正比例函数的图象和性质教案
- 格式:docx
- 大小:12.54 KB
- 文档页数:4
正比例函数的图像和性质教案一、教学目标1.知识与技能:(1)能画正比例函数的图像,并能根据正比例函数图象的特点快速作图;(2)能够在画图过程中观察并发现正比例函数图像的性质;学会简单描述及应用。
2.过程与方法:(1)初步能够从数学角度去观察事物,思考问题,体验解决问题方法策略的多样性; (2)逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由特殊到一般的数学思想;(3)能够尝试演绎推理发现规律,体验合作学习的过程。
3.情感态度与价值观:(1)通过小组合做讨论,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;(2)通过本节课的教学希望能激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、重点难点教学重点:画正比例函数的图像,并在画图过程中观察并发现函数的性质。
教学难点:在画图过程中观察并发现函数的性质;学会简单描述及应用。
内容。
三、教学过程教学过程是教法和学法的具体实践过程,根据教材的特点和学生实际情况,设计采用“复习旧知—合作探究—归纳总结—强化提高”的模式,安排以下六个环节以完成本节教学:(一)复习引入、温顾知新1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少.①y=x, ②y=3x2, ③ y=2x , ④y=2x-4, ⑥y=-x , ⑦y=-2x . 2.正比例函数的定义一般地,形如 y=kx (k 为常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数。
这个过程,由老师提问学生作答,在学生回答不够完善的地方,请其他学生补充,老师紧后给予完善。
3.引入课题:前面我们学习了函数的基本内容以及正比例函数的概念,今天我们一起来探究正比例函数的性质。
首先,你能根据画函数图像的基本步骤画出以下正比例函数的图像吗?4.(二)数形结合、动手画图 例: 画正比例函数 y =3x 的图象 解:1. 列表2. 描点3. 连线4. 贴标签学生对平面坐标系有所了解,但对数形结合的方法还不是很熟练,有必要给学生以示范。
《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。
学生能够运用正比例函数的性质解决实际问题。
2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。
学生通过合作交流,培养解决问题的能力。
3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。
学生培养团队合作意识,提高自我表达能力。
二、教学重点与难点:重点:正比例函数的定义和图象特点。
正比例函数的性质。
难点:理解和运用正比例函数的性质解决实际问题。
三、教学准备:教学课件或黑板。
正比例函数的图象和性质的相关素材。
练习题和作业。
四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。
通过实际例子引入正比例函数的概念。
2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。
学生通过合作交流,总结正比例函数的性质。
3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。
通过例题和练习题,巩固学生对正比例函数性质的掌握。
4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。
引导学生思考正比例函数在实际生活中的应用。
五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。
鼓励学生进行思考和探索,培养学生的自学能力。
六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。
通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。
2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。
对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。
3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。
通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。
湘教版数学八年级下册4.3《正比例函数的图象和性质》教学设计一. 教材分析《正比例函数的图象和性质》是湘教版数学八年级下册第4.3节的内容。
本节课的主要内容是让学生掌握正比例函数的图象和性质,包括正比例函数的定义、图象的特点以及如何利用性质解决问题。
教材通过实例和图形,引导学生探究正比例函数的性质,培养学生的观察能力和推理能力。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维和推理能力。
但部分学生对函数图象的理解和绘制还有待提高,对正比例函数的性质认识不足。
因此,在教学过程中,需要关注学生的学习需求,针对性地进行教学设计和引导。
三. 教学目标1.理解正比例函数的定义,掌握正比例函数的图象特点。
2.掌握正比例函数的性质,并能运用性质解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.正比例函数的定义和图象特点。
2.正比例函数的性质及其运用。
五. 教学方法1.情境教学法:通过实例和图形,引导学生观察、推理,培养学生的观察能力和推理能力。
2.问题驱动法:设置问题,引导学生思考,激发学生的学习兴趣。
3.合作学习法:分组讨论,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示正比例函数的图象和性质。
2.实例和图形:准备相关的实例和图形,用于引导学生观察和推理。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题引入正比例函数的概念,让学生回顾一次函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)展示正比例函数的图象,引导学生观察图象的特点,总结正比例函数的性质。
3.操练(10分钟)根据正比例函数的性质,设置一些问题,让学生独立解答,巩固所学知识。
4.巩固(5分钟)通过一些练习题,让学生运用正比例函数的性质解决问题,提高学生的运用能力。
5.拓展(5分钟)利用正比例函数的性质,解决一些实际问题,让学生体会数学在生活中的应用。
正比例函数图象和性质教学设计龙坝镇中心学校:万孝东教学目标:1、正比例函数的图象及画法。
2、正比例函数的性质。
教学重点:感悟正比例函数的图象及画法;学会两点作图法. 教学难点:掌握正比例函数的性质;学会用性质解决实际问题. 教学流程活动一:温故知新1.下列函数中哪些是正比例函数?(1)y =2x (2)y =x 2+1(3)y=3/x (4)Y=x/3 2.若 y =5x 3m-2 是正比例函数, 则 m = 。
3.若是正比例函数,则 m =。
4.若y=(k-2)x+k 2-4是正比例函数,则 k = ( ),此时的函数解析式为( )活动二:探究正比例函数图象的一般画法. 例画正比例函数 y =2x 的图象 解:(1)列表(2)描点(3)连线观察这些点的摆放有何规律?我有新发现:数形结合32)2(--=mx m y正比例函数y= kx (k ≠0) 的图象是经过原点( , )和(1 , )的一条直线.(我们称它为直线y=kx); 当k >0时,直线y=kx 经过第( , )象限; 当k <0时,直线y=kx 经过第( , )象限. 活动三:探究正比例函数图象的特殊画法.依据是( )过( , )取( , )作直线即可. 当k 不是整数时为描点方便尽可能取整数点描点,从而使图象更加准确. 巩固:函数y=-8x 的图像经过( )A 、第一、二象限B 、第一、三象限C 、第二、四象限D 、第三、四象限 活动四:探究正比例函数的性质用两点作图法:画出正比例函数y=2x,y=-2x, , 的图象? 讨论:当k >0时,从左向右( ),x 增大时,y 的值也( );即y 随x 的增大而( );当k <0时, 从左向右( ),x 增大时,y 的值反而( )。
即y 随x 的增大而( ).你能任意举出一个过第二、四象限的正比例函数的解析式吗? 你能任意举出一个过第二、四象限的正比例函数的解析式吗? 活动五:达标测试1、正比例函数y=(m-1)x 的图象经过一、三象限,则m 的取值范围是( ) A 、m=1 B 、m >1C 、m <1 D 、m≥12、 正比例函数 y=kx(k≠0) 的图象是一条,它一定经过点 (0, )和(1, )。
4.3 一次函数的图象第1课时正比例函数的图象和性质一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4.理解一次函数的代数表达式与图象之间的一一对应关系.教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线.教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系.三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置.第一环节:创设情境 引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S (米)与小明出发的时间t (分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t (t ≥0)下面的图象能表示上面问题中的S 与t 的关系吗?我们说,上面的图象是函数S=80t (t ≥0)的图象,这 就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
19.2 .1 正比例函数的图象与性质教学设计一、教学目标1、知识与技能认识正比例函数图象是一条直线,学会用两点法画正比例函数图象,理解性质,培养学生观察、分析、归纳的逻辑思维能力。
2、过程与方法让学生经历正比例函数图象的性质的过程,提高学生的动手实践能力和探究、分析、归纳能力,领悟函数是沟通数和形桥梁。
3、情感态度与价值观培养学生积极主动探究的良好学习习惯,发展学生的团队协作意识,从而提高学生对数学的学习兴趣。
二、重点难点重点:正比例函数的图象和性质。
难点:观察正比例函数的图象归纳其性质应用。
三、教学过程活动1 回顾与思考()1、在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少.①y=x, ②y=3x-2, ③ y=2x , ④y=2x-4 ⑤ , ⑥y=-x , ⑦y=-2x .2.画函数图象需要经历哪些步骤?(让学生回答问题)3.你能依据这些步骤画出以上正比例函数的图象吗?(集体回答问题)设计意图:这部分师生互动部分,同时让学生思考问题后叫个别回答问题,这里的问题设置较容易一些,容易得出结果,并对回答出问题的同学进行鼓励。
活动二: 动手实践,探究规律(1)用描点法画正比例函数图象(分小组合作完成,教师在班级巡视,指导学生完成画图内容。
)(1)y=x 和 y =2x (2)y=-x 和 y =-2xxy 1-=解。
(2)观察看图1、图2归纳:(以小组为单位进行讨论,讨论后各组代表发言,教师展示答案,教师指导解决两点法作图问题。
)(1)正比例函数y=k x图像是经过的一条。
(2)因为过点有且只有一条直线,所以在画正比例函数图象时,只需确定两点,通常是(,)和(,)这种画正比例函数图像的方法叫两点法。
设计意图:让学生经历动手操作,观察与思考,互相合作交流,总结归纳,目的在于让学生化被动为主动,真正成为课堂的主人,这也是新课程理念所提倡的。
活动3 观察图像,找规律(以小组为单位进行讨论,讨论后各组代表发言,然后教师在多媒体展示结果,教师重点指导解决正比例函数增减性。
篇一:正比例函数的图像和性质教学设计《正比例函数的图象和性质》一节的教学设计商南县初级中学石贵旺一、教学内容:正比例函数的图象和性质二、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法 1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。
2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。
三、教学重点:正比例函数图象的画法及性质的探索。
四、教学难点:发现、归纳正比例函数的性质。
五、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。
本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
六、教具:三角板、多媒体。
七、教学过程。
教学过程:(1)温故知新,引入课题。
1、下列函数哪些是正比例函数?(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2- 1 -2、(学生回答完上述问题后提问概念)一般地,形如y= kx(k≠0)的函数,叫正比例函数,其中k叫做比例系数。
3、画函数图象的一般步骤(1)列表(2)描点(3)连线学生回答后:教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?出示课题(二)探究正比例函数的图象和性质例1、画出下列正比例函数的图象。
(1)y=2x(2)y=-2x解(1)函数y=2x中x 可取任意实数,列表如下:描点连线(2)学生练习画出函数y=-2x的图象。
19.2 一次函数19.2.1 正比例函数——正比例函数的图象与性质【知识与技能】1.能够画出正比例函数的图象.2.能够根据正比例函数的图象归纳正比例函数图象的性质.3.能够利用正比例函数解决简单的数学问题.【过程与方法】1.通过实例,体会建立数学模型的思想.2.通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例函数的图象与性质.【教学难点】正比例函数的图象与性质一、复习回顾正比例函数的概念(练习回顾)已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式. 解:设y-3=kx,∵当x=2时,y=7,代入得7-3=2k,∴k=2,即y-3=2x,则y=2x+3二、思考探究,获取新知例1.画出下列正比例函数的图象(1)y=2x,y=1/3x;(2)y=-1.5x,y=-4引导学生用描点法将这四个正比例函数的图象画在同一个平面直角坐标系中,鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)图象都是经过原点的直线.(2)函数y=2x和y=1/3x的图象从左向右递增,经过一、三象限.(3)函数y=-1.5x和y=-4x的图象从左向右递减,经过二、四象限.教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,当k>0时,直线过第一、三象限,y随x的增大而增大;当k<0时,直线过第二、四象限,y 随x的增大而减小.例1已知正比例函数的图象过点(2m,3m),m≠0,求这个正比例函数的解析式.解:设正比例函数的解析式为:y=kx.把(2m,3m)代入得3m=k·2m,解得k=3 2 .∴解析式为y=32 x.【教学说明】正比例函数中只含有一个待定系数,只需知道一点坐标即可求得其解析式.例2 已知(x1,y1)、(x2,y2)是直线y=-2x上的两点,若x1>x2,则y1,y2的大小关系是( ).A.y1<y2B. y1>y2C. y1= y2D.不能比较【分析】因为y=-2x中-2<0,即直线y=-2x的函数值是随x的增大而减小的,所以当x1>x2时,y1<y2,故选A.【教学说明】通常我们在x的某一范围内取x1<x2,若点(x1,y1),(x2,y2)为函数图象上的两点,当y1<y2时,该函数在这个范围内y随x的增大而增大;当y1>y2时,该函数在这个范围内y随x增大而减小.三、运用新知,深化理解1.已知正比例函数y=(k+3)x.(1)k为何值时,函数的图象经过一、三象限.(2)k为何值时,y随x的增大而减小.(3)k为何值时,函数图象经过点(1,1).2.已知(x1,y1)、(x2、y2)是直线y = x上的两点,若x1>x2,则y1,y2的大小关系是().A.y1<y2B.y1>y2C.y1=y2D.不能比较3.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点横坐标为-2,求△POA的面积(O为坐标原点).【教学说明】以上各题由学生自主探究,有疑问的教师加以指导,最后评析.四、师生互动,课堂小结问题1.正比例函数的图象是什么?它有什么特征?2.如何简便地画出正比例函数的图象?3.本节课的学习经历了怎样的过程?你有何感悟?1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.因从本课时开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后面的学习内容与要求,本课时重在引领学生认识正比例函数的概念、图象的画法和应用性质的基本步骤,为后续学习指明方向和打下坚实的基础,利于研究更复杂的具体函数.教学中引导学生观“形”识“信息”,逐步形成读图能力,以及解题能力.。