最新中考数学易错题分类汇编
- 格式:doc
- 大小:602.00 KB
- 文档页数:6
易 错 题一、数与式1、已知a-b=1,b+c=2,则2a+2c+1= 。
2、当x 时,33-=-x x 。
3、若31=-xx ,则x x 1+= 。
4、9.30万精确到 位,有效数字有 个。
5、已知A 、B 、C 是数轴上的三点,点B 表示1,点C 表示-3,AB=2,则AC 的长度是 。
6、P 点表示2,那么在数轴上到P 点的距离等于3个单位长度的点所表示的数是 。
7、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( ) A 、22a b --B 、22+-b aC 、2-bD 、2+b9. 已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加1B 、减少1C 、增加2D 、减少210、某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该商品的进价为_____元。
11.为使某项工程提前20天完成,需将原来的工作效率提高25%,则原计划完成的天数_____天12.若14+x 表示一个整数,则整数x 可取的值的个数是 。
13.如果一个三角形的三条边长分别为1,k ,3,化简3225102--+-k k k = 。
14.下列语句说法正确的是( )A .倒数等于本身的数有0B .算术平方根等于本身的数是±1和0C .立方根等于本身的数有±1和0D .相反数等于本身的数是±1 15.化简1b-可得( ) A .b B .b - C .b - D .b -- 二、方程16.022)34(22+-=--x x x x ,则x= 。
17.若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,则m 的取值范围是 。
18、若关于x 的分式方程131=---xx a x 无解,则a= 。
19、当x 时,分式1223+-x x 有意义;当x 时,分式x x --112的值等于零.20、已知31)3)(1(5-++=-++x Bx A x x x ,整式A 、B 的值分别为 .21.若关于x 的方程1151222--=+-+-x k x x k x x 有增根,求k 的值。
中考数学易错题集锦及答案易错题集锦及答案一、选择题1、若A、B是数轴上原点两旁的点,则它们表示的两个有理数是(C)。
A、互为相反数;B、绝对值相等;C、是符号不同的数;D、都是负数。
2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是(A)。
3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度(B)。
4、方程2x+3y=20的正整数解有(B)。
A、1个;B、3个;C、4个;D、无数个。
5、下列说法错误的是(C)。
A、两点确定一条直线;B、线段是直线的一部分;C、一条直线是一个平角;D、把线段向两边延长即是直线。
6、函数y=(m-1)x-(3m-1)x+2的图象与x轴的交点情况是(C)。
A、当m≠3时,有一个交点;B、m1时,有两个交点;C、当m1时,有一个交点;D、不论m为何值,均无交点。
7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)=R,则两圆的位置关系是(B)。
A、内切;B、外切;C、内切或外切;D、不能确定。
8、在数轴上表示有理数a、b、c的小点分别是A、B、C且b<a<c,则下列图形正确的是(D)。
9、有理数中,绝对值最小的数是(C)。
A、-1;B、1;C、0;D、不存在。
10、的倒数的相反数是(A)。
11、若|x|=x,则-x一定是(B)。
A、正数;B、非负数;C、负数;D、非正数。
12、两个有理数的和除以这两个有理数的积,其商为,则这两个有理数为(C)。
A、互为相反数;B、互为倒数;C、互为相反数且不为0;D、有一个为0.13、长方形的周长为x,宽为2,则这个长方形的面积为(C)。
14、“比x的相反数大3的数”可表示为(C)。
15、如果0<a<1,那么下列说法正确的是(B)。
二、填空题1、已知函数f(x)=3x-2,则f(2a-1)=(6a-5)。
2、已知函数f(x)=x^2-2x+1,则f(a+1)=(a^2+2a)。
中考数学易错题汇总与解析中考是每位初中生都要面对的一场考试。
数学作为中考的一门重要科目,对于学生来说往往是一个难以逾越的障碍。
在备考过程中,我们常常会遇到一些被认为容易出错的题目。
本文将对一些中考数学易错题进行汇总,并对其解析进行深入分析。
一、易错题汇总在中考数学试卷中,有一些特定的题目往往被大部分学生误答。
下面是一些常见的易错题汇总:1. 集合求交集并集的运算:给定一组集合A、B、C,要求计算其交集、并集或补集。
这类题目容易混淆集合的运算法则,导致答案错误。
2. 三角形相关:计算三角形的面积、周长、角度、边长等。
容易混淆计算公式,或者在计算过程中出现错误。
3. 判断题:对于一些判断题,常常会出现反直觉的答案,导致学生误选。
例如,判断一个点是否在某个平面内等。
4. 数列相关:在数列的计算中,往往会出现学生误解题意,导致答案错误。
通过对这些常见易错题目的汇总,有助于我们在备考过程中更加注意这些具有迷惑性的题目,从而避免出错。
二、易错题解析1. 集合求交集并集的运算:在解决这类题目时,我们需要熟悉交集、并集和补集的定义和运算法则。
例如,A∩B表示集合A和集合B的交集,即两个集合中共有的元素构成的集合。
A∪B表示集合A和集合B的并集,即两个集合中所有元素的集合。
A'表示集合A的补集,即包含在全集中,但不包含在集合A中的元素构成的集合。
2. 三角形相关:在计算三角形的面积、周长、角度等问题时,需要熟悉相关的计算公式,并将数值代入计算。
例如,对于面积公式S=1/2×底×高,底和高需要正确对应,且计算结果需要注意单位。
3. 判断题:对于判断题,需要仔细阅读题目,并根据题目给出的条件进行判断。
在判断一个点是否在某个平面内时,可以将点的坐标带入平面方程进行计算,判断方程是否成立。
4. 数列相关:在解决数列题目时,需要根据题目给出的条件,确定数列的递推关系或通项公式。
在计算数列的和或项数时,需要根据公式准确计算,避免因计算错误导致答案不正确。
初三数学易错题代数第一章∶一元二次方程1、解方程1112-=+-x m x x 的过程中若会产生增根,则m=____2.关于x 的方程m 2x 2+(2m +1)x +1=0有两个不相等的根,求m 的取值范围__ 3,若关于x 的方程ax 2-2x +1=0有实根,那a 范围____4,已知方程3x 2-4x -2=0,则x 1-x 2=___,大根减小根为____5,以251+-和251--的一元二次方程是____6,若关于x 的方程(a+3)x 2-(a 2-a -6)x +a=0的两根互为相反数,则a=___7,已知a,b 为不相等的实数,且a 2-3a +1=0,b 2-3b+1=0则a b +ba =___ 8,方程ax 2+c=0(a ≠0)a,c 异号,则方程根为_____9,若方程3x 2+1=mx 的二次项为3x 2,则一次项系数为_____23,分解因式4x 2+8x +1=_____24,若方程2x 2+3x -5=0的两根为x 1,x 2则x 12+x 22=_____25,方程组有两组相同的实数解,则k=___方程组的解为___ 43,若x 是锐角,cosA 是方程2x 2-5x +2=0的一个根,则∠A=___1、已知:Rt △ABC 中,∠C=900,斜边c 长为5,两条直角边a,b 的长分别是x 2-(2m-1)x+4(m-1)=0的两根,则m 的值等于()A.–1B.4C.-4或1D.–1或4.2、已知关于x 的方程012)32(2=+--x m x m 有两个不相等的实数根,则m 的范围是:()A .m<3B.233≠<m m 且 C.0,233≠≠<m m m 且 D.2330≠<≤m m 且3、已知方程①01222=+-x x ,②041x =+-,③1122=++++x x x x , ④0x 12x =---,⑤01)12(2=-+++k x k x 其中一定有...实数解的方程有 A 、1个B 、2个C 、3个D 、4个5、已知,012=-+m m 那么代数式2001223-+m m 的值是()(A)2000(B)-2000(C)2001(D)-20016,下面解答正确的是()A ,分式的值是零,x=-2或x=1B,实数范围内分解因式2x 2+x -2=)4171)(4171(+-----x x C,x=-1是无理方程22-2x +7x =-x 的根D,代数式x 2+2x -1通过配方法知x=-1时,它有最小值是-27,关于x 的方程x 2-mx +n=0有一正一负的两实根,且负根绝对值较大,则()A , n >0,m <0B,n>0,m >0,C,n<0m>0D,n <0m<08,若x =-b+b 2+4ac2a 则有()A ,ax 2+bx+c=0B,ax 2+bx-c=0C,ax 2-bx+c=0D,ax 2-bx-c=09、在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是()(A )23(B )25(C )5(D )2 20,已知关于x 的方程x 2+px +q=0的两根为x 1=-3x 2=4,则二次三项式x 2-px +q=()A.(x +3)(x -4)B,(x -3)(x +4)C,(x +3)(x +4)D,(x -3)(x -4) 三,解答题1,甲乙二人合作一项工程,4天可完成,若先有甲单独做3天,剩下的由乙独做,则以所用的时间等于甲单独完成这项工程的时间,求甲乙二人单独完成此项工程各需几天? 2,解方程mnx 2-(m 2+n 2)x +mn=0(mn ≠0)3,在⊿ABC 中,∠A ∠B ∠C 的对边分别为a,b,c 且a,b 是关于x 的方程∶x 2-(c +4)x+4c +8=0的两根,若25asinA=9c,求⊿ABC 的面积第二章∶函数第一节∶平面直角坐标系22,平面直角坐标系中,点A (1-2a,a-2)位于第三象限且a 为整数,则点A 的坐标是_____10、已知点()2,1+-a a M 在第二象限,则a 的取值范围是()(A )2->a (B )12<<-a (C )2-<a (D )1>a14、若点M (x -1,1-y )在第一象限,则点N (1-x ,y -1)关于x 轴的对称点在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限第二节∶函数 11、函数321+=x y 中,自变量x 的取值范围是____12、函数x x y -+=0的自变量的取值范围是_____1,锐角三角形ABC 内接于⊙O ,∠B=2∠C ,∠C 所对圆弧的度数为n ,则n 的取值范围是()A,0°<n <45°B,0°<n <90°C,30°<n <45°D,60°<n <90°第三节∶一次函数15,当___时,函数y=(m +3)x 2m +3+4x -5(x ≠0)是一个一次函数。
中考數學易錯題集錦一、選擇題1、A、B是數軸上原點兩旁的點,則它們表示的兩個有理數是()A、互為相反數B、絕對值相等C、是符號不同的數D、都是負數2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()|a+b| 2、有理數a、b在數軸上的位置如圖所示,則化簡|a-b|-|a+b|的結果是()A、2aB、2bC、2a-2bD、2a+ba bGAGGAGAGGAFFFFAFAF3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度()A、2千米/小時B、3千米/小時C、6千米/小時D、不能確定4、方程2x+3y=20的正整数解有()A、1個B、3個C、4個D、無數個5、下列說法錯誤的是()A、兩點確定一條直線B、線段是直線的一部分C、一條直線不是平角D、把線段向兩邊延長即是直線6、函數y=(m2-1)x2-(3m-1)x+2的圖象與x軸的交點情況是( )A、當m≠3時,有一個交點B、1±≠m時,有兩個交點GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAFC 、當1±=m 時,有一個交點D 、不論m 為何值,均無交點7、如果兩圓的半徑分別為R 和r (R>r ),圓心距為d ,且(d-r)2=R 2,則兩圓的位置關系是( ) A 、內切B 、外切C 、內切或外切D 、不能確定8、在數軸上表示有理數a 、b 、c 的小點分別是A 、B 、C 且b<a<c ,則下列圖形正確的是( )9、有理數中,絕對值最小的數是( )A 、-1B 、1C 、0D 、不存在10、21的倒數的相反數是( )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,則-x 一定是( )| 11、若|x|=x ,則-x 一定是( )| 11、若|x|=x ,則-x 一定是( )ABCCBAC ABBA CA、正數B、非負數C、負數D、非正數12、兩個有理數的和除以這兩個有理數的積,其商為0,則這兩個有理數為()A、互為相反數B、互為倒數C、互為相反數且不為0D、有一個為013、長方形的周長為x,寬為2,則這個長方形的面積為()A、2xB、2(x-2)C、x-4D、2·(x-2)/214、“比x的相反數大3的數”可表示為()A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列說法正確的是()A、a2比a大B、a2比a小GAGGAGAGGAFFFFAFAFC、a2與a相等D、a2與a的大小不能確定16、數軸上,A點表示-1,現在A開始移動,先向左移動3個單位,再向右移動9個單位,又向左移動5個單位,這時,A點表示的數是()A、-1B、0C、1D、817、線段AB=4cm,延長AB到C,使BC=AB再延長BA到D,使AD=AB,則線段CD的長為()A、12cmB、10cmC、8cmD、4cm18、21-的相反數是()A、2--D、12+1+B、12-C、21-19、方程x(x-1)(x-2)=x的根是()A、x1=1, x2=2B、x1=0, x2=1, x3=2GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAFC 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 時,若設y xx =+1,則原方程可化為( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、兩個相等的實數根B 、兩個不相等的實數根C 、三個不相等的實數根D 、沒有實數根22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4B 、4C 、-8D 、823、解關于x 的不等式⎩⎨⎧-<>ax ax ,正確的結論是( ) A 、無解 B 、解為全體實數 C 、當a>0時無解D 、當a<0時無解24、反比例函數xy 2=,當x ≤3時,y 的取值范圍是( )GAGGAGAGGAFFFFAFAFA 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤3225、0.4的算術平方根是( ) A 、0.2B 、±0.2C 、510 D 、±51026、李明騎車上學,一開始以某一速度行駛,途中車子發生故障,只好停車修理,車修好后,因怕耽誤時間,于時27、若一數組x 1, x 2, x 3, …, x n 的平均數為x ,方差為s 2,則另一數組kx 1, kx 2, kx 3, …, kx n 的平均數與方差分別是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks2D 、k 2x , ks 2GAGGAGAGGAFFFFAFAF28、若關于x 的方程21=+-ax x 有解,則a 的取值范圍是( ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列圖形中既是中心對稱圖形,又是軸對稱圖形的是( )A 、線段B 、正三角形C 、平行四邊形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是( )A 、d c b a d c b a ++=--B 、db ca d c 33++=C 、bd ac b a 23++=D 、ad=bc31、一個三角形的三個內角不相等,則它的最小角不大于( ) A 、300B 、450C 、550D 、60032、已知三角形內的一個點到它的三邊距離相等,那么這個點是( )A 、三角形的外心B 、三角形的重心C 、三角形的內心D 、三角形的垂心GAGGAGAGGAFFFFAFAF33、下列三角形中是直角三角形的個數有( )①三邊長分別為3:1:2的三角形 ②三邊長之比為1:2:3的三角形③三個內角的度數之比為3:4:5的三角形 ④一邊上的中線等于該邊一半的三角形A 、1個B 、2個C 、3個D 、4個34、如圖,設AB=1,S △OAB =43cm 2,則弧)A 、3πcm B 、32πcmC 、6πcmD 、2πcm35、平行四邊形的一邊長為5cm ,則它的兩條對角線長可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如圖,△ABC 與△BDE 都是正三角形,且AB<BD ,若△BABC不動,將△BDE繞B點旋轉,則在旋轉過程中,AE與CD的大小關系是()A、AE=CDB、AE>CDC、AE>CDD、無法確定37、順次連結四邊形各邊中點得到一個菱形,則原四邊形必是()A、矩形B、梯形C、兩條對角線互相垂直的四邊形D、兩條對角線相等的四邊形38、在圓O中,弧AB=2CD,那么弦AB和弦CD的關系是()A、AB=2CDB、AB>2CDC、AB<2CDD、AB與CD不可能相等39、在等邊三角形ABC外有一點D,滿足AD=AC,則∠BDC 的度數為()GAGGAGAGGAFFFFAFAFA 、300B 、600C 、1500D 、300或150040、△ABC 的三邊a 、b 、c 滿足a ≤b ≤c ,△ABC 的周長為18,則( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一個等于641、如圖,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,則下列說法正確的是( )A 、∠B=300B 、斜邊上的中線長為1C 、斜邊上的高線長為552D 、該三角形外接圓的半徑為142、如圖,把直角三角形紙片沿過頂點B 的直線BE (BE 交CA 于E )折疊,直角頂點C 得到等腰三角形EBA (2)B點C與AB的中點重合(3)點E到AB的距離等于CE的長,正確的個數是()A、0B、1C、2D、343、不等式6+x>x的解是()2+32A、x>2B、x>-2C、x<2D、x<-244、已知一元二次方程(m-1)x2-4mx+4m-2=0有實數根,則m的取值范圍是()A、m≤1B、m≤1且m≠1C、m≥1D、-1<m≤145、函数y=kx+b(b>0)和y=k-(k≠0),在同一坐标系中的x图象可能是()GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是( ) A 、y 1>y2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( )A 、a 8B 、22b a +C 、x 1.0D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-GAGGAGAGGAFFFFAFAF50、把a a 1--(a 不限定为正数)化简,结果为( )A 、aB 、a -C 、-aD 、-a - 51、若a+|a|=0,则22)2(a a +-等于( )A 、2-2aB 、2a-2C 、-2D 、2 52、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21C 、21D 、-21 53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( ) A 、18 B 、6 C 、23 D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A、2个B、3个C、4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
精品基础教育教学资料,仅供参考,需要可下载使用!最新初三九年级中考数学易错题集锦汇总学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.如图,能判定 AB ∥CD 的条件是( )A .∠1=∠2B .∠1+∠2= 180°C .∠3=∠4D .∠3+∠1=180°2.下列各式中从左到右的变形,是因式分解的是( )A .(a+3)(a-3)=a 2-9;B .x 2+x-5=(x-2)(x+3)+1;C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1) 3.用科学记数方法表示0000907.0,得( )A .41007.9-⨯B .51007.9-⨯C .6107.90-⨯D .7107.90-⨯ 4.小马虎在下面的计算中只做对了一道题,则他做对的题目是 ( )A .222)(b a b a -=-B .6234)2(a a =-C .5232a a a =+D .1)1(--=--a a5.方程x 3=22-x 的解的情况是( ) A .2=x B .6=xC .6-=xD .无解 6.已知235x x ++的值为 3,则代数式2391x x +-的值为( )A .-9B .-7C .0D .37.下列事件中,届于不确定事件的是( )A .2008年奥运会在北京举行B .太阳从西边升起C .在1,2,3,4中任取一个教比 5大D .打开数学书就翻到第10页8.下列长度的三条线段能组成三角形的是( )A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm9.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .10.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元12.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定13.下列图形中,由已知图形通过平移变换得到的是()14.在同一平面内垂直于同一条直线的两条直线必然()A.互相平行B.互相垂直C.互相重合D.关系不能确定15.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定16.下列命题不正确的是()A.在同一三角形中,等边对等角B.在同一三角形中,等角对等边C.在等腰三角形中与顶角相邻的外角等于底角的2倍D.等腰三角形是等边三角形17.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定18.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D . 顶角的平分线、底边上的高及底边上的中线三线互相重合19.在△ABC 中,已知AC AB = ,DE 垂直平分AC ,50=∠A °,则DCB ∠的度数是( )A . 15°B .30°C . 50°D . 65°20.将如图1所示的Rt △ABC 绕直角边BC 旋转一周,所得几何体的左视图是( )21.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图22.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( )A .个体B .总体C .样本容量D .总体的一个样本23.济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 24.若分式3242x x +-有意义,则字母x 的取值范围是( ) A .12x = B .23x =- C .12x ≠ 23x ≠-25.把图中的角表示成下列形式:①∠AP0;②∠P;③∠0PC;④∠0;⑤∠CP0;⑥∠AOP.其中正确的有()A.6个B.5个C.4个D.3个26.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个27.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.3028.现有两个有理数 a、b,它们的绝对值相等,则这两个有理数()A.相等 B.相等或互为相反数 C.都是零 D.互为相反数29.某天股票A 开盘价 19 元,上午 11:30 跌1. 5 元,下午收盘时又涨了 0. 5 元,则投票A 这天收盘价为()A.0.3 元B.l6.2 元C.16.8 元D.18 元30.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是()A.11 天B.10 天C.9 天D.8 天31.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( )A .80 元B .60 元C .40 元D .20 元32.求0.0529的正确按键顺序为( )A .B .C .D .33.下列方程中,是一元一次方程的为( )A .x+y=1B .2210x x -+=C .21x =D .x=034.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( )A . 1个B . 2个C .3个D .4个35.一个五次多项式,它的任何一项的次数( )A .都小于5B .都等于5C .都不大于5D .都不小于536.⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的值是( ) A .5 B .5- C .2 D .137.下列说法中正确的是 ( )A .直线大于射线B .连结两点的线段叫做两点的距离C .若AB=BC ,则B 是线段AC 的中点D .两点之间线段最短38. 在△ABC 中,∠A =30°,∠B =50°,则∠C 的外角=( )A .60°B .80°C .100°D .120°39.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个40.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对41.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线42.12-的绝对值是( ) A .2- B .12- C .2 D .1243.下列说法中正确的是( )A .从三角形一个顶点向它对边所在直线画垂线,此垂线就是三角形的高B .三角形的角平分线是一条射线C.直角三角形只有一条高D.钝角三角形的三条高所在的直线的交点在此三角形的外部44.如图所示,是轴对称图形的个数有()A.4个B.3个C.2个D.1个45.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()46.如图,已知 6.75r=,则图中阴影部分的面积为(结果保留π)()R=, 3.25A.35π⋅B.12.25πC.27πD.35π47.如图,由△ABC平移而得的三角形有()A. 8个B. 9个C. 10个D. 16个48.下列各式中不是不等式的为()A.25x=D.610x+≤C.58-<B.92y+> 49.关于单项式322-的系数、次数,下列说法中,正确的是()2x y zA.系数为-2,次数为 8B.系数为-8,次数为 5C.系数为-23,次数为 4D .系数为-2,次数为 750.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 5451.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好;②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的;④一组数据的标准差越大,则这组数据的方差一定越大.A .1个B .2个C .3个D .4个52.如图,在两半径不同的圆心角中,∠AOB=∠A ′O ′B ′=60°,则( )A .AB=A ′B ′ B .AB<A ′B ′C .AB 的度数=A ′B ′的度数D .AB 的长度=A ′B ′的长度53.△ABC 中,A = 47°,AB = 1.5 cm ,AC=2 cm ,△DEF 中,E = 47°,ED =2.8 cm ,EF=2. 1 cnn ,这两个三角形( )A . 相似B .不相似C . 全等D . 以上都不对54.在△ABC 中,AB=AC ,∠A=36°.以点A 为位似中心,把△ABC 放大2倍后得△A ′B ′C ′,则∠B 等于( )A .36°B .54°C .72°D .144°55.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA56.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( )A .AE AC AD AB = B .DE BC AD AB = C .D B ∠=∠ D .AED C ∠=∠57.若正比例函数2y x =-与反比例函数k y x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x=- 58.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( )A .6cmB .10cmC .32cmD .52cm59.等腰三角形的腰长为32,底边长为6,那么底角等于( )A . 30°B . 45°C . 60°D .120°60.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面61.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定62.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m,那么飞机到目标B 的距离AB为()A.2400m B.1200m C.4003 m D.12003 m 63.已知二次函数22(21)1y x a x a=+++-的最小值为 0,则a的值为()A.34B.34-C.54D.54-64.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是()A.0 B.124C.78D.1865.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于()A.310B.70lC.37D.1766.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.2567.在一个有 10 万人的小镇,随机调查了 2000人,其中有 250 人看中央电视台的早新闻,在该镇随机问一个人,他看早新闻的概率大约是()A.0.75 B. 0.5 C. 0.25 D. 0.12568.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.2569.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.2.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF=2242+=25.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF.∵EF=25,∴DE=25×22=10.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE=8,即GE=410,则GD=GE+ED=910.∴1191011092252S GD DF GD DE=⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.3.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB 、BC 两边都相切.根据角平分线的性质可知要作∠ABC 的角平分线,角平分线与AC 的交点就是点P 的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P 为所求作的圆.(2)∵∠ABC=60°,BP 平分∠ABC ,∴∠ABP=30°,∵ ∠A=90°,∴BP=2APRt △ABP 中,AB=3,由勾股定理可得:AP=3,∴S ⊙P =3π5.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形;【解析】【分析】(1)过O作OD⊥AC于D,根据勾股定理求得AD的长,再利用垂径定理即可求得AC的长;(2)分AC=PC、AP=AC、AP=CP三种情况求t值即可.【详解】(1)如图1,过O作OD⊥AC于D,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t秒△APC是等腰三角形,则AP=10﹣t①如图2,若AC=PC,过点C作CH⊥AB于H,∵∠A=∠A,∠AHC=∠ODA=90°,∴△AHC∽△ADO,∴AC:AH=OA:AD,即AC: =5:3,解得t=s,∴经过s后△APC是等腰三角形;②如图3,若AP=AC,由PB=x,AB=10,得到AP=10﹣x,又∵AC=6,则10﹣t=6,解得t=4s,∴经过4s后△APC是等腰三角形;③如图4,若AP=CP,P与O重合,则AP=BP=5,∴经过5s后△APC是等腰三角形.综上可知当t=4或5或s时,△APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC是等腰三角形时,点P的位置有三种情况.6.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC ∥BD .∴∠ABD =∠AOC =60°.∵AB 为⊙O 的直径,∴∠AEB =90°,∴△AEB 为直角三角形,∠EAB =30°.∴∠EAB =∠AEC .∴CE ∥OB ,又∵CO ∥EB∴四边形OBEC 为平行四边形.又∵OB =OC =4.∴四边形OBEC 是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.7.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P 与边BC 相切时,求P 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q 与P 相交于AC 边上的点G 时,求相交所得的公共弦的长. 【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】【分析】 (1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,5tan∠()2284x+-2880x x-+25,则525,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5, EB=BDcosβ=(45-25x )×5=4-25x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x --+-=, 整理得:y=()25x x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG=PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦,∵点Q 时弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG=EP=BD ,∴5设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.8.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH 的长为3﹣1或3+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC ,∴22AH =+,∴1AH =,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴22CH ,=+∴1CH =,∴)11AH AC CH =-==, 即:当∠PAB =45°时,AH11.【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB .∴2AD AC AC R= ∴R =2322AC AD =10.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。
中考数学易错题精选120题中考数学易错题精选120题数学作为中考科目之一,在中考中所占比重最高,且难度系数较大,容易让许多学生望而生畏。
其中,易错题最为棘手,更是备考时的难点。
以下是120道中考数学易错题,供大家参考。
一、整式的加减1. (3x^2 - 2xy + y^2) - (xy - 2y^2 + x^2)2. (2a + 3b^2 + 4ac) + (4a^2 - 2ac - 3b)3. (4x^2 + 3xy - 2xz - x + 2y - 4z) - (5x^2 - 3xy + 4xz + 2x + 2z - 5)4. (3a^2 - 2ab + 5ac - 4bc) + (4bc - 2ac - 3a^2)5. (2x^3 - 4x^2 + 5x - 1) + (3x^3 - x^2 + 2x + 1)二、配方法6. 6x^2 - 7xy + xy^2 - 6y^27. 4a^2 - 8ab - 5b^2 + 6a + 3b8. 21a^2 + 4ab - 5b^2 - 7a - 2b9. x^2 + 2xy + y^2 - 4x - 6y + 310. 3x^3 + 6x^2 - 2xy - 8x + 8y - 4y^2三、分式的加减11. (2/3x - 1/2y) + (1/2x - 1/3y)12. (3a/2b - 2b/3a) - (5a/6b - 2b/9a)13. (x/y + 2/y - 3/x) - (2/x + 1/y - 4/y)14. (5/4x - 1/3) + (7/6x - 2/3)15. (3x/2 - y/4) - (5x/3 - y/6)四、方程的解法16. 3x - 5 = 2x + 717. 2x^2 + 3x - 2 = 018. 4(x - 3) = 3(x + 5)19. (x - 5)^2 = 1620. 3x - 4 = 7 - 2x五、方程与不等式21. 2x + 5 > 3x - 422. x^2 - 4x > 023. 2x + 3 < 5x - 624. (2x - 3)^2 < 925. (x - 2)(x - 4) > 0六、三角形26. 等腰三角形的两底角相等,这个定理叫什么名字?27. 已知一角的余弦值,如何求这个角的正弦值?28. 正弦定理可以用来解决哪些问题?29. 在直角三角形中,如果已知斜边和一条直角边,如何求另一条直角边?30. 一个任意三角形的内角和是多少?七、平面几何31. 将一个正方形对边连接成一条对角线时,这条对角线分割成两个全等的什么形状?32. 圆的周长和面积的公式是什么?33. 正六边形的内角和是多少?34. 如何用一个长方形和半个圆形拼成一个正方形?35. 已知一个三角形的三边,如何判断它是等腰三角形?八、空间几何36. 立方体的棱长与对角线的关系是什么?37. 正方形金字塔的侧棱长和高的关系是什么?38. 正方形金字塔的侧棱长和表面积的关系是什么?39. 球的表面积公式是什么?40. 球的体积公式是什么?九、比例与相似41. 两个小数的比例是多少?42. 两个小数的比例是5:3,其中一个小数是1.5,求另一个小数。
中考数学易错题分类
汇编
教师姓名 奚黎晨 学生姓名 倪佳瑛 年级 九 学科 数学
课题名称 初中数学易错题分类汇编 课型 复习课 教学目标 基础题练习,中考常考易错题练习 教学重点 基础题练习,中考常考易错题练习 教学难点 基础题练习,中考常考易错题练习 课前复习 一、数与式
例题:4的平方根是.(A )2 (B )2 (C )2± (D )2±.
例题:等式成立的是.(A )1c ab abc =(B )6
32x x x =(C )1
12112
a a a a +
+=--(D )22a x a bx b =. 二、方程与不等式 ⑴字母系数
例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.
例题:不等式组2,
.x x a >-⎧⎨
>⎩
的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.
⑵判别式
已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式12
1214
x x x x <+-,求实数
的范围.
⑶解的定义
例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a
b b
a
+=____________. ⑷增根
例题:m 为何值时,221
11
x m x
x x x --
=+
--无实数解.
⑸应用背景
例题:某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A 、C 两地间距离为2千米,求A 、B 两地间的距离.
⑹失根
例题:解方程(1)1x x x -=-.
三、函数 ⑴自变量 例题:函数62
x
y x x -=
-+中,自变量x 的取值范围是_______________.。