初中数学专项训练:多边形及其内角和
- 格式:doc
- 大小:278.50 KB
- 文档页数:12
初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。
多边形内角和填空题专项练习1、一个凸多边形的内角和与外角和相等,它是______边形.2、正九边形的一个外角等于 .3、若一个多边形的内角和是外角和的5倍,则这个多边形是 边形.4、六边形的外角和等于 °.5、正十二边形每个内角的度数为 .6、一个正多边形的每一个内角都等于160°,则这个正多边形的边数是 .7、已知正n边形的一个外角是45°,则n=____________8、如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .9、如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2= 度.10、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为。
11、一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .12、正十二边形的内角和是 . 正五边形的外角和是 .13、如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了______米.14、一个多边形的每个内角都等于150°,则这个多边形是 边形.15、一个多边形截去一个角后,形成多边形的内角和为720°,那么原多边形的边数为___16、一个多边形的内角和等于它的外角和的3倍,它是______边形.17、如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为1的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为S n.则S2017的值为 .(结果保留π)18、如图是由射线AB、BC、CD、DE、EA组成的图形,∠1+∠2+∠3+∠4+∠5= .19、若凸边形的内角和为1260°,则从一个顶点出发引的对角线条数是__ __。
《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。
初中数学:多边形的内角和测试题(含答案)总分100分时间40分钟一、选择题(每题5分)1、四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°【答案】A【解析】试题分析:根据四边形的内角和是360°,所以∠B的度数是360°-280°=80°. 解:根据多边形内角和公式可得:∠A+∠B+∠C+∠D=360°,∴∠B=360°-(∠A+∠C+∠D),∵∠A+∠C+∠D=280°,∴∠B=80°.故应选A.考点:多边形的内角和2、内角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形【答案】B【解析】试题分析:设多边形的边数是x,根据多边形的内角和与多边形的外角列方程求解.解:设多边形的边数是x,根据题意可得:(x-2)×180°=2×360°,解得:x=6,所以这个多边形是六边形.故应选B.考点:多边形的内角和3、过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )A.4倍B.5倍C.6倍D.3倍【答案】A【解析】试题分析:过多边形的一个顶点可以作7条对角线,把这个多边形分成了8个三角形,根据三角形内角和定理求解.解:∵过多边形的一个顶点可以作7条对角线,∴过多边形一个顶点的对角线把这个多边形分成了8个三角形,∴这个多边形的内角和是8×180°=4×360°,∴多边形的内角和是外角和的4倍,故应选A.考点:多边形的内角和4、 若正n 边形的一个内角与正2n 边形的一个内角的和等于270°,则n 为( ) A7 B.6 C.5 D.4【答案】B【解析】试题分析:根据正多边形的每个内角与正多边形的边数之间的关系列方程求解. 解:根据题意可得:()()112180221802702n n n n-⨯︒+-⨯︒=︒, 解得:n=6,故应选B.考点:多边形的内角和5、多边形的每个外角与它相邻内角的关系是( )A .互为余角B .互为邻补角C .两个角相等D .外角大于内角【答案】B【解析】试题分析:根据多边形的外角和与它相邻的内角的位置关系解答.解:多边形的每个外角与它相邻的内角互为邻补角.故应选B.考点:多边形6、一个多边形的内角和为720°,那么这个多边形的对角线条数为( )A.6条B.7条C.8条D.9条【答案】D【解析】试题分析:根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线与多边形的边数之间的关系求解.解:设多边形的边数是n,根据题意可得:(n-2)×180°=720°,解得:n=6,所以多边形的对角线的条数是12×6×(6-3)=9.故应选D考点:多边形的内角和7、一个多边形每个内角为108°,则这个多边形()A.四边形B,五边形C.六边形D.七边形【答案】【解析】试题分析:设多边形的边数是n,根据多边形的内角和公式列方程求解. 解:设多边形的边数是n,根据题意可得:(n-2)×180°=n×108°,解得:n=5,答:这个多边形是五边形.故应选B.考点:多边形的内角和8、n边形的n个内角中锐角最多有()个.A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:根据多边形的外角和是360°求解.解:因为多边形的外角和是360°,所以多边形的外角中最多有3个钝角,所以多边形的内角中最多有3个锐角.故应选C.考点:多边形的内角和.9、如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.nB.2n-2C.2nD.2n+2【答案】【解析】试题分析:首先设这个多边形的边数是x,根据多边形的内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=n×360°,解得:x=2n+2.故应选D.考点:多边形的内角和二、填空题(每题5分)10、一个多边形的内角和角和是外角和的4倍,则这个多边形是边形. 【答案】10【解析】试题分析:首先设这个多边形的边数是x,根据多边形内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=4×360°,解得:x=10,所以这个多边形是10边形.考点:多边形11、正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.【答案】144°;36°【解析】试题分析:首先利用多边形的外角和是360°,求出每一个外角的度数,再根据多边形的内角与它相邻的外角是邻补角,求出每一个内角的度数.解:因为正十边形有10个外角,所以每一个外角的度数是360°÷10=36°,因为多边形的内角与它相邻的外角是邻补角,所以每个内角是180°-36°=144°.故答案是144°;36°考点:多边形内角和三、解答题(12、13、14每题10分,15题15分)12、若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。
11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n 10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。
BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。
按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。
12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。
专题01 几何思想之多边形及其内角和综合专练(原卷版)错误率:___________易错题号:___________一、单选题1.(2020·浙江·八年级月考)在四边形ABCD 中,若∠A 与∠C 之和等于四边形外角和的一半,∠B 比∠D 大15°,则∠B 的度数等于( )A .150°B .97.5°C .82.5°D .67.5°2.内角和等于外角和2倍的多边形是( )A .五边形B .六边形C .七边形D .八边形3.(2021·浙江台州·八年级期中)多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有( )A .8条B .9条C .10条D .11条4.一个n 边形从一个顶点出发可以画4条对角线,则它的内角和为( )A .360°B .540°C .720°D .900°5.(2021·浙江海曙·八年级期末)从六边形的一个顶点出发作对角线,可以作( )A .6条B .5条C .4条D .3条6.(2021·浙江滨江·八年级期中)若一个多边形的内角和是外角和的2倍,则此多边形是( )A .三角形B .四边形C .六边形D .八边形7.一个多边形的每个内角都是135°,则其内角和为( )A .900°B .1080°C .1260°D .1440°8.(2021·浙江·新昌县拔茅中学七年级期中)如图,已知//AE CD ,设A a +Ð+Ð=ÐB C ,D b Ð+Ð=E ,则( )A .0a b -=B .20a b -=C .20a b -=D .320a b -=9.如图,已知点C 为两条相互平行的直线AB ,ED 之间一点,∠ABC 和∠CDE 的角平分线相交于F ,若3102BCD BFD Ð=Ð+°,则BCD Ð的度数为( )A .120°B .140°C .160°D .180°10.(2021·浙江·杭州市十三中教育集团(总校)七年级期中)如图,直线AB //CD ,直线AB ,EG 交于点F ,直线CD ,PM 交于点N ,∠FGH =90°,∠CNP =30°,∠EFA =α,∠GHM =β,∠HMN =γ,则下列结论正确的是( )A .β=α+γB .α+β+γ=120°C .α+β﹣γ=60°D .β+γ﹣α=60°二、填空题11.如图,在七边形ABCDEFG 中,AB ED ,的延长线交于点O ,其中1234a Ð+Ð+Ð+Ð=,若38BOD Ð=°,则a 的值是______.12.(2021·浙江海曙·八年级期末)一个正n 边形的一个外角等于72°,则n 的值等于_____.13.如图,一把三角尺的两条直角边分别经过正八边形的两个顶点,则∠1+∠2=_____°.14.(2021·浙江鄞州·八年级期末)如果一个正多边形的每个内角为150°,则这个正多边形的边数是___________.15.(2021·浙江丽水·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.16.(2021·浙江·中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A Ð的度数是_______度.17.(2021·浙江长兴·八年级期末)如图,在矩形ABCD 中,点M 为CD 中点,将MBC △沿BM 翻折至MBE △,若15AME Ð=°,则ABE Ð=__________.三、解答题18.(2021·浙江台州·八年级期中)如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD )后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF 的内角和;(2)求∠BGD 的度数.19.平面上有ACD △与,BCE AD V 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==Ð=Ð.(1)求证:≌ACD BCE V V ;(2)55,145ACE BCD Ð=°Ð=°,求BPD Ð的度数.20.(2021·浙江舟山·一模)发现:如图1,在有一个“凹角123A A A Дn 边形 1234A A A A …n A 中(n 为大于3的整数),()123134564180n A A A A A A A A A n Ð=Ð+Ð+Ð+Ð+Ð+¼¼+Ð--´°.验证:(1)如图2,在有一个“凹角ABC Д的四边形ABCD 中,证明:ABC A C D Ð=Ð+Ð+Ð.(2)如图3,有一个“凹角ABC Д的六边形ABCDEF 中,证明;360ABC A C D E F Ð=Ð+Ð+Ð+Ð+Ð-°.延伸:(3)如图4,在有两个连续“凹角123A A A 和234A A A Д的四边形 1234A A A A ……n A 中(n 为大于4的整数),()1232341456..180n A A A A A A A A A A A n ¼Ð+Ð=Ð+Ð+Ð+Ð+Ð--´°.21.(2021·浙江瓯海·三模)如图,在五边形ABCDE 中,AB =CD ,∠ABC =∠BCD ,BE ,CE 分别是∠ABC ,∠BCD 的角平分线.(1)求证:△ABE ≌△DCE ;(2)当∠A =80°,∠ABC =140°时,求∠AED 的度数.22.(2021·浙江滨江·八年级月考)Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.。
多边形及翼内角和30题本专题的制作目的是提高学生在多边形及其内角和的这一部分的做题能力。
分了六个模块:①多边形、内角、外角的定义(5题);②正多边形(5题);③多边形内角和(5题);④多边形外角和(5题);⑤多边形对角线(5题);⑥平面镶嵌(5题)共30题。
先仔细研究方法总结、易错总结,再进行巩固练习。
重要的不是题目的数量,而是题目的质量把所有题目都做“过’一遍不是你最大的收获最大的收获应该是当做过无数题目后回过头,发现过去的岁月不是为了走过一次次坑而是为了填上无数个洞模块-多边形、内角、外角的定义u歪理1.定义:在平面内,由一些首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形就叫做n边形,如三角形,四边形,五边形,-三角形是最简单的多边形.2.多边形的内角和外角:( 1)内角:多边形相邻两边组成的角叫做它的内角.(2)外角:多边形的边与宫的临边延长线组成的角叫做多边形的外角.E'D ’D3.凸多边形画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这样的多边形叫做口多边形.�莲5111口口。
《fA.2个B.3个C.4个D. 5个A己O�cbO臼A.3B.4C. 5D. 6@下列图形中是五边形的为()>> B.@将一个四边形截去一个角后,巴不可能是()A.六边形B.五边形C.四边形。
下列选项中的图形,不是凸多边形的是()A. B.D. D.三角形模块二正多边形u歪理1.在平面内,各个角都相等、各条边都冲目等的多边形叫做正多边形.[易锚点津]正多边形必须满足定义中的两个条件,缺一不可.如:各边都相等的多边形不一定是正多边形(如菱形);各角都相等的多边形不一定是正多边形(如矩形).[知识拓展]正多边形的内角度数:(n -2) · 180。
E耳�军E@判断正误:1.所高内角都相等的多边形是正多边形.@下列说法正确的是()A.正三角形不是正多边形C.正万形是正多边形B.各边都中目等的多边形是正多边形D.各角都相等的多边形是正多边形。
初二多边形及其内角和的练习题多边形是初中数学中的重要概念,它是指由三条或者更多条线段组成的图形。
而多边形的内角和是指该多边形内所有角的度数之和。
在初二数学学习中,学生需要掌握多边形及其内角和的相关概念和计算方法。
下面就是一些关于初二多边形及其内角和的练习题,供同学们参考和练习。
练习题一:1.一个四边形的两个内角分别为90°和75°,其余两个内角的度数之和是多少?2.一个五边形的两个内角分别为120°和130°,其余三个内角的度数之和是多少?3.一个七边形的一个内角为135°,其余六个内角的度数之和是多少?练习题二:1.一个六边形的每个内角的度数分别是110°、120°、135°、100°、90°,求其内角和。
2.一个八边形的每个内角的度数都相等,求每个内角度数以及内角和。
3.一个五边形的内角和与一个四边形的内角和之比是2:3,求该五边形的最大内角的度数。
练习题三:1.一个六边形的内角和是新课标中一次函数中函数关系图形翻转180°的内角和,求这个内角和。
2.一个n边形的内角和是(n-2)×180°,n是一个整数且大于3,当n=15时,这个多边形的内角和是多少?3.一个六边形的两个顶角的度数之差为30°,这两个顶角的度数分别是多少?练习题四:1.一个五边形的一个内角与一个六边形的一个内角是对顶角,这两个内角的度数之比是2:3,求这个五边形内所有角的度数之和。
2.一个五边形内角和与一个六边形内角和之比是1:4,这个五边形的最小内角为60°,求这个五边形内所有角的度数之和。
3.一个六边形的内角和是一个七边形的一半,这个六边形的最大内角为120°,求这个六边形的所有内角的度数之和。
以上是关于初二多边形及其内角和的一些练习题。
通过做题可以帮助同学们巩固对多边形及其内角和的理解,并提高解决相关问题的能力。
专题11.8多边形及其内角和(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24六年级下·山东烟台·期中)过多边形一个顶点的所有对角线将这个多边形分成3个三角形,这个多边形是()A .五边形B .六边形C .七边形D .八边形2.(23-24八年级下·安徽阜阳·阶段练习)一个正多边形的内角和为1080︒.则这个正多边形的边数为()A .9B .8C .7D .63.(2024·福建福州·模拟预测)如图1是颐和园小长廊五角加膛窗,其轮廓是一个正五边形,如图2是它的示意图,它的一个外角α的度数为()A .70︒B .72︒C .60︒D .108︒4.(2020·辽宁葫芦岛·三模)如图,多边形ABCDEFG 中,108E F G ∠=∠=∠=︒,72C D ∠=∠=︒,则A B ∠∠+的值为()A .108︒B .72︒C .54︒D .36︒5.(2024·内蒙古赤峰·三模)如果一个正多边形的一个外角是45︒,则这个正多边形是正()边形A .六B .八C .十D .十二6.(2024·湖北荆门·模拟预测)小聪利用所学的数学知识,给同桌出了这样一道题:假如从点A 出发,沿直线走9米后向左转θ,接着沿直线前进9米后,再向左转θ,…,如此下去,当他第一次回到点A 时,发现自己一共走了72米,则θ的度数为()A.60︒B.75︒C.30︒D.45︒7.(2024·云南玉溪·三模)若一个正多边形的每一个外角都是36︒,则该正多边形的内角和的度数是().A.1440︒B.360︒C.1800︒D.2160︒∠=︒,则1∠的度数为8.(2024·河北石家庄·三模)如图,五边形ABCDE是正五边形,AF DG∥,若226()A.86︒B.64︒C.62︒D.52︒9.(23-24九年级下·河北邯郸·期中)综合实践课上,嘉嘉用八个大小相等的含45°角的直角三角板拼成了一个环状图案,如图1,若淇淇尝试用含60°角的直角三角板拼成类似的环状图案,如图2,除了图上3个还需要含60°角的直角三角板的数量为()A.3个B.6个C.9个D.12个10.(2024·河北沧州·二模)用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的∠的度数为()内角BCDA.120︒B.135︒C.144︒D.150︒二、填空题(本大题共8小题,每小题4分,共32分)11.(2024八年级下·全国·专题练习)一个八边形的内角和是.12.(23-24六年级下·山东济南·期中)若从n边形的一个顶点最多能引出2条对角线,则n是.13.(2024·湖北咸宁·一模)一个多边形的内角和为540︒,这个多边形的边数是.14.(2024·陕西宝鸡·模拟预测)一个正多边形的内角比外角大90︒,则这个多边形的内角和为.15.(23-24八年级上·辽宁营口·期中)如果把一个多边形剪去一个内角,剩余部分的内角和为1440︒,那么原多边形有条边.16.(19-20七年级下·江苏扬州·期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=.17.(2024·陕西西安·模拟预测)一个正多边形的外角和与内角和的比为1:3,则这个多边形是正边形.18.(2024·云南昆明·二模)如图,一个正n边形被树叶遮掩了一部分,若直线a,b所夹锐角为36︒,则n的值是.三、解答题(本大题共6小题,共58分)19.(8分)(21-22八年级下·广西桂林·期中)列式计算:求图中x的值.20.(8分)(23-24八年级上·江西南昌·期末)如果多边形的每个内角都比与它相邻的外角的4倍多30︒.(1)这个多边形的内角和是多少度?(2)求这个多边形的对角线的总条数.21.(10分)(23-24八年级上·新疆昌吉·期中)如图,在五边形ABCDE 中,100120AE CD A B �靶=,,∥(1)若110D ∠=︒,请求E ∠的度数;(2)试求出C ∠及五边形外角和的度数.22.(10分)(23-24七年级下·湖南衡阳·阶段练习)如图,阅读佳佳与明明的对话,解决下列问题:(1)多边形内角和为什么不可能为2020︒?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?23.(10分)(2024·浙江杭州·一模)问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了问题,请解答.(1)若四边形的一个内角的度数是α.①求和它相邻的外角的度数(用含α的代数式表示);②求其他三个内角的和(用含α的代数式表示).n>,除了一个内角,其余内角的和为920︒,求n的值.(2)若一个n边形(3)深入探究:n>的一个外角与和它不相邻的(n)1-个内角的和之间满足的等量关系,说明理由.(3)探索n边形(3)24.(12分)(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案:1.A【分析】本题考查了多边形的对角线数量问题,根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可求出n 的值,得到答案.【详解】解:设这个多边形是n 边形,由题意得:23n -=,解得:5n =,即这个多边形是五边形,故选:A .2.B【分析】本题多边形内角和公式,解题关键是理解并熟记多边形内角和公式.根据多边形内角和定理:可得方程()18021080x ︒⨯-=︒,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:()18021080x ︒⨯-=︒解得:8x =故选B3.B【分析】本题主要考查多边形的内角和外角,熟练掌握正多边形的外角和为360︒是解题的关键.根据多边形的外角和为360︒即可作答.【详解】解:360572÷=︒.故选:B .4.B【分析】连接CD ,设AD 与BC 交于点O ,根据多边形的内角和公式即可求出∠E +∠F +∠G +∠EDC +∠GCD ,根据各角的关系即可求出∠ODC +∠OCD ,然后根据对顶角的相等和三角形的内角和定义即可求出结论.【详解】解:连接CD ,设AD 与BC 交于点O∵∠E +∠F +∠G +∠EDC +∠GCD=180°×(5-2)=540°,108E F G ∠=∠=∠=︒,72∠=∠=︒GCB EDA ,∴108°+108°+108°+72°+∠ODC +72°+∠OCD=540°∴∠ODC +∠OCD=72°∵∠AOB=∠COD∴∠A +∠B=180°-∠AOB=180°-∠COD=∠ODC +∠OCD=72°故选B .【点拨】此题考查的是多边形的内角和公式和对顶角的性质,掌握多边形的内角和公式和对顶角相等是解决此题的关键.5.B【分析】本题考查了正多边形的外角性质,根据正多边形的外角都相等以及外角和为360︒,列式36045︒÷︒进行计算,即可作答.【详解】解:∵一个正多边形的一个外角是45︒,∴360458︒÷︒=,∴这个正多边形是正八边形,故选:B .6.D【分析】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A 时,所经过的路线正好构成一个正多边形.第一次回到出发点A 时,所经过的路线正好构成一个正多边形,用8972=÷,求得边数,再根据多边形的外角和为360︒,即可求解.【详解】解:∵第一次回到出发点A 时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:8972=÷,根据多边形的外角和为360︒,∴则他每次转动θ的角度为:360845︒÷=︒,故选:D .7.A【分析】本题主要考查了多边形的内角和与外角和,掌握内角和公式是解题的关键.根据任何多边形的外角和都是360︒,可以求出多边形的边数,再根据多边形的内角和公式,就得到多边形的内角和.【详解】解:根据题意得:该多边形的边数为:3601036︒=︒,∴该正多边形的内角和为:()1021801440-⨯︒=︒.故选:A .8.C【分析】此题考查了多边形的内角和外角及平行线的性质,熟记多边形内角和公式及平行线的性质是解题的关键.连接AD ,根据多边形的内角和及平行线的性质求解即可.【详解】如图,连接AD ,∵五边形ABCDE 是正五边形,()521801085E BAE -⨯︒∴∠=∠==︒,EA ED =,()34180108236∴∠=∠=︒-︒÷=︒,5108472∴∠=︒-∠=︒,226∠=︒ ,2598,DAF ∴∠=∠+∠=︒,AF DG 98,ADG ∴∠=︒1362.ADG ∴∠=∠-∠=︒故选:C .9.C【分析】本题主要考查了正多边形的外角和.多边形由拼图方法可知:环状图案的外围是正多边形,根据正多边形外角和等于360︒即可求出正多边形的边数.【详解】解:依题意可知:用含60°角的直角三角板按图示拼成类似的环状图案是正多边形,正多边形的外角180(9060)30=︒-︒+︒=︒,故正多边形的边数为3603012︒÷︒=(条)∴除了图上3个还需要含60°角的直角三角板的数量为1239-=(个)故选C .10.C【分析】本题主要考查了多边形内角和定理,根据5个“筝形”组成一个正十边形,结合多边形内角和定理求解即可【详解】解;由图可知,5个“筝形”组成一个正十边形,∴()180********BCD ︒⨯-∠==︒,故选:C11.1080︒/1080度【分析】本题考查了多边形内角和定理,直接套用多边形的内角和()2180n -⋅︒进行计算可求八边形的内角和,【详解】解:内角和:()8218061801080-⨯︒=⨯︒=︒.故答案为:1080︒12.5【分析】本题考查了多边形的对角线,牢记n 边形从一个顶点出发可引出(3)n -条对角线是解题的关键.据此求解即可.【详解】解:∵从n 边形的一个顶点最多能引出2条对角线,∴32n -=,∴5n =.故答案为:5.13.5【分析】本题考查多边形的内角和公式,n 边形的内角和公式为()2180n -⨯︒,由此列方程即可得到答案.【详解】解:设这个多边形的边数为n ,则()2180540n -⨯︒=︒,解得5n =,故答案为:5.14.1080︒/1080度【分析】本题考查了多边形外角和与内角和,掌握其计算公式是解题的关键.多边形的内角和公式为:()2180n -⨯︒(其中n 为多边形的边数),多边形的外角和是360︒.因为多边形的外角和是360︒,且正多边形的每个内角都相等,每个外角也都相等,设这个正多边形的一个外角为x ,则内角为90x +︒,根据内角与外角的和为180︒可列出方程.【详解】设外角是x ,则内角是180x ︒-,则18090x x ︒--=︒,解得45x =︒.则多边形的边数是:360458︒÷︒=.∴内角和是:()821801080-⨯︒=︒.故答案为:1080︒.15.11或10或9【分析】本题考查了多边形的内角和度数,熟记相关结论是解题关键.【详解】解:以五边形为例,如图所示:剪去一个内角后,多边形的边数可能加1,可能不变,也可能减1设新多边形的边数为n ,则()21801440n -⨯︒=︒,解得:10n =∴原多边形可能有11或10或9条边.故答案为:11或10或9.16.540°【分析】连接ED ,由三角形内角和可得∠A+∠B=∠BED+∠ADE ,再由五边形的内角和定理得出结论.【详解】连接ED ,∵∠A+∠B=180°-∠AOB ,∠BED+∠ADE=180°-∠DOE ,∠AOB=∠DOE ,∴∠A+∠B=∠BED+∠ADE ,∵∠CDE+∠DEF+∠C+∠F+∠G=(5-2)×180°=540°,即∠CDO+∠ADE+BED+∠BEF+∠C+∠F+∠G=540°,∴∠A+∠B+∠C+∠CDO+∠BEF+∠F+∠G=540°.故答案为:540°.【点拨】本题考查了三角形的内角和公式,以及多边形的内角和公式,熟记多边形的内角和公式为(n -2)×180°是解答本题的关键.17.八【分析】本题主要考查了多边形的内角和,熟练掌握多边形的内角和公式,是解决问题的关键设这个正多边形的边数为n ,根据正多边形的外角和与内角和的比为1:3,利用多边形内角和公式与外角和列方程解答并检验,即得【详解】设这是个正n 边形,∵这个正多边形的外角和与内角和的比为1:3,∴()360121803n =-⨯,解得,8n =,经体验8n =是所列方程的解,且符合题意,∴这是个正八边形,故答案为:八18.5【分析】本题主要考查了多边形的内角和外角,解题关键是熟练掌握正多边形的定义及性质和外角和.先根据题意画出图形,再根据已知条件求出2∠和3∠的度数,然后根据正多边形的性质和外角和,求出正多边形的边数即可.【详解】解:如图所示:由题意得:136∠=︒,123180∠+∠+∠=︒ ,2318036144∴∠+∠=︒-︒=︒,正多边形每个外角都相等,23144272∴∠=∠=︒÷=︒,正多边形的外角和为360︒,∴它的边数为:360725÷=,n ∴的值为5,故答案为:5.19.100【分析】本题考查了四边形的内角和定理,根据题意,列式109060360x x +++︒+︒=︒计算即可.【详解】根据题意,列式109060360x x +++︒+︒=︒,解得100x =,故图中x 的值为100.20.(1)1800︒(2)54【分析】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引3n -()条对角线.(2)求出多边形的边数,利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答.【详解】(1)解:设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =,3603012︒÷︒=∴这个正多边形是十二边形.∴这个正多边形的内角和为(122)1801800-⨯︒=︒(2)解:对角线的总条数为4(1231)252-=⨯(条).21.(1)70E ∠=︒(2)140C ∠=︒,五边形外角和的度数是360︒【分析】本题主要考查多边形内角和、外角和及平行线的性质,熟练掌握多边形内角和及平行线的性质是解题的关键.(1)根据平行线的性质可进行求解;(2)根据多边形内角和、外角和及平行线的性质可进行求解.【详解】(1)解:∵AE CD ∥,∴180D E ∠+∠=︒,∴180********E D ∠∠=︒-=︒-︒=︒;(2)解:五边形ABCDE 中,()52180540A B C D E ∠+∠+∠+∠+∠=-⨯︒=︒,∵180D E ∠+∠=︒,100A ∠=︒,120B ∠=︒,∴()540C D E A B∠∠∠∠∠=︒-+--140=︒;五边形外角和的度数是360︒.22.(1)见解析(2)十三边形或十四边形(3)110︒或20︒【分析】本题主要考查了多边形内角和定理,多边形内角和外角的关系以及二元一次方程组的应用.(1)根据多边形内角和定理公式计算判断即可.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,结合角的属性建立不等式求整数解即可.(3)分别计算十三边形的内角和以及十四边形的内角和,分别列出关于x ,y 的二元一次方程组求解即可.【详解】(1)设多边形的边数为n ,由题意得()18022020n -= ,解得2139n =,∵n 为正整数,∴多边形的内角和不可能为2020︒.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,∵180180x y -<-< ,∴()202018018022020180n -<-<+ ,解得22121499n <<,又∵n 为正整数,∴n 13=或14n =.故明明求的是十三边形或十四边形的内角和.(3)十三边形的内角和为()1801321980⨯-= ,∴2020198040y x -=-= ,又180x y += ,∴70x = ,110y = .十四边形的内角和为()1801422160⨯-= ,∴21602020140x y -=-= ,又180x y += ,∴160x = ,20y = .所以错当成内角的那个外角为110︒或20︒.23.(1)①180α︒-,②360α︒-(2)8n =;(3)(3)180n βα-=-⨯︒,理由见解析【分析】(1)①根据一个内角与它相邻的外角的和是180︒进行计算即可;②四边形的内角和是360︒进行计算即可;(2)根据多边形的内角和的计算方法进行计算即可;(3)表示出和它不相邻的(n )1-个内角的和即可.【详解】解:(1)①四边形的一个内角的度数是α,则与它相邻的外角的度数180α︒-;②由于四边形的内角和是360︒其中一个内角为α,则其它三个内角的和为360α︒-;(2)由题意得,(2)180920n α-⨯︒-=︒,3n > 的正整数,0180α︒<<︒,8n ∴=,即这个多边形为八边形;(3)设n 边形(3)n >的一个外角为α,它不相邻的(n )1-个内角的和为β,则有180(2)180n αβ︒-+=-⨯︒,即(3)180n βα-=-⨯︒.24.(1)见解析,∠CBD +∠ACE +∠BAF =360°,三角形中的外角和为360°,见解析;(2)∠RQG +∠SRH +∠PSM +∠QPN =360°,见解析;(3)多边形的外角和和都是360°,见解析【分析】(1)经测量得出∠CBD =138°,∠ACE =117°,∠BAF =105°,∠CBD +∠ACE +∠BAF =360°,则据此得出结论三角形中的外角和为360°,根据平角是180°和多边形内角和证明即可;(2)分别测量出几个角并求出这几个角的和,得出结论:在四边形的外角和是360°;根据(1)中证明方法证明即可;(3)猜想:多边形的外角和和都是360°.根据(1),(2)方法证明即可;【详解】解:(1)经测量知∠CBD =138°,∠ACE =117°,∠BAF =105°,∴∠CBD +∠ACE +∠BAF =360°,发现:三角形中的外角和为360°,理由:∵∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,∴∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又∵∠ABC+∠ACB+∠BAC=180°,∴∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.【点拨】此题考查多边形外角和的知识,利用平角是180°结合多边形内角和证明即可.。
初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D. 4个19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++= ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( ) A.无穷多个,它的边数为8 B.一个,它的边数为8 C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135 ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。
则∠1+∠2 = 。
25.若n 边形的每一个外角都等于60°,则n= .26.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 .27.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .28.四边形的外角和等于 .29.已知一个多边形的内角和是1080°,这个多边形的边数是 .30.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 。
31.正八边形的一个内角的度数是 度.32.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.33.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.34.由于一个多边形的外角最多能有_____个钝角,因此,一个多边形的内角最多能有_____个锐角.n 边形内角和与外角和的差为360 ,则n =_____.35.若一个正多边形的每一个外角都是30 ,那么从某一个项点出发的所有对角线会将其分成_____个三角形36.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块。
(2)第n个图案中有白色纸片_____块。
37.一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2520,那么原多边形的边数是______.38.一个六边形所有内角都相等,则每个内角为_____度.39______.40.一个多边形的每个外角都是72 ,这个多边形是______边形,其内角和为______.n n>边形的一个顶点出发的时角线有______条,可将多边形分成______个41.从()3三角形.42.将一个正方形砍去一个角,其内角和将变成______.三、解答题43.用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,.小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:则S与a、b之间的关系为S= (用含a、b的代数式表示).44.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.45.一个多边形的每一个外角都等于24°,求这个多边形的边数.46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.几边形的内角和是2160︒?是否存在一个多边形的内角和为1000︒?2670,求这个内角的大小.48.一个多边形除了一个内角之外,其余内角之和为049.如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?50.一个四边形的内角的度数的比是3:4:5:6,求它的最大内角和最小外角的度数.初中数学专项训练:多边形及其内角和参考答案1.A 。
【解析】根据多边形的外角和360°,除以外角的度数,即可求得边数:多边形的边数是:360÷72=5。
故选A 。
2.B 。
【解析】根据多边形的内角和定理,五边形的内角和为:(5-2)×180°=540°。
故选B 。
3.D 。
【解析】首先求得内角和为720°的多边形的边数,即可确定原多边形的边数设内角和为720°的多边形的边数是n ,则(n ﹣2)•180=720,解得:n=6。
若截去一个角的多边形的直线经过两个顶点,则原多边形是七边形;若截去一个角的多边形的直线经过一个顶点,则原多边形是六边形;若截去一个角的多边形的直线不经过顶点,则原多边形是五边形。
∴原多边形的边数为5或6或7。
故选D 。
4.B 。
【解析】根据多边形内角和定理,n 边形的内角和公式为()0n 2180-,因此, 由()00n 2180540-=得n=5。
故选B 。
5.C【解析】 试题分析:根据多边形内角和定理:()n 2180-⋅︒(n≥3且n 为整数)直接计算出答案:()42180360-⋅︒=︒。
故选C 。
6.B【解析】试题分析:∵ABCDE 是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°。
∵AB=AE ,∴∠AEB=(180°﹣108°)÷2=36°。
∵l ∥BE ,∴∠1=∠AEB=36°。
故选B 。
7.C 。
【解析】利用多边形的外角和360°,除以外角的度数,即可求得边数:360÷36=10。
故选C 。
考点:多边形的外角性质。
8.B 。
【解析】根据多边形的外角和是360度,正多边形的每个外角都是36°,得360°÷36°=10,即这个正多边形的边数是10。
故选B 。
考点:多边形的外角性质。
9.A 。
【解析】设边数为n ,根据题意得(n ﹣2)•180°<360°,解之得n <4。
∵n 为正整数,且n≥3,∴n=3。
故选A 。
考点:多边形内角与外角,一元一次不等式的应用。
10.B【解析】本题主要考查多边形的外角和定理与正多边形的性质可设正多边形是正n 边形,进而用含n 的式子表示每个外角,利用外角与内角互补,即可求出答案.设正多边形是正n正多边形的外角和是360° 外角与内角互补,则一边所对的中心角与该正多边形的一个内角的关系是两角互补. 故选B .11.108°、120°、135°【解析】本题考查了多边形的内角和公式根据多边形的内角和公式)2(180-︒n 即可求得结果。
正五边形的每个内角是︒=÷-⨯︒1085)25(180,正六边形的每个内角是︒=÷-⨯︒1206)26(180,正八边形的每个内角是.1358)28(180︒=÷-⨯︒12.B【解析】本题考查了多边形的内角和外角多边形的内角和可以表示成(n-2)•180°,依此列方程可求解..解:设所求正n 边形边数为n ,则1080°=(n-2)•180°,解得n=8.故选B13.B【解析】本题主要考查了多边形的对角线与内角和的问题. 由对角线求出其为多少边得多边形解:设这个多边形是n 边形,则(3)2n n -=14, ∴n 2-3n-28=0,(n-7)(n+4)=0,解得n=7,n=-4(舍去).故选B14.C【解析】本题主要考查了多边形的内角和外角. 记住四边形的内角和是360°这一特征. 解:∵该四边形的一组对角都是直角,∴另一组对角的和是360°-180°=180°.A 、若另一组对角都是钝角,那么它们的和就大于180°;B 、若另一组对角都是锐角,那么它们的和就小于180°;C 、若另一组对角中一个锐角和一个钝角,那么它们的和有可能等于180°;D 、若另一组对角中一个直角和一个锐角,那么它们的和小于180°;故选C.15.A【解析】本题考查了多边形的内角问题. 利用多边形的外角和是360度即可求出答案.解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与外角互为邻补角,则外角中最多有三个钝角,内角中就最多有3个锐角.故选A.16.D【解析】本题主要考查了多边形的外角和定理. 多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.解:A、外角是:180×13=60°,360÷60=6,故可能;B、外角是:180×12=90°,360÷90=4,故可能;C、外角是:180×27=3607度,360÷3607=7,故可能;D、外角是:180×49=80°.360÷80=4.5,故不能构成.故选D.17.D【解析】本题主要考查了多边形的内角和外角. 根据n边形的内角和(n-2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D选项正确.解:A、(n-2)•180°=120•n,解得n=6,所以A选项错误;B、(n-2)•180°=(12847)°•n,解得n=7,所以B选项错误;C、(n-2)•180°=144°•n,解得n=10,所以C选项错误;D、(n-2)•180°=145°•n,解得n=727,不为整数,所以D选项正确.故选D.18.D【解析】本题主要考查了多边形的内角和外角. 根据n边形的外角和为360°得到外角为钝角的个数最多为3个.解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.19.B【解析】本题主要考查了多边形的外角和内角. 关键是记住内角和的公式,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题可用不等式确定范围后求解.解:设∠A,∠B,∠C均为钝角,则90°<A<180°,90°<B<180°,90°<C<180°.270°<A+B+C<540°.n边形中其余n-3个角均小于等于90°.∵∠A+∠B+∠C+∠D+…+∠N<540°+(n-3)•90°n边形的n个角和为(n-2)×180°∴(n-2)•180°<540°+(n-3)•90°推出:n<7,∴n的最大值为6故选B.20.C【解析】本题主要考查了多边形的外角和内角. 根据外角都等于不相邻的两内角和以及四边形的内角和求解解:设FC与AE、BD相交于M、N点∴∠FME=∠E+∠C, ∠CND=∠F+∠D∵∠FME=∠AMN, ∠CND=∠BNM∴∠A +∠B +∠C +∠D +∠E +∠F= 360°=4 90°∴n=4故选C21.B【解析】本题主要考查了多边形的外角和内角. 并且外角与相邻的内角互补,就可求出每个外角的度数.根据每个外角度数就可求得边数解:由题意得,这个多边形是正多边形设这个内角为x,∴有解得x=135°,则与它相邻的外角度数为45°.∵360°÷45°=8,∴这个多边形的边数是8.故选B22.A【解析】本题主要考查了多边形的外角与内角. 首先根据求出外角度数,再利用外角和定理求出边数.解:∵正多边形的一个内角等于135°,∴它的外角是:180°-135°=45°,∴它的边数是:360°÷45°=8.故选A.23.720°【解析】试题分析:∵n边形的内角和为(n-2)×180°,∴六边形的内角和为(6-2)×180°=720°。