∵AE=CM=1,AB=BC=3, ∴EB=AB-AE=3-1=2,
BM=BC+CM=3+1=4. ∴BF=BM-MF=4-x. 在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4-x)2=x2, 则EF的长为2.5.
温馨提示:对于学友做错的题目,由师傅负责讲解清楚,并找出错误原因
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
旋转的性质 1.对应点到旋转中心的距离相等; 2.两组对应点分别与旋转中心的连线所成 的角相等 3.旋转中心是唯一不动的点; 4旋转不改变图形的形状和大小.
温馨提示:学友要把每一个知识点讲给师傅听,师傅负责教会学友
例1 下列物体的运动是旋 转的有 3,5 . ①电梯的升降运动; ②行驶中的汽车车轮; ③方向盘的转动; ④骑自行车的人; ⑤坐在摩天轮里的小朋友.
温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
如图,三角形ABD经过旋转后到三角形ACE的位置,其 中∠BAC=60°. (1)旋转中心是哪一点? (2)旋转了多少度?顺时针还是逆时针? (3)如果M是AB的中点,经过上述旋转后,点M转到什么 位置? 解:(1)旋转中心是点A; (2)旋转了60 °,逆时针; (或旋转了300 °,顺时针) (3)点M转到了AC的中点上. 例3 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则旋 转的角度为( 30° )
温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
变式 如图,△ABC为钝角三角形,将△ABC 绕点A逆时针旋转120°,得到△AB' C' ,连 接BB' .若AC' ∥BB' ,则∠CAB'的度数为多少 ? 解:∵将△ABC绕点A逆时针旋转120°,得 到△AB' C', ∴∠BAB' =∠CAC' =120°,AB=AB' . ∴∠AB'B= (180°-120°)=30°. 又∵AC' ∥BB' , ∴∠B'AC' =∠AB'B=30°.