三阶逆矩阵的求法
- 格式:doc
- 大小:5.82 KB
- 文档页数:2
求解逆矩阵的常用三种方法逆矩阵是线性代数中一个非常重要的概念,它在解线性方程组、求解矩阵方程等问题中具有重要作用。
本文将介绍解逆矩阵的三种常用方法:伴随矩阵法、初等变换法和分块矩阵法。
方法一:伴随矩阵法伴随矩阵法是一种直接求解逆矩阵的方法。
对于一个n阶方阵A,它的伴随矩阵记为adj(A)。
首先,计算矩阵A的代数余子式构成的余子式矩阵A*,即A* = [Cij],其中Cij是A的元素a_ij的代数余子式。
然后,将A*的转置矩阵记为adj(A)。
最后,计算逆矩阵A^-1 = adj(A) /det(A),其中det(A)是矩阵A的行列式。
方法二:初等变换法初等变换法是通过一系列的初等行变换将矩阵A变为单位矩阵I,同时对单位矩阵进行相同的变换,得到的矩阵就是原矩阵A的逆矩阵。
初等变换包括以下三种操作:1.对其中一行(列)乘以非零常数;2.交换两行(列);3.其中一行(列)乘以非零常数加到另一行(列)上。
具体步骤如下:1.构造增广矩阵[A,I],其中A是待求逆矩阵,I是单位矩阵;2.对增广矩阵进行初等行变换,使左侧的矩阵部分变为单位矩阵,右侧的部分就是待求的逆矩阵;3.如果左侧的矩阵部分无法变为单位矩阵,则矩阵A没有逆矩阵。
方法三:分块矩阵法当矩阵A有一些特殊的结构时,可以使用分块矩阵法来求解逆矩阵。
例如,当A是一个分块对角矩阵时,可以按照分块的大小和位置将其分解为几个小矩阵,然后利用分块矩阵的性质求解逆矩阵。
具体步骤如下:1.将方阵A进行分块,例如,将A分为4个分块:A=[A11A12;A21A22];2.根据分块矩阵的性质,逆矩阵也是可以分块的,即A的逆矩阵为A^-1=[B11B12;B21B22];3.通过求解分块矩阵的逆矩阵,可以得到原矩阵的逆矩阵。
以上就是解逆矩阵的常用三种方法:伴随矩阵法、初等变换法和分块矩阵法。
无论是在理论研究还是在实际应用中,这些方法都具有重要的作用。
在求逆矩阵时,我们可以根据具体的情况选择合适的方法,以获得高效、准确的计算结果。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
矩阵的逆矩阵与行列式计算矩阵是线性代数中的一项重要概念,它在各种领域中都有广泛的应用。
矩阵的逆矩阵和行列式是矩阵理论中的两个关键概念,本文将介绍逆矩阵和行列式的计算方法及其重要性。
一、逆矩阵逆矩阵是矩阵理论中非常重要的一个概念。
对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I(其中I表示单位阵),那么我们称B为A的逆矩阵,记作A的倒数。
对于可逆矩阵A,它的逆矩阵是唯一的。
逆矩阵的计算方法如下:设A为一个n阶方阵,如果存在n阶方阵B,使得AB=BA=I,则B为A的逆矩阵。
求矩阵A的逆矩阵的方法有多种,以下是其中两个常用的方法:1. 初等行变换法通过利用矩阵初等行变换,将矩阵A变换成一个特殊形式,然后通过初等行变换得到B,使得AB=I。
具体步骤如下:a) 取A和单位阵I并排组成一个增广矩阵[A|I];b) 对[A|I]做行变换,将矩阵A变换为n阶单位矩阵;c) 当[A|I]变为[I|B]时,B就是A的逆矩阵。
2. 伴随矩阵法通过伴随矩阵的概念,求解矩阵A的逆矩阵。
设A为n阶方阵,A 的伴随矩阵记作Adj(A),则A的逆矩阵B的表达式如下:B = (1/det(A)) * Adj(A)其中,det(A)表示矩阵A的行列式,Adj(A)表示A的伴随矩阵。
二、行列式行列式是矩阵理论中用于刻画矩阵性质的一种特殊函数。
对于一个n阶方阵A,它的行列式记作det(A),其计算方法如下:1. 二阶方阵的行列式计算:A = [[a, b], [c, d]]det(A) = ad - bc2. 三阶方阵的行列式计算:A = [[a, b, c], [d, e, f], [g, h, i]]det(A) = aei + bfg + cdh - ceg - bdi - afh对于高阶方阵,通常使用行列式的性质和展开定理来计算。
行列式的计算过程相对繁琐,但是具有重要的应用价值。
行列式的性质有如下几个:a) 互换行列式的两行,行列式改变符号;b) 行列式某一行的公因子可以提到行列式的外面;c) 若行列式有两行(列)完全相同,则行列式的值为0;d) 行列式的某一行(列)可以表示成其他行(列)的线性组合。
如何求矩阵的逆矩阵求逆矩阵最有效的⽅法是初等变换法(虽然还有别的⽅法)。
如果要求⽅阵A的逆矩阵,标准的做法是:将矩阵A与单位矩阵I排成⼀个新的矩阵 (A I)将此新矩阵 (A I) 做初等⾏变换,将它化成 (I B) 的形式B=A−1若A是⼀个⼆阶⽅阵A=a b c d则它的逆矩阵可以直接使⽤公式A−1=1ad−bc d−b−c a来计算。
我们来看⼏个例⼦。
例1:求⼆阶矩阵A=86 54的逆矩阵。
解:因为矩阵是⼆阶矩阵,我们可以直接利⽤⼆阶逆矩阵的公式来求解。
A−1=18⋅4−6⋅54−6−58=124−6−58=2−3−524例2:求矩阵A=10−2−314 2−34的逆矩阵。
解:这是⼀个三阶的矩阵,最简便有效的⽅法是初等变换法。
(你可以试试⽤伴随矩阵的⽅法来求,计算量⽐初等变换法相差多⼤)我们将矩阵与单位矩阵排在⼀起,然后做初等变换(A I)=10−2⋮100−314⋮0102−34⋮001∼10−2⋮10001−2⋮3100−38⋮−201∼10−2⋮10001−2⋮310002⋮731∼100⋮831010⋮1041002⋮731∼100⋮831 010⋮1041001⋮723212所以我们得到()()()()()()() ()() ()() ()A−1=831 1041 723212我们看到的这个矩阵是三阶的,利⽤初等变换计算逆矩阵已经⽐伴随矩阵法少了很多的计算量了。
实际上,矩阵的阶数越⾼,节约下来的计算量越多。
利⽤伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算⼀个三阶⾏列式,九个⼆阶⾏列式。
四阶的话,需要计算⼀个四阶⾏列式,⼗六个三阶⾏列式,⼿算的话,已经让⼈难以接受了。
我们来看⼀个四阶矩阵的逆矩阵。
例3:求矩阵A=1234 2312 111−1 10−2−6的逆矩阵。
解:我们将下述矩阵做初等变换(A I)=1234⋮10002312⋮0100111−1⋮001010−2−6⋮0001∼10−2−6⋮00012312⋮0100111−1⋮00101234⋮1000∼10−2−6⋮000103514⋮010−20135⋮001−102510⋮100−1∼10−2−6⋮00010135⋮001−103514⋮010−202510⋮100−1∼10−2−6⋮00010135⋮001−100−4−1⋮01−3100−10⋮10−21∼10−2−6⋮00010135⋮001−100−10⋮10−2100−4−1⋮01−31∼10−2−6⋮00010135⋮001−100−10⋮10−21000−1⋮−415−3∼10−20⋮24−6−30190130⋮−20526−1600−10⋮10−21000−1⋮−415−3∼1000⋮22−6−26170100⋮−17520−1300−10⋮10−21000−1⋮−415−3∼1000⋮22−6−26170100⋮−17520−130010⋮−102−10001⋮4−1−53所以,我们得到A−1=22−6−2617−17520−13−102−1 4−1−53 () ()()()()()()()()()()()()Processing math: 100%。
求矩阵逆矩阵的常用方法矩阵逆矩阵是一个非常重要的概念,在许多数学和工程应用中都有广泛的应用。
下面介绍了三种求矩阵逆矩阵的常见方法,以及它们的拓展。
方法一:行列式求解法行列式求解法是最常用的方法之一,它基于矩阵逆矩阵的定义,即矩阵的逆矩阵等于其转置矩阵与原矩阵相乘的行列式。
具体步骤如下:1. 计算矩阵 A 的行列式;2. 将行列式乘以矩阵 A 的列向量,得到矩阵 A 的逆矩阵。
方法二:高斯 - 约旦消元法高斯 - 约旦消元法是一种用于求解矩阵逆矩阵的线性代数算法,它基于矩阵乘法的可逆性。
具体步骤如下:1. 将矩阵 A 分解成阶梯形矩阵;2. 对阶梯形矩阵的每一列进行高斯 - 约旦消元,得到一个新的矩阵;3. 将新的矩阵与原矩阵 A 相乘,得到矩阵 A 的逆矩阵。
方法三:奇异值分解法奇异值分解法是一种用于求解矩阵逆矩阵的非常规方法,它基于矩阵的奇异值分解。
具体步骤如下:1. 将矩阵 A 分解成奇异值分解;2. 对分解后的矩阵分别进行逆矩阵运算,得到矩阵 A 的逆矩阵。
拓展:矩阵逆矩阵的应用矩阵逆矩阵在许多数学和工程应用中都有广泛的应用,下面列举了其中的几个应用领域:1. 信号处理:矩阵逆矩阵在数字信号处理中被用来求解信号的逆变换,即信号的逆变换。
2. 量子力学:矩阵逆矩阵在量子力学中被用作求解系统的能级和波函数。
3. 控制理论:矩阵逆矩阵在控制理论中被用作求解系统的控制器,即控制器的逆矩阵。
4. 统计学:矩阵逆矩阵在统计学中被用于求解协方差矩阵的逆矩阵,即协方差矩阵的逆矩阵。
5. 计算机科学:矩阵逆矩阵在计算机科学中被用于求解矩阵的逆矩阵,即矩阵的逆矩阵。
矩阵逆矩阵是一种非常重要的数学概念,在许多数学和工程应用中都有广泛的应用。
了解不同方法求解矩阵逆矩阵的原理和过程,有助于更好地理解和应用矩阵逆矩阵的概念。
三阶矩阵逆矩阵的口诀嘿,大家好,今天我们聊聊三阶矩阵逆矩阵的那些事儿。
别看它名字听起来复杂,实际上就像一碗热腾腾的牛肉面,里面有很多简单的配料,搞明白了就好吃得很。
想象一下,三阶矩阵就像一块拼图,里面有九个小方格,排列得整整齐齐。
每个数字都有自己的位置,像家里的成员,各司其职,互相配合。
可是,当你需要找到它的逆矩阵时,就像在寻找失散多年的亲戚,得仔细推理。
先说说什么是逆矩阵。
简单来说,逆矩阵就像是解决问题的药方,能够帮助你把一个麻烦的方程变得简单。
假如你有个矩阵A,想要找到它的逆矩阵A的逆,哎呀,这可不是随便找个方子就行的,得按部就班来。
听起来是不是有点复杂?别着急,慢慢来,一步一步走。
第一步,求出行列式。
行列式就像是一个神奇的数字,能告诉你这个矩阵能不能逆。
如果行列式不等于零,那就说明你这块拼图是完整的,可以找到它的逆。
如果是零,那就真是完蛋了,拼图缺了一块,没法拼了。
行列式的计算就像是做饭,得把所有材料都准备齐全,最后再来个混合,才有可能出好菜。
得求伴随矩阵。
伴随矩阵其实就像是你做菜时的调料,能提升整体的味道。
先得求出每个元素的余子式,然后再加上个符号,最后转置,哎呀,伴随矩阵就出来了!听起来是不是有点繁琐?可别担心,慢慢来,一步一步,咱们都能搞定。
有了伴随矩阵,就能求出逆矩阵啦!只需把伴随矩阵除以行列式,就像把美味的酱汁浇在面上,瞬间让这道菜变得诱人无比。
逆矩阵的求法其实没那么难,记住“行列式不为零,伴随矩阵来相助”,就可以顺利搞定。
哎,有时候就像我上次做饭,结果最后忘了加盐,整道菜淡得像清汤。
逆矩阵的求法也得小心翼翼,任何一步出错,最后的结果就会大打折扣。
所以,多练习,才能把这道“菜”做得更好。
除了这些公式,还有一些小技巧,比如使用口诀。
比如说“行列式计算,伴随矩阵跟随”,这句口诀就可以帮助你记住求逆的步骤。
再来个“行列式非零,逆矩阵不愁”,这就提醒你一定要先检查行列式。
在实际应用中,逆矩阵可是个好帮手哦。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
三阶矩阵的转置逆矩阵行列式1.引言1.1 概述概述部分将介绍本篇文章的主题和主要内容。
本篇文章将探讨关于三阶矩阵的转置,逆矩阵和行列式的相关知识。
在线性代数中,矩阵是一个重要的概念,被广泛应用于各个领域。
其中,三阶矩阵是最简单且常见的一种矩阵类型。
转置、逆矩阵和行列式是三阶矩阵的重要性质和计算方法,对于矩阵的运算和分析起着关键作用。
在本文的第一部分,我们将探讨三阶矩阵的转置。
转置是矩阵运算中常见的一种操作,可以通过交换矩阵的行和列来得到新的矩阵。
我们将介绍转置的定义和性质,并提供三阶矩阵转置的具体计算方法。
在第二部分,我们将研究三阶矩阵的逆矩阵。
逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A与B的乘积等于单位矩阵。
我们将介绍逆矩阵的定义和性质,并提供三阶矩阵逆矩阵的计算方法。
最后,在第三部分,我们将研究三阶矩阵的行列式。
行列式是一个与矩阵相关的重要概念,用于计算矩阵的特征值和特征向量。
我们将介绍行列式的定义和性质,并提供三阶矩阵行列式的具体计算方法。
通过全面了解三阶矩阵的转置、逆矩阵和行列式,我们可以更好地理解和应用矩阵运算。
本文旨在为读者提供一个清晰的概念和计算方法,并帮助读者在实际问题中运用到这些知识。
希望读者通过阅读本文能够对三阶矩阵的转置、逆矩阵和行列式有更深入的理解。
1.2文章结构文章结构部分的内容可以包括以下内容:在文章结构部分,我们将介绍本文的组织结构,以帮助读者更好地理解和阅读本文。
本文主要分为两个部分:正文和结论。
正文部分将围绕三阶矩阵的转置、逆矩阵和行列式展开讨论。
首先,我们将介绍三阶矩阵的转置,包括其定义和性质。
然后,我们将详细介绍三阶矩阵转置的计算方法。
接下来,我们将转向三阶矩阵的逆矩阵,在这一部分中,我们将讨论逆矩阵的定义和性质,并探讨三阶矩阵逆矩阵的计算方法。
最后,我们将进入三阶矩阵的行列式部分,包括行列式的定义和性质,以及三阶矩阵行列式的计算方法。
在结论部分,我们将简要总结本文的内容,并提出一些结论和观点。
三阶逆矩阵的求法
三阶逆矩阵的求法
三阶逆矩阵是指三阶方阵的逆矩阵,又称为3阶矩阵的逆,它是一种数学工具,用于解决线性方程组,将线性方程组化简为一个特殊的形式,从而更容易解决。
求解三阶逆矩阵的方法可以分为两种:一种是使用行列式、代数余子式和行列式的展开式,另一种是使用矩阵分块的相似变换。
1、使用行列式、代数余子式和行列式的展开式计算三阶逆矩阵
首先,我们需要先计算出原矩阵A的行列式的值det(A),然后将A的行列式展开,计算出A的代数余子式,即每一行每一列都乘上一个系数,这个系数就是对应行列式中这一行这一列元素的求导系数,最后将每个代数余子式乘以det(A)的倒数,就得到了A的逆矩阵。
2、使用矩阵分块的相似变换计算三阶逆矩阵
先将原矩阵A分块,分别标记为
A11、A12、A21、A22,然后计算出A11的逆矩阵,用A11的逆矩阵与A12乘积,计算出A12A11的逆矩阵,分别标记为B12和B21,然后计算A22-A21B12,如果A22-A21B12的行列式不为0,则A22-A21B12的逆矩阵分别标记为C11和
C22,最后将C11、C22、B12和B21加起来,就得到了A的逆矩阵。
以上就是三阶逆矩阵的求法。
可以看出,三阶逆矩阵的求法比较复杂,需要掌握相应的矩阵运算知识和数学技巧,才能正确求解得出三阶逆矩阵。
在实际应用中,三阶逆矩阵的求法可以用于解决各类线性方程组,可以极大地节省时间,增加工作效率。