抗干扰电路
- 格式:doc
- 大小:792.00 KB
- 文档页数:6
光耦抗干扰输入电路设计光耦抗干扰输入电路是指通过光耦件来隔离输入信号与处理电路,从而防止输入信号的干扰对处理电路的影响。
在很多场合中,输入信号中往往混杂着各种干扰信号,如电磁干扰、电源噪声、交流干扰等。
这些干扰信号会对输入电路造成干扰,从而导致系统故障或误操作。
而光耦抗干扰输入电路可以通过电气隔离的方式,将输入信号和处理电路隔离开来,从而保证输入信号的可靠性和稳定性。
在光耦抗干扰输入电路的设计中,需要考虑以下几个方面:1.光耦件的选型光耦件是该电路的关键部件,它能够将输入信号转化为光信号,从而隔离输入信号和处理电路。
在选择光耦件时需要考虑其响应速度、耐压能力、隔离电压等指标,以及其对输入信号的影响情况等。
2.光耦件与输入电路的匹配光耦件和输入电路之间的匹配关系对电路的性能和稳定性有着关键影响。
在设计时需要考虑输入电路的输入阻抗、信号幅度等因素,以确保光耦件和输入电路之间的匹配和优化。
3.输入信号的滤波和处理输入信号中往往包含着各种干扰信号,如电磁干扰、电源噪声、交流干扰等。
在设计时需要通过滤波电路、输入保护电路等手段对输入信号进行滤波和处理,从而保证输入信号的准确性和可靠性。
4.电气隔离的性能和稳定性电气隔离是光耦抗干扰输入电路的核心能力之一,它对输入信号和处理电路之间的分离和隔离非常重要。
在设计时需要参考光耦件的隔离电压、输入电路的安全保护等相关指标来保证电气隔离的性能和稳定性。
总之,光耦抗干扰输入电路设计需要充分考虑光耦件的选型和性能,光耦件与输入电路的匹配关系、输入信号的滤波和处理以及电气隔离的性能和稳定性等方面,从而确保该电路的抗干扰性能和可靠性。
增加电路抗干扰能力的方法随着电子产品的普及,电磁干扰已经成为了工业、交通、通讯、军事等领域所面临的普遍问题。
尤其是在高铁、地铁等复杂多变的环境中,电磁干扰更加严重。
为了有效地解决电磁干扰所带来的影响,提高电路的抗干扰能力已成为了重要议题。
以下是增加电路抗干扰能力的方法:1. 滤波器滤波器用于去除电源中的高频和低频噪声和其它干扰信号。
对于单相交流电源,使用LC滤波器来抑制高频噪声,LRC滤波器来抑制低频噪声,并采用带状滤波器来抑制EMI干扰,在输入和输出端使用衰减滤波器来抑制EMI干扰。
2.电磁屏蔽技术电磁屏蔽是指使用内部或外部的物理结构,将电路环境与电路之间隔离开来,避免电磁信号的互相干扰。
内部屏蔽有金属薄膜、金属盒、金属箔等物理结构,外部屏蔽有遮蔽罩、低噪声电缆等。
3. 接地技术正确的接地技术可以有效地降低电路的共模噪声和防止干扰信号的入侵。
最佳的接地点是电源和电路地之间的共和点,使用接地环或导体保护来降低接口电阻,将高频信号放入地时,必须注意抗地衰减特性,确保抗干扰能力。
4.电路设计在电路设计阶段,需要对指令编码进行设计,必须注意不同信号在电路中的相对位置。
使用地端,噪声过滤器和其它技术方案,能够有效地处理高频滤波,减少EMI干扰。
5.使用低噪声源在电路设计时,应该使用低噪声源,例如低噪声电缆、低噪声电源等等。
这些器件是设计低噪声和抵御干扰所必不可少的器件。
总之,增加电路抗干扰的能力是一项艰难的任务,需要综合考虑电路的特性、制造工艺、环境因素等方面,通过在滤波、屏蔽、接地、电路设计等方向上的优化来实现。
在实际情况下,电路抗干扰能力的提高还需要与测试和验证相结合,使其在实际性能中得到改进。
光耦抗干扰输入电路设计
随着电子设备的普及和市场需求的增加,电子产品的抗干扰能力要求也越来越高。
在电子系统中,输入电路是最容易受到干扰的部分之一。
为了保障系统的正常工作,我们需要设计一种抗干扰的输入电路。
光耦抗干扰输入电路是一种有效的解决方案。
光耦是一种能够实现隔离的器件,它能够隔离输入信号和系统的其他部分,从而避免信号被干扰。
光耦输入电路的基本原理是将输入信号转换成光信号,再通过光耦隔离后转换成电信号,从而实现输入信号与系统其他部分的隔离。
在光耦抗干扰输入电路的设计中,需要注意以下几点:
1. 光耦的选择:应该选择具有高隔离度和低反向传递比的光耦器件。
2. 输入电路的设计:应该采用差分输入电路,以减小共模干扰。
3. 信号放大电路的设计:应该采用低噪声放大器,以保证信号的高精度和低失真。
4. 电源滤波:应该在电源输入端加入滤波电路,以减小电源噪声对系统的影响。
综上所述,光耦抗干扰输入电路是一种有效的解决方案,能够有效地提高系统的抗干扰能力。
在设计时需要注意光耦的选择、输入电路设计、信号放大电路的设计和电源滤波等方面。
- 1 -。
什么是电路的抗干扰能力和抗干扰设计电路的抗干扰能力和抗干扰设计电路的抗干扰能力指的是电子设备在外界干扰因素存在的情况下,保持正常工作及抵御干扰的能力。
而抗干扰设计则是为了提高电路的抗干扰能力而进行的一系列设计措施。
一、电路的抗干扰能力电路的抗干扰能力是衡量电子设备质量的重要指标之一。
在现代社会中,各种电子设备广泛应用,而电磁干扰、射频干扰、静电干扰等各种干扰源也与日俱增。
因此,提高电路的抗干扰能力显得尤为重要。
一个具有较强抗干扰能力的电路能够在外界环境干扰的条件下,仍能够保持正常的信号传输和处理。
电路的抗干扰能力取决于电路的结构和设计,以及所选取的电子元器件的特性。
抗干扰能力受到以下几个方面的影响:1. 电路布局与引导:合理的电路布局和引导可以有效地降低干扰的传播和影响范围。
例如,将信号线和电源线进行分离布局,采用地线和屏蔽层等手段隔离敏感电路和外界干扰源。
2. 电磁兼容性设计:采用合适的电磁兼容性设计方法,如合理选择滤波器、隔离器、衰减器等元器件,可以有效防止电磁干扰。
3. 电路接地与屏蔽:良好的接地和屏蔽设计能够减小电路对外界干扰的敏感度,提高抗干扰能力。
4. 选择合适的元器件:选用具有较好抗干扰性的元器件,如抗干扰电容、抗干扰电感等,能够提高电路的抗干扰能力。
二、抗干扰设计为了提高电路的抗干扰能力,需要进行抗干扰设计。
1. 电路板布局设计:电路板布局应合理,确保信号线和电源线的分离,减小信号线的长度,避免相互干扰。
同时,还要根据电路的特点将敏感电路放置在较远距离的位置。
2. 确保良好的接地:良好的接地能够降低电路的接地电阻,减小电流环路面积,从而减小由于接地电阻引起的环路干扰。
3. 使用屏蔽材料与屏蔽结构:对于对外界辐射敏感的电路,可以采用屏蔽箱、屏蔽壳等屏蔽结构来减小外界干扰的影响。
此外,还可以使用金属屏蔽罩、屏蔽盖等屏蔽材料来避免信号的外泄。
4. 使用滤波器与隔离器:在电路中添加滤波器和隔离器可以有效地抑制高频干扰和地回路干扰。
PCB及电路抗干扰措施PCB(Printed Circuit Board,印刷电路板)是电子产品中常见的一种基础组件,用于支撑和连接电子元器件。
在设计和制造PCB时,为了保证电路的稳定性和可靠性,需要采取一系列的抗干扰措施。
首先,对于信号线的定位和布线需要谨慎考虑。
对于高频信号线和低频信号线,应尽量避免在布线过程中产生交叉和平行,同时应尽量使信号线和地线、电源线保持一定的间距,减小相互之间的干扰。
其次,对于电源线的设计,应采取合适的滤波措施。
通过设置电源滤波器,可以有效地滤除电源线上的高频噪声,保证电路的稳定供电。
此外,应尽量避免共地和共电源现象的产生,即将高频和低频电源线分开布局,减少相互之间的相互干扰。
另外,在PCB的设计中,需要合理规划和设置地面层。
地面层在PCB上起到了很重要的作用,可以提供稳定的工作参考电平,同时还可以起到屏蔽和散热的作用。
在地面层设计中,可以采取大面积连接的方式,将地面层与信号层、电源层等连接起来,形成一个完整的电流环路,减少干扰的产生。
此外,在PCB的布局和连接中,还可以采取差分信号传输技术。
差分信号传输是一种通过两个相反但幅度相等的信号进行数据传输的方式,可以有效抵消传输过程中的共模干扰和噪声。
对于差分信号线,需要尽量保持两条信号线的长度、间距和走线方式一致,减小差分信号线之间的不平衡和失配。
此外,在PCB的设计过程中,还可以采用屏蔽罩和屏蔽设备来进行电磁屏蔽。
屏蔽罩通常由导电材料制成,可以用于保护敏感的设备和信号线不受来自外部的电磁干扰。
同时,在PCB上的敏感电路和元器件周围,可以设置合适的屏蔽罩或屏蔽设备,进一步提高电路的抗干扰性能。
最后,还可以通过设计适当的接地和继电器等控制装置来提高PCB的抗干扰能力。
良好的接地设计可以减少接地回路的阻抗,提供稳定的接地参考电平。
通过合理选择和设计继电器,可以实现对敏感电路的切断和隔离,避免干扰源对电路的影响。
综上所述,PCB及电路的抗干扰措施涉及信号线的布线定位、电源线的滤波设计、地面层的设置、差分信号传输、屏蔽设备的应用、接地设计和继电器等。
电路电磁兼容性设计如何设计抗干扰和抗辐射电路电磁兼容性(Electromagnetic Compatibility, EMC)是指电子设备在相互干扰和和外界电磁环境下能够正常工作的能力。
在电子产品的设计中,抗干扰和抗辐射电路的设计是确保电子设备在各种电磁环境下能够稳定运行的重要因素。
本文将讨论电路电磁兼容性设计中如何设计抗干扰和抗辐射电路。
一、抗干扰电路设计抗干扰电路设计是为了减少电子设备对外界电磁噪声的敏感度,防止其发生故障或误操作。
以下是几种常见的抗干扰电路设计方法:1. 电源线滤波器:通过在电源输入端添加滤波电路,能够滤除掉电源线上的高频噪声,减小对电子设备的影响。
2. 地线设计:良好的接地设计可以有效地抑制干扰信号的传播,例如通过增加接地电感和接地电容,形成低阻抗的接地路径。
3. 屏蔽设计:在电路板的设计中,使用屏蔽罩或金属层来遮蔽电子设备内部的干扰源,从而降低对周围环境的干扰。
4. 布线设计:合理的布线可以减少信号间的串扰,例如将高频信号线和低频信号线分开布置,避免相互干扰。
5. 过压保护设计:在电路中添加适当的过压保护电路,可以避免由于外界电磁干扰引起的过压情况,保护电子设备的正常工作。
二、抗辐射电路设计抗辐射电路设计是为了减少电子设备对外界电磁辐射的敏感度,防止其自身辐射对其他设备和系统造成干扰。
以下是几种常见的抗辐射电路设计方法:1. 圆孔规则:根据电磁波波长和孔洞尺寸之间的关系,设计合理大小的圆孔,使其具有较好的屏蔽性能。
2. 接地设计:良好的接地设计可以有效地将电磁辐射信号导入地面,减小辐射功率。
3. 电磁辐射滤波器:通过添加辐射滤波器,限制高频电流在电路中的传播,减少辐射发射。
4. 屏蔽设计:在电路板设计中增加屏蔽层或屏蔽导线,使电磁辐射局限在设备内部,减少对外界的辐射。
5. 地面平面分割:通过将地面平面划分为小的分区,降低不同分区之间电荷的流动速度,减小辐射功率。
三、电路模拟与仿真为了更好地评估电路的电磁兼容性性能,可以使用电磁仿真软件对电路进行模拟和仿真。
电磁抗干扰来源及电路与软件抗干扰(EMC)措施概述可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。
它包括两方面的含义:故障时不拒动和正常时不误动。
之所以会存在这两个方面的隐患是因为电磁干扰的存在。
因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。
电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。
(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。
电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。
造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。
控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。
所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。
因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。
电磁干扰的来源所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。
电源干扰电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自电源,电源的干扰具有频带宽难以定量化、干扰原因复杂、干扰方式多变等特点。
干扰信号会沿着电源线进入单元内部,通过辐射或传导藕合的方式干扰其它信号或元件的正常工作。
电路设计抗干扰措施在电路设计中,抗干扰措施是非常重要的,可以有效地减少或消除各种电磁干扰对电路正常运行造成的影响。
下面将介绍一些常见的抗干扰措施。
1.地线设计地线在电路中起到连接电路各个部分的作用,它功德很大程度上影响了电路的干扰抗能力。
在地线设计中,应尽量缩短地线的长度,减小地线的电阻和电感,并采用良好的接地方式。
另外,应避免地线与信号线和电源线的交叉,以减少互相干扰。
2.滤波器的使用滤波器是抗干扰的重要组成部分,可以帮助滤除电路中的高频干扰信号。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在设计中,可以根据具体干扰源的频率特性选择合适的滤波器,并将其放置在电路的输入和输出端口。
3.屏蔽措施屏蔽是通过屏蔽材料将电路部件与外界环境隔离开来,阻止干扰信号的进入或电磁辐射的泄漏。
常用的屏蔽材料包括金属泡沫、金属网、金属薄膜和金属壳体。
在设计中,可以根据需要在电路周围设置适当的屏蔽层来保护电路免受干扰。
4.接地和屏蔽电流的设计在设计电路时,接地是非常重要的一项工作。
良好的接地设计可以有效降低电路的串扰和电磁干扰。
在接地设计中,应尽量缩短接地线路的长度、宽度和电阻,并采用低电阻的接地方式。
此外,还需要注意屏蔽电流的设计,避免屏蔽电流造成的地回流问题。
5.信号线和电源线的布局信号线和电源线是电路中最容易受到干扰的部分。
在布局设计中,应尽量避免信号线和电源线的交叉和平行排列,以减少互相干扰。
可以通过增加信号层的层数和合理分配信号线和电源线的位置来降低干扰。
6.过滤器的选择在电路设计中,可以使用各种过滤器来减少电源线和信号线上的干扰。
常见的过滤器包括RC滤波器、LC滤波器和PI滤波器。
过滤器的选择应根据具体的干扰频率和功率要求来确定。
7.抑制共模信号的方法共模信号是一种常见的干扰信号,可以通过使用差模电路来抑制。
差模电路可以将共模信号转换为差模信号,并将其降噪。
常见的差模电路包括差动放大器和差分输入电路。
电路中的电磁兼容和抗干扰电路中的电磁兼容(EMC)和抗干扰(EMI)是现代电子设备设计和制造中不可忽视的重要因素。
在今天的高频率和高速度通信中,电子设备之间的相互干扰已经成为一个严重的问题。
本文将介绍电磁兼容和抗干扰的概念、原因以及如何有效解决这些问题。
一、概念引言电磁兼容指的是电子设备在同一环境下能够和其他设备无干扰地运行的能力。
而抗干扰则强调了电子设备能够维持正常运行,即使在存在干扰源的情况下也不受影响。
电磁兼容和抗干扰旨在解决电磁干扰对电子设备稳定性和性能的负面影响。
二、电磁干扰的原因电磁干扰主要来源于以下几个方面:1.电源线中的电磁干扰:电源线中的电流波动和高频噪声会通过电源传播到其他电子设备中,引起干扰。
2.无线电干扰:当无线电设备和接收器工作在相近频率时,它们之间可能发生相互干扰。
3.导线间电磁干扰:当导线靠近或交叉时,电流和磁场之间的相互作用可能导致相互干扰。
4.传输线的辐射干扰:在高速传输线(如USB、HDMI等)上,有可能发生电磁泄漏,影响相邻的电子设备。
5.高频设备互相干扰:高频设备之间的相互作用可能导致电磁波的产生和传播,从而造成干扰。
三、电磁兼容和抗干扰的解决方法为了确保设备的正常运行,必须采取一系列措施来提高电磁兼容性和抗干扰能力。
以下是一些有效的方法:1.电磁屏蔽:通过在电子设备外部添加金属屏蔽层,阻挡外界电磁辐射的影响。
2.接地和回线设计:合理的接地设计是保障电子设备正常运行的基础,有效减少电磁干扰。
3.滤波器的应用:在电源线上添加滤波器可以降低电源中的高频噪声,保护设备免受干扰。
4.合理布线和隔离:合理布线可以减少导线间的相互干扰,阻止电磁波的传播。
5.选择合适的组件和设备:选用性能稳定、抗干扰能力强的元器件,降低电磁干扰的产生。
6.EMC测试和认证:在产品设计和生产过程中进行电磁兼容测试和认证,确保产品符合标准。
四、结语电磁兼容和抗干扰是现代电子设备设计和制造中必须关注的问题。
pmos 开关电路抗干扰措施PMOS开关电路抗干扰措施是为了保证电路的稳定性和抗干扰能力。
下面是一些常见的PMOS开关电路抗干扰措施:1.建立信号地:在电路设计中,需要将信号地与电源地分离开来,以避免不同地点的地线通过共地电阻产生的干扰。
2.使用屏蔽线:在布线过程中,可以采用屏蔽线对敏感信号线进行屏蔽,减少电磁场对信号的影响。
3.增加滤波电容:在输入端和输出端加入适当的滤波电容,可以有效地抑制高频干扰信号。
4.使用差分输入电路:将输入信号处理为差动信号,在差分电路中,共模干扰信号相互抵消,从而提高了抗干扰能力。
5.增加终端电阻:为了减小干扰信号对电路的影响,可以在输入端和输出端加入合适的终端电阻,以改善电路的匹配性。
6.适当布置焊盘和引脚:在PCB布局设计中,应合理布置焊盘和引脚,尽量避免敏感信号线与高频信号线的交叉干扰。
7.使用屏蔽罩或屏蔽盒:对于特别敏感的PMOS开关电路,可以采用屏蔽罩或屏蔽盒的方式,有效地屏蔽外界干扰信号。
8.选择合适的工作频率:在设计PMOS开关电路时,应根据实际需求选择合适的工作频率,以避免频率过高或过低对电路的干扰。
9.使用顺序电路:对于需要同时切换多个PMOS的电路,可以采用顺序电路来控制开关的打开和关闭顺序,以减小因同时开关引起的交叉干扰。
10.使用隔离器件:在特殊情况下,可以使用光耦隔离器或者磁耦隔离器来隔离PMOS开关电路与其他电路,以免干扰信号传播到其他电路中。
总之,PMOS开关电路抗干扰措施包括信号地分离、屏蔽线、滤波电容、差分输入电路、终端电阻、布局设计、屏蔽罩、工作频率选择、顺序电路和隔离器件等方面,通过综合应用这些措施,可以有效地提高PMOS开关电路的抗干扰能力。
抗干扰运算放大器的电路设计与实现抗干扰运算放大器是一种常用的电路,它能够抵抗外界干扰信号的干扰,并放大输入信号。
在电子设备中,干扰信号是一个常见的问题,它会导致系统性能下降甚至失效。
因此,设计和实现一个稳定可靠的抗干扰运算放大器是很重要的。
我们需要了解抗干扰运算放大器的基本原理。
它通常由一个差动放大器和一个输出级组成。
差动放大器是这个电路的核心部分,它通过两个输入端和一个输出端来放大输入信号。
为了增强抗干扰能力,我们可以在差动放大器的输入端添加一个低通滤波器,以滤除高频干扰信号。
同时,我们还可以在输出级添加一个反馈电路,以提高整个系统的稳定性。
在设计抗干扰运算放大器时,需要考虑以下几个关键因素。
首先是输入电阻和输入电容的选择。
输入电阻应足够大,以避免对输入信号产生较大的负载效应。
输入电容应足够小,以减少对输入信号的干扰。
其次是放大倍数的确定。
放大倍数应根据实际需求和输入信号的幅度确定,过大的放大倍数可能会引入更多的干扰。
最后是反馈电路的设计。
反馈电路应能够提供稳定的负反馈,以减小系统的非线性和失调。
在实现抗干扰运算放大器时,我们可以选择合适的器件和元件。
差动放大器可以选择使用双晶体管或运算放大器作为运算放大器的核心部件。
其他元件如电阻、电容和电感可以根据具体设计要求选择。
为了验证抗干扰运算放大器的性能,我们可以进行一系列的实验。
首先,可以测试电路的输入和输出特性,如输入阻抗、输出阻抗、放大倍数和频率响应等。
其次,可以测试电路的抗干扰能力,如对共模干扰信号和差模干扰信号的抑制效果。
最后,可以进行长时间稳定性测试,以验证电路的可靠性和稳定性。
抗干扰运算放大器的设计和实现是一个复杂而关键的任务。
通过合理选择器件和元件,并进行详细的实验验证,我们可以设计出一个稳定可靠、抗干扰能力强的抗干扰运算放大器电路。
这对于提高电子设备的性能和可靠性具有重要意义。
由于电子电路在各行各业都有广泛的应用,电子控制技术能有效地提高生产效率和经济效益。
但现实中由于电子电路工作的现场环境复杂,会有各种各样的干扰,致使电子电路会出现这样或那样的问题。
常常导致电路不能正常工作。
因此在电子电路设计中抗干扰问题是一个十分重要的课题。
下面我们从软件和硬件两个方面来说说电子电路抗干扰的方法,以便提高我们制作电路的可靠性。
一、电子电路干扰的耦合与传播途径(一)、电子电路的干扰源干扰是指有用信号以外的噪声或造成恶劣影响的变化部分统称为干扰。
干扰产生的来源称为干扰源。
干扰源可分为外部干扰源和内部干扰源两种。
外部干扰源是指哪些与电子电路本身无关,是由外界环境因素决定的。
内部干扰源则是由电子电路结构布局、生产工艺等所决定的。
例如交流声、不同信号的感应、杂散电容、多点接地造成的电位差、寄生振荡引起的干扰等均属内部干扰。
(二)、电子电路的干扰的耦合方式我们知道干扰源产生的干扰信号是要通过一定的耦合通道才能对电子电路产生作用。
那么根据长期的实践经验表明干扰源和被干扰对象之间的耦合方式有以下几种。
第一种是直接耦合方式,它是存在电子电路中最普遍最直接的一种方式;第二种是公共阻抗耦合,这个常常发生在两个电路电流有公共通道的情况;第三种是电容耦合,干扰信号是通过分布电容的耦合,传播到电子电路中;第四种是电磁感应耦合,也称磁场耦合,它是通过分布电磁感应而产生的耦合;第五种是漏电耦合,这种会在绝缘不好时就会发生。
(三)、电子电路的干扰的耦合方式那么干扰信号是通过哪些途径进入到电子电路中的呢?我么通过大量的实验得知干扰信号主要通过三个途径进入的,即电磁感应、传输通道、电源线。
二、电子电路抗干扰的方法要解决电子电路的干扰,一定要找出干扰源,然后利用硬件技术和软件技术来解决。
(一)、用硬件技术抗干扰的方法(1)、抑制干扰源措施我们常常采用如下的方法来抑制干扰源,对于继电器线圈可以增加续流二极管以消除断开线圈时产生的反电动势的干扰;在电路板上的每个集成电路要并接一个0.01-0.1微法的高频电容,以减小集成电路对电源的影响,同时要注意高频电容的布线连线应靠近电源端并尽量粗短;在布线时要避免90度折线,减小高频噪声发射,如有三极管,应在三极管两端并接RC抑制电路,以减小三极管产生的噪声;对于芯片I/O口可以采用光耦合、磁电耦合、继电器隔离等措施;电路外壳要接地,以解决人身安全和防外界电磁场干扰。
电路设计中抗干扰的方法(附电路图)1、切断干扰的传播途径1)增加干扰源(如电机、继电器)与敏感器件(如单片机)的距离,用地线把他们隔离或者在敏感器件加上屏蔽罩。
2)电路板合理分区,将强信号、弱信号、数字信号、模拟信号电路合理地分区域布置。
4)、单片机和大功率器件的地线要单独接地,以减小互相干扰。
大功率器件要尽可能布置在电路板的边缘。
5)、在单片机I/O口,电路板连接线等关键地方,使用抗干扰元件可显著提高电路的抗干扰性能。
6)、晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
2、尽量采用抗干扰性能强的单片机1)、降低单片机内部的电源噪声在传统的数字集成电路设计中,通常将电源端和地端分别布置在对称的两边。
例如左下角为地,左上角为电源。
这使得电源噪声穿过整个硅片。
改进方法将单片机的电源和地安排在两个相邻的引脚上,这样不仅降低了穿过整个硅片的电流,还便于印制板上设计电源退耦电容,以降低系统噪声。
2)、降低时钟频率单片机测控系统的时钟电路是一个调频噪声源,它不仅能干扰本系统,还对外界产生干扰,使其他系统的电磁兼容检测不能达标。
在保证系统可靠性的前提下,选用时钟频率低的单片机可降低系统的噪声。
以8051单片机为例,当最短指令周其为1US时,时钟是12MHZ。
而同样速度的MOTOROLA兼容单片机的厂商在不牺牲运算速度的前提下,将时钟频率降低到原来的1/3。
特别是MOTOROLA公司新推出的68HC08系列单片机、内部采用了锁相倍频技术,将外部时钟除至32KHZ,而内部总线速度却提高到8MHZ,甚至更高。
3)、EFT技术随着超大规模集成电路的发展,单片机内部的抗干扰技术也在不断进步。
MOTOROLA公司新推出的68HC08系列单片机,采用EFT技术进一步提高了单片机的抗干扰能力,当振荡电路的正弦波信号受到外界干扰时,其波形上会叠加一些毛刺。
若以施密特电路对其整形时,这种毛刺会成为触发信号干扰正常的时钟信号。
电子电路的抗干扰控制措施电气工程论文发表电子电路系统在运行中会产生一些干扰,而这些干扰具有较大危害性,电子电路抗干扰技术就是针对这一干扰危害所研发出来的。
电子电路系统非常容易受到电磁干扰,且有很大的危害性,单从电磁辐射干扰角度来看,只要一点的辐射干扰都会给电子电路系统带来较大影响,不能让其稳定运行,电子设备也不能正常工作,要是严重的话整个电子电路系统的正常运行都是非常困难的,让所有的电子电路系统配置失去工作能力,不能为电子电路系统提供任何服务。
所以说,采取有效的抗干扰方法能让电子电路系统安全运行,不会受到干扰的侵害。
1电子电路系统干扰的类型和危害1.1干扰的类型。
电磁干扰是在电子电路系统运行中存在的一种干扰源,要是从干扰的船舶途径来看,可以将电磁干扰划分成传导干扰以及空间辐射干扰。
传导干扰主要是通过电子电路中的所有电路单元还有所有的电路导线,在导线上发挥其干扰作用,然后在通过导线连接,让所有的干扰源都顺着导线开始传输,这样就会干扰到整个电子电路系统。
而空间辐射干扰主要的传统途径是电子电路的空间,它通过空间辐射去干扰整个电子电路系统,让其不能正常运行。
1.2干扰的危害。
首先是空间辐射干扰给电子电路系统带来的危害,在电磁干扰系统中,空间辐射干扰是电子电路系统中非常常见的一种干扰形式,这种干扰主要的传播干扰源就是空间,通过空间对整个电子电路进行干扰,让系统不能正常运行,要是细分的话还能将空间辐射干扰给分成远辐射干扰以及近耦合干扰。
空间辐射的干扰源就是电磁能量,而且干扰途径也非常多,有可能特定的条件下,电源电路、信号电路以及控制电路都有可能成为辐射天线,从而形成空间辐射的干扰途径,然后干扰源再通过的系统空间开始流动并产生辐射,这样一来,电子电路系统就会在电路导线的流动下干扰到电磁感应以及电容电感。
其次是传导传导干扰给电子电路系统带来的危害,这种电磁干扰主要是在电子电路系统中的各个导线上开始传播,然后对系统进行干扰。
电路抵抗干扰的原理
电路中的抵抗干扰主要源自以下几个方面:
1. 寄生电阻
引线、接触点等都存在一定电阻,这些寄生电阻会对电路中的信号传输产生干扰。
2. 温度变化
抵抗器的阻值会随温度变化而发生一定变化,温度波动会引起电阻值漂移,影响电路性能。
3. 外加应力
外力压应力也会导致某些敏感元件的电阻值发生变化,让电路特性产生偏差。
4. 杂散电感和电容
电路布局不当会存在一定杂散电感和电容,它们会形成谐振环路干扰电路频率特性。
5. 相互爬坡效应
高密度布局电路时,不同导线之间会互相感应,使信号产生失真。
6. 电磁干扰
外来电磁干扰也可能直接影响电路的正常工作。
为了减少这些抵抗干扰,电路设计时要注意隔离敏感节点,选用热稳定电阻,排布电路避免杂散参数,增加屏蔽等方法来提高抗干扰性。
抗干扰电路1
如图所示为抗干扰声控开关电路。
该电路由话筒S、选频放大器、单稳整形电路IC1、信号存储器IC2a与IC2b、可控硅交流开关SCR及脉冲清零电路IC4等组成。
电路中BG1为9014或3DG4M、3DG201、3DG401、3DG8A和3DG88等。
BG2、BG3选用3D G12或3DG130。
IC1、IC4也可用一只双时基电路556来取代。
IC2a、IC2b、IC3a分别为正沿触发双D触发器集成电路74LS74的一半。
二极管D1~D7选用2CP型。
其他元件无特殊要
求。
SCR的耐压应大于400V,工作电流视负载电流而定。
抗干扰电路2
抗干扰电路4
抗干扰电路6
抗干扰电路8
抗干扰电路9 抗干扰电路10
抗干扰电路11 抗干扰电路12
抗干扰电路13
抗干扰电路14。