Fuzzy Math case executive summary
- 格式:docx
- 大小:26.68 KB
- 文档页数:3
FuzzyIntroductionFuzzy refers to something that is unclear, imprecise, or lacking in definition. It is a term commonly used in various fields, including mathematics, computer science, and linguistics. In this article, we will explore the concept of fuzzy logic, its applications, and its impact on decision-making processes.Fuzzy Logic: An OverviewFuzzy logic is a mathematical framework that deals with uncertainty and imprecision. Unlike classical logic, which uses binary values of true or false, fuzzy logic allows for the representation of partial truth. It allows variables to have degrees of membership, meaning that they can take on values between 0 and 1, indicating the degree to which an element belongs to a set.Fuzzy Sets and Membership FunctionsFuzzy logic uses fuzzy sets to represent vague and ambiguous concepts. A fuzzy set is defined by a membership function that assigns a degree of membership to each element of the set. The membership function can take different shapes, such as triangular, trapezoidal, or Gaussian, depending on the characteristics of the set.Fuzzy Logic in Decision-MakingFuzzy logic has found extensive applications in decision-making processes. Its ability to handle imprecise and uncertain data makes it valuable in situations where traditional binary logic falls short. Fuzzy logic allows decision-makers to consider multiple factors simultaneously and make decisions based on incomplete or ambiguous information.Fuzzy Inference SystemsFuzzy inference systems (FIS) are utilized in decision-making to process fuzzy inputs and produce fuzzy outputs. FIS consists of three main components: fuzzification, fuzzy rules, and defuzzification. Fuzzification converts crisp inputs into fuzzy sets, fuzzy rules define the relationship between inputs and outputs, and defuzzification converts fuzzy outputs into crisp values.Fuzzy Control SystemsFuzzy control systems are a specific application of fuzzy logic in control engineering. These systems use fuzzy rules to emulate human-like decision-making and control processes. By incorporating domain knowledge in the form of linguistic rules, fuzzy control systems can handle complex and uncertain control problems effectively.Applications of Fuzzy LogicFuzzy logic has been successfully applied in various fields, including: 1.Automotive industry: Fuzzy logic is used in designing automatictransmission systems, anti-lock braking systems, and enginecontrol systems. It enables smooth and efficient control byconsidering various driving conditions and inputs.2.Consumer electronics: Fuzzy logic has been employed in washingmachines, air conditioners, and refrigerators. These appliancescan adapt their operations based on the current load, temperature, and other factors, resulting in improved energy efficiency anduser satisfaction.3.Medical diagnosis: Fuzzy logic is utilized to assist medicalprofessionals in diagnosing diseases. It enables therepresentation and evaluation of uncertain symptoms and helps ingenerating accurate diagnoses.4.Traffic control: Fuzzy logic is used in intelligenttransportation systems to manage traffic flow and optimize signal timings. By considering real-time traffic conditions, fuzzy logic-based control systems can alleviate congestion and improve overall traffic efficiency.5.Pattern recognition: Fuzzy logic techniques have been applied inimage and speech recognition systems. By considering theuncertainty and variation in input patterns, these systems canachieve higher accuracy and adaptability.Advantages and Challenges of Fuzzy LogicAdvantages•Fuzzy logic allows for the representation of imprecise and uncertain data, which enhances decision-making processes in real-world scenarios.•It is a flexible framework that can model complex relationships and handle non-linear systems effectively.•Fuzzy logic is based on human-like reasoning, making it intuitive and easy to understand and interpret.•Fuzzy logic can handle noise and outliers in data efficiently, improving the robustness of decision-making systems.Challenges•Designing and tuning fuzzy systems can be complex and time-consuming, requiring expertise and domain knowledge.•Fuzzy logic’s interpretability can be both an advantage and a challenge. While it is easily understandable, it may not captureall complexities and dependencies present in a problem.•Fuzzy logic might not be appropriate for certain applications that require precise and deterministic decision-making.ConclusionFuzzy logic provides a powerful framework for dealing with uncertainty and imprecision in decision-making processes. Its ability to model complex relationships and handle vague data has led to numerous successful applications across various domains. By incorporating fuzzy logic, we can enhance the efficiency, adaptability, and accuracy of systems in the face of real-world complexities. However, it is essential to recognize the challenges and limitations of fuzzy logic to ensure its appropriate and effective use in different contexts.。
fuzzy方法
模糊方法(fuzzy methods)是一种数学与计算机科学中的技术,用于处理模糊信息和不确定性。
它基于模糊逻辑理论,可以对模糊或不完全定义的问题进行建模、推理和决策。
模糊方法的核心思想是引入模糊集合和模糊关系来描述问题的不确定性和模糊性。
通过使用模糊集合的隶属度函数来表示元素的隶属程度,模糊方法可以对模糊概念进行数学上的操作和推理。
例如,可以使用模糊逻辑运算符(如模糊交、模糊并、模糊否定)来处理模糊命题。
在实际应用中,模糊方法可以用于模糊控制、模糊决策、模糊优化等领域。
例如,在模糊控制中,通过将输入变量和输出变量映射到模糊集合,并定义一组模糊规则来实现模糊逻辑推理,从而实现对模糊系统的控制。
在模糊决策中,可以使用模糊方法来处理多准则决策问题,考虑到因素之间的不确定性和模糊性。
总的来说,模糊方法是一种强大的工具,可以应对现实生活中存在的模糊和不确定性问题。
通过模糊方法,可以更好地描述和处理这些问题,提高决策和控制的效果。
方法二:用MATLAB的模糊逻辑工具箱(Fuzzy toolbox)实现(陈老师整理)一、模糊逻辑推理系统的总体特征模糊控制由于不依赖对象的数学模型而受到广泛的重视,计算机仿真是研究模糊控制系统的重要手段之一。
由Math Works公司推出的Matlab软件,为控制系统的计算机仿真提供了强有力的工具,特别是在Matlab4.2以后的版本中推出的模糊工具箱(Fuzzy Toolbox),为仿真模糊控制系统提供了很大的方便。
由于这样的模块都是由相关领域的著名学者开发的,所以其可信度都是很高的,仿真结果是可靠的。
在Simulink环境下对PID控制系统进行建模是非常方便的,而模糊控制系统与PID控制系统的结构基本相同,仅仅是控制器不同。
所以,对模糊控制系统的建模关键是对模糊控制器的建模。
Matlab软件提供了一个模糊推理系统(FIS)编辑器,只要在Matlab命令窗口键入Fuzzy就可进入模糊控制器编辑环境。
二、Matlab模糊逻辑工具箱仿真1.模糊推理系统编辑器(Fuzzy)模糊推理系统编辑器用于设计和显示模糊推理系统的一些基本信息,如推理系统的名称,输入、输出变量的个数与名称,模糊推理系统的类型、解模糊方法等。
其中模糊推理系统可以采用Mandani或Sugeuo两种类型,解模糊方法有最大隶属度法、重心法、加权平均等。
打开模糊推理系统编辑器,在MATLAB的命令窗(command window)内键入:fuzzy 命令,弹出模糊推理系统编辑器界面,如下图所示。
因为我们用的是两个输入,所以在Edit菜单中,选Add variable… ->input,加入新的输入input,如下图所示。
选择input(选中为红框),在界面右边文字输入处键入相应的输入名称,例如,温度输入用tmp-input, 磁能输入用 mag-input,等。
2.隶属度函数编辑器(Mfedit)该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。
fuzzy集合的差运算和对称差运算Fuzzy集合的差运算和对称差运算在数学中,集合是一种重要的概念,它描述了具有某种共同特征的对象的集合。
而在现实生活中,我们经常遇到的问题往往不是那么明确和确定的,而是充满了模糊性和不确定性的。
为了能够更好地处理这些问题,模糊集合理论应运而生。
模糊集合中的元素可以具有不同程度的隶属度,这种隶属度的概念使得模糊集合能够更好地描述现实世界中的模糊性。
在模糊集合中,差运算和对称差运算是两个重要的运算,它们可以帮助我们更好地理解和处理模糊集合之间的关系。
我们来看一下差运算。
差运算是指从一个集合中减去另一个集合中的元素,得到一个新的集合。
在模糊集合中,差运算的定义与传统集合中的差运算有所不同。
在传统集合中,差运算是指从A中减去B中的元素,得到的是A中有而B中没有的元素。
而在模糊集合中,差运算是指从A中减去B中的元素,得到的是A中有而B中没有的元素,并且这些元素的隶属度也会相应地减小。
也就是说,差运算可以帮助我们找到在一个集合中有而另一个集合中没有的元素,并且可以量化这种差异的程度。
举个例子来说明差运算的概念。
假设我们有两个模糊集合A和B,其中A表示身高在160cm到170cm之间的人群,B表示年龄在20岁到30岁之间的人群。
那么A减去B得到的是身高在160cm到170cm之间,但年龄不在20岁到30岁之间的人群。
差运算帮助我们找到了那些既符合身高条件,又不符合年龄条件的人群,并且还可以通过隶属度的变化来衡量这种不符合的程度。
接下来,我们再来看一下对称差运算。
对称差运算是指从两个集合中减去它们的交集,得到的是两个集合中互相独立的元素。
在模糊集合中,对称差运算的定义与传统集合中的对称差运算类似。
对称差运算帮助我们找到那些只属于一个集合而不属于另一个集合的元素,并且可以量化它们的隶属度。
继续以上面的例子来说明对称差运算的概念。
假设我们有两个模糊集合A和B,其中A表示身高在160cm到170cm之间的人群,B 表示体重在50kg到60kg之间的人群。
fuzzy optimization and decision making 近年来,模糊优化与决策(Fuzzy Optimization and Decision Making)飞速发展,被广泛应用于各个行业,如管理、经济、工程技术、生物学等。
模糊优化与决策不仅提供了一种新的解决实际问题的方法,而且有效改善决策过程中的结果,提高了决策的准确性,从而能够更好地满足用户的需求。
模糊优化与决策是一种解决实际问题的有效方法,它表示了决策者对未来和不确定性的反应,以解决当前决策问题。
模糊优化与决策的重要性在于,它可以有效地帮助决策者提高决策的准确性,从而得出最优化的结果。
模糊优化与决策的目的是帮助决策者做出未知因素地有效且正确的决策。
因为决策者并不能确定未知因素,为了应对不确定性,模糊优化与决策提供了一种有效的解决方案。
它可以通过在不同知识库中搜索可用信息,利用模糊数学理论和用户给出的决策规则,来获得决策结果。
模糊优化与决策可以用于多种实际的决策问题,如资源配置、生产率优化、预测分析等。
例如,在资源配置问题中,借助模糊优化与决策,我们可以在给定的预算范围内最大限度地提高所配置资源的利用率;在生产率优化问题中,借助模糊优化与决策,可以根据现有资源和预算情况,采取有效的策略以提高企业的效率和利润;在预测分析问题中,借助模糊优化与决策,可以根据历史数据,准确地预测未来的趋势,从而更好地把握公司的发展方向。
模糊优化与决策在很多方面都受到了非常广泛的应用,但也存在一些弊端。
首先,模糊优化与决策采用的“模糊”方式,对用户的认知要求较高,用户需要充分理解和深入掌握模糊数学原理和应用;其次,模糊优化与决策要求用户提供比较复杂的决策规则,尤其在缺少足够知识库的情况下,要求用户提供更丰富的决策规则信息,以致在实际的决策过程中缺乏灵活性;同时,模糊优化与决策的新技术不断发展,有时会与现有的技术发生冲突,这会带来一定的技术更新成本。
Fuzzy Mathematics for Raw Silk Size ControlHU Zheng-yu;YU Hai-feng;GU Ping【期刊名称】《东华大学学报(英文版)》【年(卷),期】2008(025)004【摘要】With photographing and experiments,this paper divides the cocoon layers into three categories according to their colors,establishes three-color membership function based on fuzzy mathemtics,constructs fuzzy sets which satisfy the range of size contrd by using the ordinary set and attached fiequency of three color cocoons combination,then achieves the ordinary sets of range of size cont rol by choosing λ-cut.Under these ordinary sets,each end does duality relative level,then sets up relative matrix and overall sequence and finds the membership function to iudge whether the size cmtrol is normal.【总页数】4页(P449-452)【作者】HU Zheng-yu;YU Hai-feng;GU Ping【作者单位】College of Material Engineering,Soochow University,Suzhou 215021,China;College of Material Engineering,Soochow University,Suzhou 215021,China;College of Material Engineering,Soochow University,Suzhou 215021,China【正文语种】中文【中图分类】TS143.1因版权原因,仅展示原文概要,查看原文内容请购买。
Package‘fuzzr’October13,2022Type PackageTitle Fuzz-Test R FunctionsVersion0.2.2Description Test function arguments with a wide array of inputs,and producereports summarizing messages,warnings,errors,and returned values.License MIT+file LICENSEURL https:///mdlincoln/fuzzrBugReports https:///mdlincoln/fuzzr/issuesImports assertthat,progress,purrrSuggests knitr,rmarkdown,testthatVignetteBuilder knitrLazyData TRUERoxygenNote6.0.1NeedsCompilation noAuthor Matthew Lincoln[aut,cre]Maintainer Matthew Lincoln<***************************>Repository CRANDate/Publication2018-05-0816:45:18UTCR topics documented:as.data.frame.fuzz_results (2)fuzzr (2)fuzz_function (3)fuzz_results (4)test_all (5)Index812fuzzr as.data.frame.fuzz_resultsSummarize fuzz test results as a data frameDescriptionSummarize fuzz test results as a data frameUsage##S3method for class fuzz_resultsas.data.frame(x,...,delim=";")Argumentsx Object returned by fuzz_function....Additional arguments to be passed to or from methods.delim The delimiter to use forfields like messages or warnings in which there may be multiple results.ValueA data frame with the following columns:fuzz_input The name of the fuzz test performed.output Delimited outputs to the command line from the process,if applicable.messages Delimited messages,if applicable.warnings Delimited warnings,if applicable.errors Error returned,if applicable.value_classes Delimited classes of the object returned by the function,if applicableresults_index Index of x from which the summary was produced.fuzzr Fuzz-Test R FunctionsDescriptionTest function arguments with a wide array of inputs,and produce reports summarizing messages, warnings,errors,and returned values.fuzz_function3 fuzz_function Fuzz-test a functionDescriptionEvaluate how a function responds to unexpected or non-standard inputs.Usagefuzz_function(fun,arg_name,...,tests=test_all(),check_args=TRUE,progress=interactive())p_fuzz_function(fun,.l,check_args=TRUE,progress=interactive()) Argumentsfun A function.arg_name Quoted name of the argument to fuzz test....Other non-dynamic arguments to pass to fun.These will be repeated for every one of the tests.tests Which fuzz tests to run.Accepts a named list of inputs,defaulting to test_all.check_args Check if arg_name and any arguments passed as...are accepted by fun.Set to FALSE if you need to pass arguments to a function that accepts arguments via....progress Show a progress bar while running tests?.l A named list of tests.Detailsfuzz_function provides a simple interface to fuzz test a single argument of a function by passing the function,name of the argument,static values of other required arguments,and a named list of test values.p_fuzz_function takes a nested list of arguments paired with lists of tests to run on each argument, and will evaluate every combination of argument and provided test.ValueA fuzz_results object.NoteThe user will be asked to confirm before proceeding if the combinations of potential tests exceeds 500,000.4fuzz_resultsSee Alsofuzz_results and as.data.frame.fuzz_results to access fuzz test results.Examples#Evaluate the formula argument of lm,passing additional required variablesfr<-fuzz_function(lm,"formula",data=iris)#When evaluating a function that takes...,set check_args to FALSEfr<-fuzz_function(paste,"x",check_args=FALSE)#Pass tests to multiple arguments via a named listtest_args<-list(data=test_df(),subset=test_all(),#Specify custom tests with a new named listformula=list(all_vars=Sepal.Length~.,one_var=mpg~.))fr<-p_fuzz_function(lm,test_args)fuzz_results Access individual fuzz test resultsDescriptionAccess individual fuzz test resultsUsagefuzz_value(fr,index=NULL,...)fuzz_call(fr,index=NULL,...)Argumentsfr fuzz_results objectindex The test index(by position)to access.Same as the results_index in the data frame returned by as.data.frame.fuzz_results....Additional arguments must be named regex patterns that will be used to match against test names.The names of the patterns must match the function argumentname(s)whose test names you wish to match.Functions•fuzz_value:Access the object returned by the fuzz test•fuzz_call:Access the call used for the fuzz testtest_all Fuzz test inputsDescriptionEach test_all returns a named list that concatenates all the available tests specified below.Usagetest_all()test_char()test_int()test_dbl()test_lgl()test_fctr()test_date()test_raw()test_df()test_null()Functions•test_char:Character vectors–char_empty:character(0)–char_single:"a"–char_single_blank:""–char_multiple:c("a","b","c")–char_multiple_blank:c("a","b","c","")–char_with_na:c("a","b",NA)–char_single_na:NA_character_–char_all_na:c(NA_character_,NA_character_,NA_character_)•test_int:Integer vectors–int_empty:integer(0)–int_single:1L–int_multiple:1:3–int_with_na:c(1L,2L,NA)–int_single_na:NA_integer_–int_all_na:c(NA_integer_,NA_integer_,NA_integer_)•test_dbl:Double vectors–dbl_empty:numeric(0)–dbl_single:1.5–dbl_mutliple:c(1.5,2.5,3.5)–dbl_with_na:c(1.5,2.5,NA)–dbl_single_na:NA_real_–dbl_all_na:c(NA_real_,NA_real_,NA_real_)•test_lgl:Logical vectors–lgl_empty:logical(0)–lgl_single:TRUE–lgl_mutliple:c(TRUE,FALSE,FALSE)–lgl_with_na:c(TRUE,NA,FALSE)–lgl_single_na:NA–lgl_all_na:c(NA,NA,NA)•test_fctr:Factor vectors–fctr_empty:structure(integer(0),.Label=character(0),class="factor")–fctr_single:structure(1L,.Label="a",class="factor")–fctr_multiple:structure(1:3,.Label=c("a","b","c"),class="factor")–fctr_with_na:structure(c(1L,2L,NA),.Label=c("a","b"),class="factor")–fctr_missing_levels:structure(1:3,.Label=c("a","b","c","d"),class="factor")–fctr_single_na:structure(NA_integer_,.Label=character(0),class="factor")–fctr_all_na:structure(c(NA_integer_,NA_integer_,NA_integer_),.Label=character(0),class="factor")•test_date:Date vectors–date_single:as.Date("2001-01-01")–date_multiple:as.Date(c("2001-01-01","1950-05-05"))–date_with_na:as.Date(c("2001-01-01",NA,"1950-05-05"))–date_single_na:as.Date(NA_integer_,origin="1971-01-01")–date_all_na:as.Date(rep(NA_integer_,3),origin="1971-01-01")•test_raw:Raw vectors–raw_empty:raw(0)–raw_char:as.raw(0x62),–raw_na:charToRaw(NA_character_)•test_df:Data frames–df_complete:datasets::iris–df_empty:data.frame(NULL)–df_one_row:datasets::iris[1,]–df_one_col:datasets::iris[,1]–df_with_na:iris with several NAs added to each column.•test_null:Null value–null_value:NULLIndexas.data.frame.fuzz_results,2,4fuzz_call(fuzz_results),4fuzz_function,2,3fuzz_results,4,4fuzz_value(fuzz_results),4fuzzr,2fuzzr-package(fuzzr),2p_fuzz_function(fuzz_function),3test_all,3,5test_char(test_all),5test_date(test_all),5test_dbl(test_all),5test_df(test_all),5test_fctr(test_all),5test_int(test_all),5test_lgl(test_all),5test_null(test_all),5test_raw(test_all),58。
Business EthicsGroup Homework on Fuzzy Math Case AnalysisGroup Members:Date:July 21, 2012Fuzzy Math Case AnalysisCase backgroundJoe Davis, a new appointed manager in Connectco found that the organizations policies and procedures were not well documented and suspected that there may be wrong-doing at work. He contacted with the vice president in Canadian operation and vice president and relationship manager to confirm. After his fear was confirmed, hwas very uncomfortable with the situation. As a manager managing the relationship with Symbol he had to respond. Is there anything that they can do to correct the unethical doings?ProblemsFirstly, Davis discovered that the numbers were not adding up when he looked at the contract with Symbol. He contacted with the vice president in Canadian operation, Charlie and Relationship Manager, MacDonald, but he didn’t get a clear answer. Actually, they should know as the manager of this sector. The leaders are not models, how does employee act?Secondly, when Charlie and MacDonald was told by Davis that they owe Symbol US81,000 according to the contract. It seemed that they didn’ t know how to solve the problems as Davis received no answers after several weeks and plenty of fruitless attempts.Both of the two sides in the contract can interpret the contract terms to their own advantage. It is obvious that ConnectCo and Symbol do not share a clear understanding of the contract's terms.Thirdly, meetings were held to display the contract problems and Gallagher & MacDonald fully understand the situations then, but they share the different attitude. Davis’ instincts say that it could be the company culture. Once the company set up some rules and regulations, then Gallagher and MacDonald should know the actions to be taken. From Davis’ perspective, ConnectCo act without the standards of trust, integrity and loyalty. Meanwhile, communication problems do exist within the managers at ConnectCo. As the vice-president and Relationship Manager of ConnectCo, MacDonald didn’t know any detail on the contract terms. Furthermore, when Davis took the issue to the controller of ConnectCo, she told him to let the case “play out.” Either the managers at ConnectCo do not fully understand the consequences of breaking the terms of a contract, or are trying to deceive their client.Conclusions and Recommendations1.ConnectCo need to include a code of ethics into its strategic plan. Understand the ethics values are mostimportant for the employees to form the rules of conduct.2.Once the top managers develop an adversarial relationship within the company, it is harmful to the companyintegrity. If the top managers are not the model, how can we do?3.Business standards and criteria must be delivered to company employees to guide for the business decisionmaking. When Davis asked about the contract and made an answer that they are not lower. As we all know, we have contract laws in every countries. When people signed a contract which means that he has fully understand the contract terms and the two sides have reached an agreements on the contract. Not each manager know clearly about the law, while we have law consulting department or company lawyer that when we meet troubles we can turn to for help.4.To build trust and loyalty among employees to let the employees work in a trust environment. Without trust,conflicts will occur. When employees perceive the company they work for as transparent and just towards its clients, employees and society alike, they feel it is worthwhile to dedicate themselves to their jobs. From Davis’ perspective, ConnectCo is not living up to these standards. The company must review their ethical values in order to regain their employees’ trust.5.Effective communications between the employees is the very important for the running of the business.Internal communications means between management and employees and external communicationsbetween the company’s staff and clients, suppliers, vendors. If Charlie did well in communication, Symbol will not have the different interpretation of the contract terms. Therefore, the company must seek ways to let the employees communicate effectively.6.Each business has its own unique combination of critical success factors, but some are important for allbusinesses.。