40(人)答:参加大赛获奖同学共40人。