北师大版九年级数学上册 知识点归纳
- 格式:doc
- 大小:211.00 KB
- 文档页数:16
北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
【文库独家】北师大版九年级上册第六章 反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
北师大版九年级上册数学复习知识点及例题数学九年级上册知识点总结第一章特殊的平行四边形复中考考点综述:矩形、菱形、正方形是历年中考的必考内容之一。
这些特殊的平行四边形主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。
考试内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算。
学生需要了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。
知识目标:掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定。
通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。
重难点:1.矩形、菱形性质及判定的应用2.相关知识的综合应用知识点归纳:矩形:定义:有一个角是直角的平行四边形叫做矩形。
性质:四个角都是直角;对角线相等,具有平行四边形的所有性质。
判定:1.对角线相等的平行四边形是矩形。
2.四个角都是直角的四边形是矩形。
3.有一个角是直角的平行四边形是矩形。
例题:若矩形的对角线长为8cm,两条对角线的一个交角为60,则该矩形的面积为?菱形:定义:有一组邻边相等的平行四边形叫做菱形。
性质:对边平行,四边相等;对角相等;互相垂直平分,且每条对角线平分一组对角。
判定:四边相等的四边形;是平行四边形且有一组邻边相等;是菱形,且有一个角是直角;是平行四边形且两条对角线互相垂直。
例题:菱形具有而矩形不具有的性质是?正方形:定义:四边相等且四个角都是直角的平行四边形叫做正方形。
性质:对边平行,四边相等;四个角都是直角;互相垂直平分且相等,每条对角线平分一组对角。
判定:四边相等的四边形;是平行四边形且有一组邻边相等;是矩形,且有一组邻边相等;是菱形,且有一个角是直角;是平行四边形且两条对角线互相垂直。
例题:如图,□ABCD各角的平分线分别相交于点E,F,G,H,求证四边形EFGH是矩形。
总结:掌握特殊平行四边形的定义、性质和判定方法,能够灵活运用所学知识解决实际问题,是数学研究的基础。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
北师大版-数学九年级上册知识点归纳总结第一章特殊的平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
新版九年级数学上册知识点归纳北师大版新版九年级数学上册知识点归纳(北师大版)一、整数的运算1. 整数的加法和减法运算a) 同号数相加、相减b) 异号数相加、相减c) 加法的交换律和结合律d) 减法与加法的关系2. 整数的乘法和除法运算a) 同号数相乘、相除b) 异号数相乘、相除c) 乘法的交换律和结合律d) 除法的定义和性质3. 整数运算的综合应用a) 数线和整数运算b) 整数的乘方运算c) 分数与整数的运算d) 整数运算在解决实际问题中的应用二、平方根与立方根1. 平方根的定义和性质a) 平方根的概念b) 完全平方数和非完全平方数c) 求平方根的方法2. 平方根的运算a) 平方根的加法和减法b) 平方根的乘法和除法c) 求平方根的应用3. 立方根的定义和性质a) 立方根的概念b) 立方根的运算三、代数式的定义与运算1. 代数式的概念和基本性质a) 变量、常数和代数式的关系b) 代数式的展开与因式分解2. 代数式的加法和减法a) 同类项与合并同类项b) 代数式的加减运算规则c) 根据题意列代数式3. 代数式的乘法和除法a) 代数式的乘法规则b) 代数式的除法规则c) 根据题意列代数式四、一次函数1. 一次函数的定义和性质a) 一次函数的概念b) 一次函数的图象特点c) 一次函数的斜率和截距2. 一次函数的图象与方程a) 一次函数的图象和方程的关系b) 根据图象写出方程c) 根据方程画出图象3. 一次函数的应用a) 一次函数在实际问题中的应用b) 利润、成本和收入的关系五、二次根式1. 二次根式的定义和性质a) 二次根式的概念b) 二次根式的化简与还原c) 二次根式的近似计算2. 二次根式的加法和减法a) 同类项的概念和加减运算b) 多个二次根式的相加相减3. 二次根式的乘法和除法a) 二次根式的乘法运算b) 二次根式的除法运算4. 二次根式的应用a) 二次根式在图形的计算中的应用b) 二次根式在实际问题中的应用六、三角形的性质1. 三角形的基本概念a) 三角形的定义b) 三角形的分类2. 三角形的角度与边的关系a) 三角形内部角的性质b) 三角形外角的性质3. 三角形的边与边的关系a) 三角形边长的大小关系b) 三角形边长的和差关系4. 三角形的中线与垂直平分线a) 三角形的中线性质b) 三角形的垂直平分线性质七、相似三角形1. 相似三角形的概念和性质a) 相似三角形的定义b) 相似三角形的判定条件c) 相似三角形的性质2. 相似三角形的比例关系a) 相似三角形的边比例b) 相似三角形的角度对应关系3. 相似三角形的应用a) 相似三角形在图形中的应用b) 相似三角形在实际问题中的应用以上是新版九年级数学上册的知识点归纳,包括整数的运算、平方根与立方根、代数式的定义与运算、一次函数、二次根式、三角形的性质以及相似三角形等内容。
北师大版数学九年级上册课本知识点第一章证明(二)1、(2页)公理三边对应相等的两个三角形全等。
(sss)公理两边及其夹角对应成正比的两个三角形全系列等。
(sas)公理两边及其夹角对应相等的两个三角形全等。
(asa)公理全系列等三角形的对应边成正比、对应角成正比。
推论两角及其中一角的对边对应相等的两个三角形全等。
(aas)2、(3页)定理等腰三角形的两个底角成正比。
3、(4页)推论等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习1.证明:等边三角形的三个角都相等,并且每个角都等于60。
4、(7页)定理存有两个角成正比的三角形就是等腰三角形。
(等角对等边)5、(8页)在证明时,先假设命题的结论不成立,然后推导出定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
6、(11页)定理存有一个角等同于60的等腰三角形就是等边三角形。
7、(12页)定理在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。
8、(13页)随堂练1.证明:三个角都成正比的三角形就是等边三角形。
9、(16页)定理直角三角形两条直角边的平方和等于斜边的一半。
10、(17页)定理如果三角形两边的平方和等同于第三边的平方,那么这个三角形就是直角三角形。
11、(18页)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题就是真命题,它的逆命题却不一定就是真命题。
如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称作互逆定理。
12、(23页)定理斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“hl”)13、(26页)定理线段垂直平分线上的的边这条线段两个端点的距离成正比。
14、(27页)定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。
※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。
2.用配方法求解一元二次方程①配方法<即将其变为0x的形式>+m)(2=※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式;⑥两边开方求其根。
3.用公式法求解一元二次方程②公式法a acb b x 242-±-= (注意在找abc 时须先把方程化为一般形式)4.用因式分解法求解一元二次方程③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)5.一元二次方程的根与系数的关系※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根。
※如果一元二次方程02=++c bx ax的两根分别为x 1、x 2,则有a cx x a bx x =⋅-=+2121。
※一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x xx x +=+ ③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+⑦其他能用21x x +或21x x 表达的代数式。
(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x(4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根6.应用一元二次方程※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→第三章概率的进一步认识频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。
概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。
必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。
【知识点1】频率与概率的含义在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即 频数频率总次数把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
【知识点2】通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。
我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。
【知识点3】利用画树状图或列表法求概率(重难点)第四章 图形的相似一、线段的比1.成比例线段※1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成n m B A =.※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b≠b:a, b a 与ab 互为倒数; ⑤比例的基本性质:若dc b a =, 则ad=bc; 若ad=bc, 则dc b a = 2平行线分线段成比例※1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.二、黄金分割※1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC※2.黄金分割点是最优美、最令人赏心悦目的点.3相似多边形1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.※1. 在相似多边形中,最为简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于 1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5. 相似三角形周长的比等于相似比.※6. 相似三角形面积的比等于相似比的平方.※相似多边形的周长等于相似比;面积比等于相似比的平方. 4探索三角形相似的条件※1. 相似三角形的判定方法:a. 两直角边对应成比例;b. 斜边和一直角边对应成比例.的对应线段成比例.如图2, l 1 // l 2 // l 3,则EFBC DE AB .※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.5相似三角形的判定定理的证明6利用相似三角形测高7相似三角形的性质8图形的位似第五章 投影与视图A )三视图•主视图——从正面看到的图左视图——从左面看到的图俯视图——从上面看到的图•画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.•虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.B)投影•物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.•太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
•在同一时刻,物体高度与影子长度成比例.•物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.•探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称为中心投影•皮影和手影都是在灯光照射下形成的影子.它们是中心投影。
C )视点、视线、盲区的定义以及在生活中的应用。
. 眼睛所在的位置称为视点,. 由视点发出的光线称为视线,. 眼睛看不到的地方称为盲区第六章 反比例函数知识点1 反比例函数的定义 一般地,形如xk y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xk y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠);⑸函数xk y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xk y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式 由于反比例函数xk y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。