北师大版八年级(上)期中数学试卷(含答案)
- 格式:doc
- 大小:187.50 KB
- 文档页数:6
北师大版八年级上册数学期中测试卷及答案北师大版八年级上册数学期中测试卷及答案本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共36分)1、36的平方根是()A、±6B、36C、±6D、-6改写:求36的平方根,正确的答案是±6.2、下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1.④38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应。
其中正确的有()A、2个B、3个C、4个D、5个改写:以下语句中,正确的是:①-1是1的平方根;③-1的立方根是-1;⑤(-2)的算术平方根是2;⑥-125的立方根是±5;⑦有理数和数轴上的点一一对应。
共有4个正确的语句,选项C为正确答案。
3、下列计算正确的是()A、-327=3B、a2+a3=a5C、a2·a3=a6D、(-2x)3=-6x3改写:下列计算中正确的是:A、-3-27=3.因为-3-27=-30,不等于3;B、a^2+a^3=a^5,正确;C、a^2·a^3=a^5,不等于a^6;D、(-2x)^3=-8x^3,不等于-6x^3.因此,正确答案为B。
4、分解因式-2xy2+6x3y2-1xy时,合理地提取的公因式应为()A、-2xy2B、2xyC、-2xyD、2x2y改写:分解因式-2xy^2+6x^3y^2-xy时,合理地提取的公因式应为2xy。
因为-2xy^2、6x^3y^2和-xy都含有xy,而且2是它们的最大公因数。
因此,正确答案为B。
5、对下列多项式分解因式正确的是()A、a3b2-a2b3+a2b2=a2b2(a-b)B、4a2-4a+1=4a(a-1)+1C、a2+4b2=(a+2b)2D、1-9a2=(1+3a)(1-3a)改写:对下列多项式分解因式正确的是:A、a^3b^2-a^2b^3+a^2b^2=a^2b^2(a-b);B、4a^2-4a+1=(2a-1)^2;C、a^2+4b^2=(a+2b)(a-2b);D、1-9a^2=(1+3a)(1-3a)。
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
2023-2024学年北师大新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣1.414,,π,2.010101…(相邻两个1之间有1个0),2+,这此数中,无理数的个数为( )A.5B.2C.3D.42.如图,是象棋盘的一部分,若帅位于点(5,1)上,则炮位于点( )A.(1,1)B.(4,2)C.(2,1)D.(2,4)3.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0、2、4、6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上.则数轴上表示99的点与正方形上表示数字( )的点重合.A.0B.2C.4D.64.如果下列各组数分别是三角形的三边长,那么能组成直角三角形的是( )A.1,2,2B.2,3,4C.3,4,5D.4,5,65.的立方根是( )A.﹣B.C.D.6.下列各图能表示y是x的函数的是( )A.B.C.D.7.正比例函数y=2x的图象向左平移1个单位后所得函数解析式为( )A.y=2x+1B.y=2x﹣1C.y=2x+2D.y=2x﹣28.在△ABC中,∠A,∠B,∠C的对边分别是a、b、c.下列条件中,可以判定△ABC为直角三角形的是( )A.a:b:c=2:3:B.ab=cC.∠A+∠B=2∠C D.∠A=2∠B=3∠C9.如图,直线l是一次函数y=kx+b的图象,且直线l过点(﹣2,0),则下列结论错误的是( )A.kb>0B.直线l过坐标为(1,3k)的点C.若点(﹣16,m),(﹣18,n)在直线l上,则n>mD.10.如图,在Rt△ABC中,BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD 折叠,使A落在A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为( )A.2或4B.2或4C.2或4D.4或4﹣4二.填空题(共7小题,满分28分,每小题4分)11.有一组按规律排列的数:,,,2,…则第n个数是 .12.在平面直角坐标系中,已知点P的坐标是(﹣2,3),则点P到y轴的距离为 .13.以直角三角形的两条直角边为边向外作正方形,面积分别为12和13,则斜边长是 .14.若将点P(﹣3,4)向下平移2个单位,所得点的坐标是 .15.一次函数与一元一次方程的关系:从“数”的角度看,一元一次方程kx+b=0(k,b为常数,且k≠0)的解,就是一次函数y= 的函数值为 时,相应的自变量x的值;从“形”的角度看,一元一次方程kx+b=0的解就是一次函数y= 的图象与 轴交点的 坐标.16.直角三角形中,两边长为3,4,则第三边长为 .17.如图,在边长为5cm的正方形纸片ABCD中,点F在边BC上,已知FB=2cm.如果将纸折起,使点A落在点F上,则tan∠GEA= .三.解答题(共8小题,满分62分)18.计算:(1)2﹣6+3(2)(﹣)2+2×319.计算:(﹣1)(+1)+﹣.20.如图,长方体的长为3cm,宽为1cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(B为棱的中点),那么所用细线最短是多少厘米?21.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c22.如图,架在消防车上的云梯AB长为15m,云梯底部离地面的距离BC为2m,BD⊥AD,BD=5m.求出云梯顶端离地面的距离AE.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过A(4,0)、B(0,4)两点.(1)k= ,b= .(2)已知M(﹣1,0)、N(3,0),①在直线AB上找一点P,使PM=PN.用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);②点P的坐标为 ;③点Q在y轴上,那么PQ+NQ的最小值为 .24.教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定(2)如图③,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.(3)试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在如图4的网格中,并标出字母a,b所表示的线段.25.下面我们参照学习函数的过程与方法,探究函数y=的图象与性质.(1)请根据下表中所给x,y的对应值,以自变量x的取值为横坐标,以相应的函数y 的值为纵坐标,在平面直角坐标系中(如图所示)画出函数图象:x…﹣4﹣3﹣2﹣101234…y…012321012…(2)结合表格和图象,解回答下列问题:①若点(﹣,y1),(,y2)在函数图象上,则y1 y2(填“>”,“=”或“<”);②点A的坐标是(0,a),过点A作直线l垂直于y轴,当直线l与函数图象有三个不同交点时,直接写出a的取值范围;③当y=5时,求x的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣1.414是有限小数,属于有理数;2.010101…(相邻两个1之间有1个0)是循环小数,属于有理数;无理数有:,,π,2+共3个.故选:C.2.解:依题意,坐标系的原点是在帅位下一行与从帅位向左数第5列的交点,故炮的坐标为(2,4).故选:D.3.解:从点﹣1到点99共100个单位长度,正方形的周长为2×4=8个单位长度,100÷8=12…4,故数轴上表示99的点与正方形上表示数字4的点重合,故选:C.4.解:∵12+22≠22,故选项A的数据不能构成直角三角形;∵22+32≠42,故选项B中的数据不能构成直角三角形;∵32+42=52,故选项C中的数据能构成直角三角形;∵42+52≠62,故选项D中的数据不能构成直角三角形;故选:C.5.解:实数的立方根为,故选:C.6.解:A、B、D都不是函数,因为一个x的值对应有多个y的值,C选项符合函数的概念,故选:C.7.解:正比例函数y=2x的图象向左平移1个单位后所得函数解析式为y=2(x+1),即y=2x+2.故选:C.8.解:A.∵a:b:c=2:3:,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项符合题意;B.根据ab=c不能推出△ABC是直角三角形,故本选项不符合题意;C.∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∴∠C=60°,即∠A+∠B=120°,不能推出∠A和∠B的度数,即不能确定△ABC是直角三角形,故本选项不符合题意;D.∵∠A=2∠B=3∠C,∴∠B=∠A,∠C=A,∵∠A+∠B+∠C=180°,∴∠A+A+A=180°,∴∠A=()°,∴△ABC不是直角三角形,故本选项不符合题意;故选:A.9.解:∵该一次函数的图象经过第二、三、四象限,且与y轴的交点位于x轴下方,∴k<0,b<0,∴kb>0,故A正确,不符合题意;将点(﹣2,0)代入y=kx+b,得:0=﹣2k+b,∴b=2k,∴直线l的解析式为y=kx+2k,当x=1时,y=k+2k=3k,∴直线l过坐标为(1,3k)的点,故B正确,不符合题意;由图象可知该函数y的值随x的增大而减小,又∵﹣16>﹣18,∴n>m,故C正确,不符合题意;∵该函数y的值随x的增大而减小,且当x=﹣2时,y=0,∴当时,y>0,即,故D错误,符合题意.故选:D.10.解:Rt△ABC中,BC=AC=4,∴AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,即A'D⊥AC,设AD=x,∵把△ACD沿直线CD折叠,点A落在BC上方A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=2,DH=A′D=x,∴x+x+2=4,∴x=4﹣4,∴AD=4﹣4;②如图2,当A′D∥AC,即A'D⊥BC,∵把△ACD沿直线CD折叠,点A落在BC下方A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=4,故选:D.二.填空题(共7小题,满分28分,每小题4分)11.解:观察数据可知,这组数据的规律是:,,,,…,则第n个数是.故答案为:.12.解:点P的坐标是(﹣2,3)到y轴的距离为:|﹣2|=2,故答案为:2.13.解:由题意得:两条直角边长的平方分别为12和13,∴斜边长==5,故答案为:5.14.解:由题意可得,平移后点的横坐标为﹣3;纵坐标为4﹣2=2;即将点P(﹣3,4)向下平移2个单位,所得点的坐标是(﹣3,2).故答案为:(﹣3,2).15.解:一次函数与一元一次方程的关系:从“数”的角度看,一元一次方程kx+b=0(k,b为常数,且k≠0)的解,就是一次函数y=kx+b的函数值为0时,相应的自变量x的值;从“形”的角度看,一元一次方程kx+b=0的解就是一次函数y=kx+b的图象与x 轴交点的横坐标.故答案为:kx+b,0,kx+b,x,横.16.解:当4是直角边时,斜边==5,当4是斜边时,另一条直角边==,则第三边长为5或,故答案为:5或.17.解:如图作GM⊥AB于M,连接FG、AG.∵四边形EGHF是由四边形EGDA翻折得到,∴EF=EA,GF=AG,设EF=AE=x,在RT△EFB中,∵EF2=BF2+BE2,∴x2=22+(5﹣x)2,∴x=,∴AE=EF=,设DG=y,则y2+52=(5﹣y)2+32,∴y=,∵∠D=∠DAB=∠AMG=90°,∴四边形DAMG是矩形,∴AM=DG=,EM=AE﹣AM=2,GM=AD=5,∴tan∠AEG==.故答案为.三.解答题(共8小题,满分62分)18.解:(1)2﹣6+3=4﹣6×+12=4﹣2+12=14;(2)(﹣)2+2×3=2+3﹣2+×3=2+3﹣2+2=5.19.解:原式=()2﹣12+2﹣2=2﹣1+2﹣2=1.20.解:将长方体展开,连接A、B,根据两点之间线段最短,AB=(cm);如果从点A开始经过4个侧面缠绕1圈到达点B,相当于直角三角形的两条直角边分别是8和3,根据勾股定理可知所用细线最短需要=(cm).故用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点)那么所用细线最短需要cm.21.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,即a=5;∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,即b=2,∵c是的整数部分,而4<<5,∴c=4,∴a+2b+c=13,答:a+2b+c的值为13.22.解:在Rt△ADB中,AD===12(m),则AE=12+2=14(m),答:云梯顶端离地面的距离AE为14米.23.(1)解:将A(4,0)、B(0,4)代入y=kx+b(k≠0)中,得:,解得:,故答案为:﹣1,4;(2)①如图,点P即为所求;②由作图可知:点P在MN的垂直平分线上,∵M(﹣1,0)、N(3,0),∴点P的横坐标为1,代入y=﹣x+4中,得:﹣1+4=3,∴P(1,3),故答案为:(1,3);③∵N(3,0),∴点N关于y轴对称点为N'(﹣3,0),则QN=QN',∴PQ+NQ=PQ+N'Q=PN',∴PQ+NQ的最小值为.故答案为:5.24.解:(1)梯形ABCD的面积为,也可以表示为,∴,即a2+b2=c2;(2)在Rt△ABD中,AD2=AB2﹣BD2=42﹣x2=16﹣x2;在Rt△ADC中,AD2=AC2﹣DC2=52﹣(6﹣x)2=﹣11+12x﹣x2;所以16﹣x2=﹣11+12x﹣x2,解得;(3)如图,由此可得(a+b)(a+2b)=a2+3ab+2b2.25.解:(1)函数图象如图所示:(2)①点(﹣,y1),(,y2)在函数图象上,根据图象可知,y1>y2,故答案为:>;②根据图象可知,直线l与函数图象有三个不同交点时,a的取值范围是0<a<3;③当y=5时,x﹣2=5,解得x=7.。
北师大版八年级上学期期中考试数学试卷带答案一、单选题(本大题共10小题)1.下列说法正确的是( )A .2的相反数是2-B .2是4的平方根C .327D .计算:2(3)3-=-2.估计11 ).A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.已知M 285M 的取值范围是( )A .8<M <9B .7<M <8C .6<M <7D .5<M <6 4.下列计算,正确的是( )A .2222a a a ⨯=B .224a a a +=C .224()a a -=D .22(1)1a a +=+5.通过计算比较图1、图2中阴影部分的面积,可以验证的计算式子是( )A .a (a -2b )=a 2-2abB .(a -b )2=a 2-2ab +b 2C .(a +b )(a -b )=a 2-b 2D .(a +b )(a -2b )=a 2-ab -2b 26.已知多项式x a -与221x x +-的乘积中不含2x 项,则常数a 的值是( )A .1-B .1C .2-D .27.在等腰三角形中,两个内角的比为4:1,则顶角为( )A .036B .020C .036或0144D .020或01208.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=1300,∠B=1000,则∠BCD的度数为()A.700B.800C.600D.9009.如图,在∆ABC中,AB、BC的垂直平分线相交于三角形内一点O,下列结论中错误的是()A.点O在AC的垂直平分线上B.∆AOB、∆BOC、∆COA都是等腰三角形C.∠OAB+∠OBC+∠OCA=90︒D.点O到AB、BC、CA的距离相等10.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0B.1C.2D.3二、填空题(本大题共7小题)11.一个正数的平方根分别是1x+和5x-,则x=.12.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.13.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=27,y=3时,用上述方法产生的密码是:(写出一个即可).14.小明站在镜子前看到他运动衣上的号码是108,则小明衣服上的实际号码是. 15.如图,一条船从A处出发,以15里/小时的速度向正北方向航行,10个小时到达B处,从A 、B 望灯塔,得∠NAC =37°,∠NBC =74°,则B 到灯塔C 的距离是 里.16.如图,在∠ABC 中,∠ ACB =115O ,BD =BC ,AE =AC . 则∠ECD 的度数为 .17.已知2是x 的立方根,且(y ﹣2z +5)23z -,3339x y z ++- . 三、解答题(本大题共7小题)18.计算:()2231342233448-+ 19.先化简,再求值:(1)x (x -2)+(x +1)2,其中x =1.(2)已知3a 2-4a -7=0,求代数式(2a -1)2-(a +b )(a -b )-b 2的值.20.如图,已知在∠ABC 中,AB =AC ,AD ∠BC 于D ,若将此三角形沿AD 剪开后再拼成一个四边形,你能拼出所有不同形状的四边形吗?画出所拼的四边形的示意图(标出图中的直角).21.先填写表,通过观察后再回答问题: a … 0.0001 0.01 1 100 10000 …a … 0.01x 1 y 100 …(1)表格中x = ,y = ;(2)从表格中探究a 与a ①已知10,则1000≈ ; ②已知m 8.973,若b =89.73,用含m 的代数式表示b ,则b = ;(3)试比较a a 的大小.22.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a +2b )(a +b )=a 2+3ab +2b 2.请回答下列问题:(1)写出图2中所表示的数学等式: .(2)利用(1)中所得的结论,解决下列问题:已知a +b +c =11,ab +bc +ac =38,求a 2+b 2+c 2的值;(3)图3中给出了若干个边长为a 和边长为b 的小正方形纸片及若干个长为b 、宽为a 的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为2a 2+5ab +2b 2;②再利用另一种计算面积的方法,可将多项式2a 2+5ab +2b 2分解因式,即2a 2+5ab +2b 2= .23.ABC 中,AB=AC ,D 是BC 中点,DE AB ⊥于E ,DF AC ⊥于F ,求证:DE DF =.24.如图,在∠ABC中,AB=AC,P为BC边上任意一点,PF∠AB于F,PE∠AC于E,若AC边上的高BD=a.(1)试说明PE+PF=a;(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,不需要说明理由.参考答案1,B2,C3,C4,C5,D6,D7,D8,B9,D10,D11.212.﹣213.103010 (答案不唯一)14.801.15.150.16.32.5°.17.318.2.19.(1)3;(2)8.20.如图所示:21.(1)0.1,10 (2)①31.6;②100b m = (3)当0a =时a a =;当1a =时a a =;当01a <<时a a >;当1a >时a a <22.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;故答案为(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .(2)a 2+b 2+c 2=(a +b +c )2﹣2ab ﹣2ac ﹣2bc=112﹣2×38=45.(3)①如图所示②如上图所示的矩形面积=(2a +b )(a +2b )它是由2个边长为a 的正方形、5个边长分别为a 、b 的长方形、2个边长为b 的小正方形组成,所以面积为2a 2+5ab +2b 2,则2a 2+5ab +2b 2=(2a +b )(a +2b ) 故答案为:(2a +b )(a +2b ).23.证明:AB AC =,D 是BC 中点B C ∴∠=∠ BD CD =DE AB ⊥于E ,DF AC ⊥于F90BED CFD ∴∠=∠=︒在BED 和CFD △中 B C BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩BED CFD ∴≌(AAS ) DE DF ∴=.24.(1)如图,连接AP ,则S △ABC =S △ABP +S △ACP∠12AC •BD =12AB •PF +12AC •PE ∠AB =AC∠BD =PE +PF =a .(2)PF -PE =a ,理由如下: 连接AP ,则S △ABC =S △ABP -S △ACP ∠12AC •BD =12AB •PF -12AC •PE ∠AB =AC∠BD =PF -PE =a .。
北师大版八年级数学上册期中试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.因式分解:2218x -=__________.3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、D6、D7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、7或-12、2(x +3)(x ﹣3).3、32或424、x=25、186、4三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、123、(1)见解析;(2)k =84、(1) 65°;(2) 25°.5、(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t+272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或或9﹣或6时,△APQ 为等腰三角形.6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。
2024-2025学年北师大版八年级数学上册期中复习试卷一、选择题1.举世瞩目的2022北京冬季奥运会由北京市和河北省张家口市联合举办,以下表述能够准确表示张家口市地理位置的是().A.位于东经114.8°,北纬40.8°B.位于中国境内河北省C.西边和西南边与山西省接壤D.距离北京市180千米2.在实数﹣2.31,﹣π,02.60060006中,是无理数的有()A.1个B.2个C.3个D.4个3.下列各组数中,是勾股数的是()A.0.3,0.4,0.5B.1,2,3C.5,12,13D.3,44.点P(m+3,m+2)在直角坐标系的y轴上,则点P的坐标为()A.(0,-1)B.(1,0)C.(3,0)D.(0,-5)5.实数a,b在数轴上对应点的位置如图所示,则化简代数式a b+的结果是().A.-bB.2aC.-2aD.-2a-b6.如图,在平面直角坐标系中,A(﹣1,0),B(0,2),以点A为圆心,线段AB长为半径画弧,交x轴正半轴于点C,点C的横坐标是()A. B.2 C.1- D.7.按如图所示的运算程序,能使输出的结果为3的是()A.0a =,3b =B.1a =,2b =C.4a =,1b = D.9a =,0b =8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图象不可能是()A. B.C. D.9.如图,ABC V 的顶点A ,B ,C 在边长为1的正方形网格的格点上,则BC 边上的高为()A.302B.C.D.13210.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为()A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)二、填空题11.在实数范围内有意义,则x 的取值范围是______.12.如图,AD BE CF ∥∥,直线1l 、2l 与这三条直线分别交于点A 、B 、C 和D 、E 、F ,若6AB =,3BC =,12DF =,则DE 的长为________.13.已知a 是方程2310110x x --=的一个根,则代数式2261a a -+的值是_________.14.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机抽出一个球.记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球______个.15.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =________.三、解答题(共66分)16.计算:(1)21243⎫---⎪⎪⎭(2)-17.3=,31a b -+的平方根是4±,c 的整数部分(1)求a ,b ,c 的值;(2)求310++a b c 的平方根.18.如图,在平面直角坐标系中,ABC V 的三个顶点的坐标分别为()3,4A -,()41B -,,()1,2C -.(1)在图中作出ABC V 关于x 轴的对称图形111A B C △;(2)请直接写出点C 关于y 轴的对称点C '的坐标______;(3)ABC V 的面积=______;(4)在y 轴上找一点P ,使得APC △周长最小,并求出APC △周长的最小值.19.在海平面上有A ,B ,C 三个标记点,其中A 在C 的北偏西54︒方向上,与C 的距离是800海里,B 在C 的南偏西36︒方向上,与C 的距离是600海里.(1)求点A 与点B 之间的距离;(2)若在点C 处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B 处有一艘轮船准备沿直线向点A 处航行,轮船航行的速度为每小时20海里.轮船在驶向A 处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).20.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如这样的式子,其实我们还可以将其进一步化简:=;)()2212111⨯--===--221111===-=-.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简=_________.=____________.(请写出计算过程)(2+.21某人需要经常去复印资料.甲复印社直接按每次印的张数计费,乙复印社可以加入会员,但需按月付一定的会员费、两复印社每月的收费情况如图所示,根据图中提供的信息解答下列问题;(1)乙复印社要求客户每月支付的会员费是______元.(2)求出乙复印社收费y(元)关于复印量x(页)的函数解析式.(3)当每月复印多少页时,两复印社实际收费相同?(4)如果每月复印210页,应选择哪家复印社?22.如图,直线334y x=-+与y轴、x轴交于点A、B,点C在直线AB上,点C的横坐标为m.(1)求点A 、B 的坐标;(2)求AOB V 的面积;(3)当1m =时,求BOC 的面积;(4)当12BOC AOB S S =△△时,求m 的值.。
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是( )A .﹣53B .|﹣2|CD .2.下列语句中正确的是( )A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∵a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是( )A .5B .5-和15C .D .--(- 4.下列一次函数y 随x 的增大而增大是( )A .y =-2xB .y =x -3C .y =-5xD .y =-x +3 5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是( )A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是( )A B =C .3+D 2÷=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为( )A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则∵OA 2A 2018的面积是( )A .504m 2B .10092m 2 C .10112m 2 D .1009m 2 二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________. 18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3) ⎛ ⎝(4) 2(11)1)-20.阅读下列计算过程:==1==2==试求:(1(2⋅⋅⋅(321.在∵ABC中,∵C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF∵DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当∵POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得∵MOC的面积是∵AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的∵ABC和∵A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∵ACB=∵A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵47=283=272827∵33故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11-+=故答案为:【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∵点P的纵坐标为-1,∵点P到y轴的距离是3,∵点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解:a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)(2)-6;(3;(4)-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2==(2)==6=-;(3) ⎛ ⎝434⎛= ⎝⎭=(4)2(11)1)-15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)-【解析】【分析】(1(2 (3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=(2=== (3⋅⋅⋅1199+1 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∵EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∵AD BD =,∵()EAD GBD AAS ≅,∵ED GD =,AE BG =,又∵DF DE ⊥,∵DF 是线段EG 的垂直平分线,∵EF FG =,∵90C ∠=︒,//BG AC ,∵90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+, ∵222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∵y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∵x =500当x =500时,y =-6×500+48000=45000∵造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0) 或(0) 或(-0) ;(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把∵MOC 的面积是∵AOC面积的2倍的数量关系转化为∵MOA 的面积与∵AOC 面积的数量关系即可求解.【详解】解: (1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∵点C 的坐标为(4,4).(2) 如图, 分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∵P 1(8,0);OC 为腰,当OC=OP 2= OP 3时,∵C (4,4), 22442,2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x= =解得x=4,∵P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∵点A 的坐标为(6,0),∵OA=6,∵S ∵OAC=12× 6× 4=12.设M (x ,y ),当M 在x 轴下方时∵MOC 的面积是∵AOC 面积的2倍, ∵∵MOA 的面积等于∵AOC 的面积,1166422y ⨯⨯=⨯⨯, ∵4y =,∵y=−4,∵4212x -=-+,∵x=8,∵M (8,−4)当M 在x 轴上方时∵MOC 的面积是∵AOC 面积的2倍,∵∵MOA 的面积等于∵AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯ ∵12y =∵y=12时,∵12212x =-+,∵x=0,∵M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x -20),即y=2.6x -12; (2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x -16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∵CAB′=90°,根据勾股定理计算.【详解】解:∵∵ACB=∵AC′B′=90°,AC=BC=6,∵CAB=45°,∵∵ABC和∵A′B′C′全等,∵∵C′AB′=∵CAB=45°,∵∵CAB′=90°,答:B'C的长为。
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
2024--2025学年北师大版八年级数学上册期中试卷1.下列实数中,是无理数的是()A.B.C.D.2.下列各点中,位于第三象限的是()A.B.C.D.3.已知点在第三象限,点到轴的距离为2,到轴的距离为3,则点的坐标是()A.B.C.D.4.下列各式正确的是()A.B.C.D.5.化简的结果是()A.B.C.6D.6.如图,若一颗大树在一次强台风中于离地面处折断倒下,倒下部分的树枝到树的距离是,则这颗大树折断处到树顶的长度是()A.12B.10C.4D.7.已知点和点关于轴对称,则的值为()A.1B.C.D.8.已知a、b、c是三角形的三边长,若满足,则这个三角形的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.直角三角形9.点,点是一次函数图像的两个点,且,则与的大小关系是()A.B.C.D.10.已知一次函数的图像如图所示,则,的取值范围是()A.,B.,C.,D.,11.若有意义,则实数a的取值范围是________.12.若电影院的2排3号记为,则4排6号记为____________.13.已知一次函数.当时,____________.14.在平面直角坐标系中,且符合一次函数,则该一次函数是____________.15.画出的图象,根据图象回答下列问题(1)y的值随x值的增大而.(2)图象与x轴的交点坐标是,与y轴的交点坐标是.(3)当x时,y>0.16.计算:17.计算:18.如图,在四边形中,,,,,.(1)求的长;(2)求四边形的面积.19.计算:若互为倒数,且满足,则的值是?(写下计算步骤)20.如图,直角坐标系中,的顶点都在网格点上,其中,C点坐标为.(1)写出点A、B的坐标:A____、B____;(2)求的面积;(3)将先向左平移2个单位长度,再向上平移1个单位长度,得到,画出,写出三个点坐标.21.如图,一架梯子长25m,斜靠在一面墙上,梯子靠墙的一端距地面24m.(1)这个梯子底端离墙有多少米?(2)如果梯子顶端下滑了4m,那么梯子的底部在水平方向也滑动了4m吗?说明理由.22.如图,直线与x轴相交于点A,与y轴相交于点B.(1)直接写出的面积;(2)若C为y轴上一点,且的面积是,求点C的坐标;(3)若P是x轴上一点,且,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.。
2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。
北师大版八年级(上)期中数学试卷(含答案)
一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)
1.(3分)下面四个实数中,是无理数的为()
A.0B.C.﹣2D.
2.(3分)如果一个等边三角形的边长是2,那么这个等边三角形的面积是()A.1B.2C.D.
3.(3分)下列运算正确的是()
A.B.2=C.=3D.
4.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)
5.(3分)已知点A(1,0),B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标是()A.(﹣4,0)B.(3,5)C.(3,﹣5)D.(﹣4,0)或(6,0)
6.(3分)已知一个直角三角形两边的长分别为3和4.分别以此三角形的三边为边作正方形,则这三个正方形面积的和为()
A.50B.32C.50或32D.以上都不对
7.(3分)已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)
8.(3分)已知是二元一次方程组的解,则m﹣n的值是()A.1B.2C.3D.4
9.(3分)已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四
10.(3分)如图,等腰Rt△ABC中,∠ABC=90°,O是△ABC内一点,OA=6,OB=4,OC=10,O′为△ABC外一点,且△CBO≌△ABO′,则四边形AO′BO的面积为()
A.10B.16C.40D.80
二、填空题(共8小题,每小题3分,满分24分)
11.(3分)比较大小:25(填“>,<,=”).
12.(3分)如图,正比例函数图象经过点A,该函数解析式是.
13.(3分)如果=0,那么xy的值为.
14.(3分)若点A(a,b)在第三象限,则点B(﹣a+1,3b+1)在第象限.
15.(3分)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行,且经过点A(1,﹣2),则kb =.
16.(3分)如果|a|+a=0,则=.
17.(3分)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.18.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.
三、解答题(共46分.解答题应写出过程)
19.(6分)计算
(1)(2)(+)2﹣(﹣)2
20.(6分)解方程组
(1)(2).
21.(5分)在Rt△ABC中,∠C=90°.用尺规在BC边上找一点D,使得将△ABC沿AD折叠,点C落在AB边上.(不写作法,保留作图痕迹).
22.(5分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)写出A1,B1,C1的坐标(直接写出答案),A1;B1;C1.
(3)△A1B1C1的面积为.
23.(6分)如图,在四边形ABCD中,已知AB=AD=2,BC=3,CD=1,∠A=90°.(1)求BD的长;
(2)求∠ADC的度数.
24.(8分)某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,
(1)当0<x≤5时,单价y为元.当单价y=8.8时,x的取值范围为.
(2)根据函数图象,求第②段函数图象中单价y(元)与购买量(千克)的函数关系式,并写出x的取值范围.
(3)促销活动期间,张老师计划去该店购买A种水果10千克,那么张老师共需花费多少钱?
25.(10分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
北师大版八年级(上)数学期中试卷答案
一、选择题
题号 1
2
3
4
5
6
7
8
9
10
答案
B D D A D
C C
D D C
二、填空题
题号 11
12 13
14
15
16
17
18 答案
> y =3x
-6 一或四 -8 a 21-
⎪⎭⎫
⎝
⎛--2121, 16或54
三、解答题
19.(1)62224+;(2)104 20.(1)⎩⎨
⎧==02y x ;(2)⎩⎨⎧==1
1
y x .
21.如图所示BC 于点D ,点D 即为所求作的点.
22.(1)作图略;(2)A 1(﹣1,2),B 1(﹣3,1),C 1(2,﹣1);(3)△A 1B 1C 1的面积为4.5. 23.(1)BD=22;(2)∠ADC =135°; 24.(1)10,11≥x ;
(2)第②段函数图象的解析式y =﹣0.2x +11 (5≤x ≤11); (3)张老师共需花费90元. 25.(1)A (2,0);C (0,4) (2)直线CD 解析式为44
3
+-
=x y (3)存在,满足条件的点P 有三个,分别为:()0,01P ;⎪⎭⎫ ⎝⎛58,5162P
;⎪⎭
⎫
⎝⎛-512,563P。