图形旋转的性质
- 格式:ppt
- 大小:491.00 KB
- 文档页数:2
旋转知识归纳及规律方法指导旋转是一个常见的运动形式,在几何学、物理学和其他科学领域中都有广泛的应用。
了解和掌握旋转的知识和规律对于解决各种问题和应用场景是非常重要的。
以下是一些关于旋转的归纳和规律方法的指导,希望能对您有所帮助。
1.旋转的定义和基本概念旋转是物体或几何图形绕一个固定点或轴进行的运动。
旋转可以是二维的,也可以是三维的。
固定点或轴称为旋转中心,物体或几何图形绕着旋转中心旋转的路径称为旋转轨迹。
旋转可以分为顺时针旋转和逆时针旋转两种。
顺时针旋转可以看成逆时针旋转的反方向。
2.旋转的基本规律和性质旋转具有以下基本规律和性质:-旋转角度:旋转角度是物体或几何图形旋转的度量。
旋转角度通常用角度或弧度表示。
-旋转方向:旋转方向可以是顺时针或逆时针。
正角度代表逆时针旋转,负角度代表顺时针旋转。
-旋转中心:旋转中心可以是一个点、一条轴或一个平面。
-旋转轨迹:旋转轨迹通常是一个曲线或曲面,取决于旋转的维度和形状。
-旋转角速度:旋转角速度是物体或几何图形单位时间内旋转的角度。
旋转角速度通常用弧度/秒或度/秒表示。
-旋转周期:旋转周期是物体或几何图形旋转一周所需要的时间。
3.旋转的常见问题和应用场景旋转知识的掌握可以帮助解决许多问题和应用场景,包括但不限于以下几个方面:-几何问题:旋转可以用来解决几何图形的位置和形状变化问题,如判断两个几何图形是否相似,求解旋转体的体积和表面积等。
-物理学问题:旋转在物理学中有广泛应用,如刚体的旋转运动、角动量与动能的关系等。
-工程问题:旋转可以帮助解决工程中的问题,如机械制造中的零件的旋转安装,机械臂的旋转运动控制等。
4.学习旋转知识的方法和技巧学习旋转知识需要掌握一些方法和技巧,以下是一些建议:-理论学习:首先要通过学习相关的理论知识和概念来建立旋转的基本框架和认识。
-实践操作:通过实际操作和练习,例如通过模型拼装、绘制旋转图形等进行实践,使抽象的概念更加具体。
-解决问题:通过解决一些与旋转相关的问题,例如解决一些几何问题或物理学问题,来加深对旋转的理解。
旋转的性质有哪些
在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。
本文整理了旋转相关性质,欢迎阅读。
旋转性质
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,
①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
④旋转中心是唯一不动的点。
⑤一组对应点的连线所在的直线所交的角等于旋转角度。
旋转三要素
①定点—旋转中心;
②旋转方向;
③旋转角。
注意:三要素中只要任意改变一个,图形就会不一样。
旋转角定义
旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线这两条线的夹角。
旋转角性质
经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
旋转知识点总结一、旋转1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角叫做旋转角.2.旋转三要素:①旋转中心;②旋转方向;③旋转角度3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的图形全等.4.网格中的旋转:①确定旋转中心、旋转方向及旋转角;②找原图形的关键点;③连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;④按原图形依次连接各关键点的对应点,得到旋转后的图形.二、中心对称1.中心对称:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.三、尺规作图(旋转)1.作图方法:以旋转点为中心找出各点旋转对应角度后得到的对应点,再顺次连接得到旋转后的图形.四、关于原点对称的点的坐标1.关于原点对称后点的坐标:若对称前的点坐标为(x,y),那么对称后的点坐标为(-x,-y).五、旋转90°的点的坐标1.绕原点旋转90°后的点的坐标:(1)顺时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(y,-x).(2)逆时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(-y,x).六、常见全等模型(手拉手模型)1.手拉手模型:两个等腰三角形共顶点时,就有全等三角形.结论:(1)△ABE≌△DBC(2)AE=DC(3)AE交DC于点H,∠AHD=∠ABD(4)HB平分∠AHC七、常见全等模型(半角模型)1.半角模型:共顶点的两个角度,当一个角等于另一个角的一半时,可以将三角形旋转,得到全等三角形.结论:(1)△AEF≌△AGF(2)EF=BF+DEDA CB八、常见全等模型(对角互补四边形旋转模型)1.对角互补四边形旋转模型:四边形对角互补且有一组邻边相等时,可以将三角形旋转,得到等腰三角形或正方形.。
1.根据旋转的性质找相等的线段或角【例1】如图,若把△ABC绕点A旋转一定角度就得到△ADE,那么AB=______,BC=______,∠CAB=______,∠B=_______.总结:1. 旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等,所以对应边相等,对应角相等。
2. 图形的旋转不改变图形的大小和形状。
练1如图,点O是平行四边形ABCD的对角线的交点,△AOB绕点O旋转180°,可以与△____重合,这说明△AOB≌△_____.这两个三角形的对应边是AO与_____,OB与_____,BA与____;对应角是∠AOB与_______,∠OBA与________,∠BAO与________.2.根据旋转的性质求角的度数【例2】(2015•天津)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130° B.150° C.160° D.170°总结:1.当图形中出现图形旋转时,要利用旋转的性质解题.2.注意:(1)旋转前后图形全等,所以对应边相等,对应角相等;(2)旋转角都相等;(3)对应点到旋转中心的距离相等.练2(2010春•姜堰市校级期中)如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°.(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.3.已知一个图形和旋转中心,画旋转图形【例3】在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC绕点O逆时针旋转90°后的△A′B′C′.总结:旋转作图的基本步骤:(1)根据题意,确定旋转中心、旋转方向和旋转角;(2)找出原图形的关键点;(3)连接各关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到这些关键点的对应点,并标上相应的字母;(4)按原图形依次连接这些对应点,得到旋转后的图形。
23.1(1.1)图形的旋转---旋转、旋转中心、旋转角、对应点、旋转的性质一.【知识要点】1.旋转:平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角. 2.图形旋转有如下性质:(1)旋转不改变图形的大小和形状;(2)经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度; (3)任意一对对应点与旋转中心的连线所成的角都是旋转角; (4)对应点到旋转中心的距离相等。
二.【经典例题】1.如图,绕点B 逆时针方向旋转到的位置,若,,且E 、B 、C 三点共线,则旋转度数为 .2.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点MB .格点NC .格点PD .格点Q3.如图,在正方形网格中,线段A B ''是线段AB 绕某点逆时针旋转角a 得到的,点A '与A 对应,则角a 的大小为( )。
A.30° B.60° C.90° D.120°4.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF=FM ;(2)当AE=1时,求EF 的长.ABC ∆EBD ∆︒=∠10A ︒=∠15C5.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到1、2、3、4,则2019的直角顶点的坐标为____________。
三.【题库】【A】1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )A B C D2.下列说法正确的是().平移不改变图形的形状和大小,而旋转则改变图形的形状和大小.图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离.平移和旋转的共同点是改变图形的位置.在平移和旋转图形中,对应角相等,对应线段相等且平行3.如下左图,ABC△以点A为旋转中心,按逆时针方向旋转60︒,得AB C''△,则ABB'△是三角形。
图形的旋转和翻转操作技巧一、图形的旋转1.旋转的概念:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。
2.旋转的性质:a.旋转不改变图形的形状和大小,只是改变图形的位置。
b.旋转前后的图形全等。
c.旋转中心即为图形的对称中心。
3.旋转的公式:若将一个图形绕着点O旋转θ度,得到的新图形为O’,则有:O’ = O + (O -> O’) * θ4.旋转的应用:a.在实际生活中,如风扇、汽车方向盘等的转动都是旋转的应用。
b.在计算机图形学中,旋转用于实现图形的变换和动画效果。
二、图形的翻转1.翻转的概念:在平面内,将一个图形沿着某一条直线翻转一定角度,使得翻转后的图形与原图形关于这条直线对称,这种图形变换叫做翻转。
2.翻转的类型:a.水平翻转:将图形沿着x轴翻转。
b.垂直翻转:将图形沿着y轴翻转。
c.对称翻转:将图形沿着任意直线翻转,使得翻转后的图形与原图形关于这条直线对称。
3.翻转的性质:a.翻转不改变图形的形状和大小,只是改变图形的位置。
b.翻转前后的图形全等。
c.翻转的中心线即为图形的对称轴。
4.翻转的应用:a.在实际生活中,如镜子、穿衣镜等的翻转都是翻转的应用。
b.在计算机图形学中,翻转用于实现图形的变换和动画效果。
三、操作技巧1.旋转操作技巧:a.确定旋转中心:通常选择图形的某个顶点或重心作为旋转中心。
b.确定旋转方向:顺时针或逆时针旋转。
c.确定旋转角度:根据实际需求确定旋转的角度。
d.画出旋转后的图形:以旋转中心为中心,按照旋转方向和角度,画出旋转后的图形。
2.翻转操作技巧:a.确定翻转中心线:通常选择图形的中心线作为翻转中心线。
b.确定翻转方向:沿中心线翻转,使得翻转后的图形与原图形关于中心线对称。
c.画出翻转后的图形:按照翻转方向,将原图形关于中心线翻转,得到翻转后的图形。
通过以上知识点的学习和操作技巧的掌握,学生可以更好地理解和运用图形的旋转和翻转,提高他们在几何学习和实际应用中的能力。
图形的旋转【要点梳理】 要点一、旋转的概念把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转..点O 叫做旋转中心,转动的角叫做旋转角(如∠AOA ′),如果图形上的点A 经过旋转变为点A ′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 要点二、旋转的性质(1)对应点到旋转中心的距离相等(OA = OA ′); (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等(△ABC ≌△A B C ''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点.B 'AA 'C 'CBO【典型例题】类型一、旋转的概念与性质【例1】 如图,把四边形AOBC 绕点O 旋转得到四边形DOEF . 在这个旋转过程中: (1)旋转中心是谁? (2)旋转方向如何?(3)经过旋转,点A 、B 的对应点分别是谁? (4)图中哪个角是旋转角?(5)四边形AOBC 与四边形DOEF 的形状、大小有何关系? (6) AO 与DO 的长度有什么关系? BO 与EO 呢? (7)∠AOD 与∠BOE 的大小有什么关系?【变式】 如图所示:O 为正三角形ABC 的中心.你能用旋转的方法将△ABC 分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.OBDFECAA BCO【例2】如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )A .B .C .D .类型二、旋转的作图【例3】如图,已知△ABC 与△DEF 关于某一点对称,作出对称中心.【例4】如图,在正方形网格中,每个小正方形的边长均为1个单位.将ABC ∆向下平移4个单位,得到C B A '''∆,再把C B A '''∆绕点顺时针旋转90°,得到C B A '''''∆,请你画出C B A '''∆和C B A '''''∆(不要求写画法).【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.ABCDFE中心对称与中心对称图形【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点P(x,y)关于原点的对称点P'坐标为P'(-x,-y),反之也成立.【典型例题】类型一、中心对称和中心对称图形【例1】下列图形不是中心对称图形的是()A.①③B.②④C.②③D.①④【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【例2】我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.类型二、作图【例3】已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .类型三、利用图形变换的性质进行计算或证明【例4】如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是__________.1o 2o 3o 4oCB DA图① 图②1o2o3o4o 5oABCED【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.旋转【要点梳理】 要点一、旋转1. 旋转的概念:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转..点O 叫做旋转中心,转动的角叫做旋转角(如∠AO A ′),如果图形上的点A 经过旋转变为点A ′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 2.旋转的性质: (1)对应点到旋转中心的距离相等(OA = OA ′); (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等(△ABC ≌△A B C ''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3. 旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点.B 'AA 'C 'CBO要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.【典型例题】类型一、旋转【例1】数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲B. 乙C. 丙D. 丁【变式】以图1的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().A B C D类型二、中心对称【例2】如图,C B A '''∆是△ABC 旋转后得到的图形,请确定旋转中心、旋转角.【变式】下列图形中,既是中心对称图形又是轴对称图形的是( ).A .B .C .D .类型三、平移、轴对称、旋转【例3】如图,设P 是等边三角形ABC 内一点,PB =3,P A =4,PC =5,求∠APB 的度数.B 'AA 'C 'CB APBC【变式】已知D是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【例4】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.AC BDADB C【例5】正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上(1)如图连结DF、BF,试问:当正方形AEFG绕点A旋转时,DF、BF的长度是否始终相等?若相等请证明;若不相等请举出反例.(2)若将正方形AEFG绕点A顺时针方向旋转,连结DG,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明.【变式】如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_________.【例6】如图,已知△ABC 为等腰直角三角形,∠BAC =900,E 、F 是BC 边上点且∠EAF =45°.求证:222EF CF BE =+.ACF EB。
旋转的概念与性质学情分析
旋转是物体围绕某一中心点或轴进行旋转运动的过程。
在几何学中,旋转是指通过旋转轴将一个图形或物体围绕某一点或轴旋转一定角度的运动。
旋转具有以下性质:
1. 旋转不改变物体的质量、形状和体积,只改变物体的位置和方向。
2. 旋转运动是一个连续的运动过程,可以通过一系列定点的轨迹来描述。
3. 旋转运动是一个周期性运动,物体在一定的时间内围绕旋转轴完成一个循环。
4. 旋转角度和旋转时间是相互关联的,通过旋转角速度可以计算出旋转时间。
5. 旋转运动具有角速度、角加速度等物理量,与线性运动有所不同。
6. 旋转运动可以通过旋转矩阵、欧拉角、四元数等方式描述。
在物理学和工程学中,旋转运动有广泛的应用,如机械传动、涡轮机械、行星运动等。
在数学中,旋转被广泛应用于解决平面几何问题、空间几何问题等。
在计算机图形学中,旋转用于实现三维物体的旋转变换,实现物体的旋转和旋转动画
效果。