2016年高考数学理试题分类解析几何
- 格式:docx
- 大小:900.84 KB
- 文档页数:16
2016 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC-,其体积111111326V=⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C考点: 三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 【名师点睛】由三视图还原几何体的方法:6. (2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.(2016全国Ⅲ文、理)在封闭的直三棱柱111ABCA B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是()(A)4π (B)92π(C)6π (D)323π【答案】B【解析】试题分析:要使球的体积V最大,必须球的半径R最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322Rπππ==,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1(D)直线B1C1【答案】D【解析】只有11B C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理)已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】试题分析:由题意知,l lαββ=∴⊂,,n n lβ⊥∴⊥.故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1.(2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF-E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【答案】(I)见解析(II )219-试题解析:(I)由已知可得F DFA⊥,F FA⊥E,所以FA⊥平面FDCE.又FA⊂平面FABE,故平面FABE⊥平面FDCE.(II)过D作DG F⊥E,垂足为G,由(I)知DG⊥平面FABE.以G为坐标原点,GF的方向为x轴正方向,GF为单位长度,建立如图所示的空间直角坐标系G xyz-.由(I)知DF∠E为二面角D F-A-E的平面角,故DF60∠E=,则DF2=,DG3=,可得()1,4,0A,()3,4,0B-,()3,0,0E-,(D3.由已知,//FAB E,所以//AB平面FDCE.又平面CDAB平面FDC DCE=,故//CDAB,CD//FE .由//FBE A,可得BE⊥平面FDCE,所以C F∠E为二面角C F-BE-的平面角,C F60∠E=.从而可得(C3-.所以(C3E=,()0,4,0EB=,(C 3,3A=--,()4,0,0AB=-.设(),,n x y z=是平面CB E的法向量,则C0nn⎧⋅E=⎪⎨⋅EB=⎪⎩,即3040x zy⎧+=⎪⎨=⎪⎩,所以可取(3,0,3n=-.设m是平面CDAB的法向量,则C0mm⎧⋅A=⎪⎨⋅AB=⎪⎩,同理可取()0,3,4m=.则219cos,n mn mn m⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C'--的正弦值是29525.考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC-中,PA⊥平面ABCD,AD BC,3AB AD AC===,4PA BC==,M为线段AD上一点,2AM MD=,N为PC的中点.(I)证明MN平面PAB;(II)求四面体N BCM-的体积.【答案】(Ⅰ)见解析;(Ⅱ)453.试题解析:(Ⅰ)由已知得232==ADAM,取BP的中点T,连接TNAT,,由N为PC中点知BCTN//,221==BCTN. ......3分又BCAD//,故TN AM,四边形AMNT为平行四边形,于是ATMN//.因为⊂AT平面PAB,⊄MN平面PAB,所以//MN平面PAB. ........6分(Ⅱ)因为⊥PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA21. ....9分取BC的中点E,连结AE.由3==ACAB得BCAE⊥,522=-=BEABAE.由BCAM∥得M到BC的距离为5,故525421=⨯⨯=∆BCMS,所以四面体BCMN-的体积354231=⨯⨯=∆-PASVBCMBCMN. .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos,|25||||n ANn ANn AN⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ))根据BDEF//,知EF与BD确定一个平面,连接DE,得到ACDE⊥,ACBD⊥,从而⊥AC平面BDEF,证得FBAC⊥.(Ⅱ)设FC的中点为I,连HIGI,,在CEF∆,CFB∆中,由三角形中位线定理可得线线平行,证得平面//GHI平面ABC,进一步得到//GH平面ABC.试题解析:(Ⅰ))证明:因BDEF//,所以EF与BD确定一个平面,连接DE,因为EECAE,=为AC的中点,所以ACDE⊥;同理可得ACBD⊥,又因为DDEBD=,所以⊥AC平面BDEF,因为⊂FB平面BDEF,FBAC⊥。
解析几何典型题及方法复习讲解一、圆锥曲线的几类基本习题一. 弦的中点问题具有斜率的弦中点问题,一般设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例1 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1及P 2,求线段P 1P 2的中点P 的轨迹方程。
例2 已知椭圆x y 22651+=,通过点(1,1)引一弦,使它在这点被平分,求此弦所在的直线方程。
二. 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
例3 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率e =+-cos cos αβαβ22; (2)求tg tg αβ22的值;(3)求|||PF PF 1323+的最值。
三. 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,分三步:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
例4 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称。
例5 为了使抛物线()y x +=+112上存在两点关于直线y mx =对称,求m 的取值范围。
四. 两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理。
例6 已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 与抛物线C 有两个不同的交点(如图)。
(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。
例7 经过坐标原点的直线l 与椭圆()x y -+=362122相交于A 、B 两点,若以AB 为直径的圆恰好通过椭圆左焦点F ,求直线l 的倾斜角。
2016 年普通高等学校招生全国统一考试理科数学及答案注意事项:1. 本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 . 第Ⅰ卷 1 至 3 页,第Ⅱ卷 3至5页.2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3. 全部答案在答题卡上完成,答在本试题上无效 .4. 考试结束后,将本试题和答题卡一并交回 .第Ⅰ卷一 . 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A { x | x 24x 3 0} , B { x | 2x 3 0} ,则 A I B( 3, 3)( 3,3)(1,3)( 3,3)(A )2(B )2(C )2(D )2(2)设(1 i) x1yi,其中 x ,y 是实数,则x yi =(A )1(B )2(C ) 3(D )2(3)已知等差数列{ an}前9项的和为27,a10=8,则a100=(A)100(B)99(C)98(D)97(4)某公司的班车在 7:00 ,8:00 ,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是(A)( B)( C)( D)(5)已知方程– =1 表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)( –1,3)(B)(–1,3)(C)(0,3)(D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 . 若该几何体的体积是,则它的表面积是(A)17π( B)18π( C)20π( D)28π(7)函数y=2x2–e|x|在[ –2,2] 的图像大致为(A)(B)(C)(D)(8)若a b 10, c 1,则(A)a c b c() ab c ba c()()B C a log b c b log a c D log a c log b c(9)执行右面的程序图,如果输入的x 0, y 1, n 1,则输出x,y的值满足(A)y2x (B) y 3x (C) y 4x (D) y 5x(10)以抛物线 C的顶点为圆心的圆交 C于 A、B两点,交 C的标准线于 D、E两点. 已知 | AB|= 4 2,| DE|=2 5,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8(11) 平面a过正方体ABCD-A B CD的顶点A,a// 平面CBD,平面 ABCD=m,1111 1 1a a平面 ABA1B1=n,则 m、n 所成角的正弦值为(A) 3(B)2(C)3(D) 1 223 312. 已知函数 f xsin(x+)(0,), x 为 f (x) 的零点, x为 y f ( x) 图( )442像的对称轴,且 f ( x) 在5单调,则的最大值为18 ,36(A )11(B )9(C )7 (D )5第II 卷本卷包括必考题和选考题两部分 . 第(13) 题~第 (21) 题为必考题, 每个试题考生都必须作答 . 第(22) 题~第(24) 题为选考题,考生根据要求作答 .二、填空题:本大题共3 小题,每小题 5 分(13) 设向量 a =( m ,1) ,b =(1 ,2) ,且 | a +b | 2=| a | 2+| b | 2,则 m =.(14) (2 x x )5 的展开式中, x 3 的系数是 . (用数字填写答案)( 15)设等比数列满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2 a n 的最大值为。
2016年2卷理科数学20解析几何1. 设椭圆C的左、右焦点分别为$F_{1},F_{2}$,离心率为$e$,点$A,B$在椭圆C上,且$\overset{\longrightarrow}{AF_{1}} =3\overset{\longrightarrow}{F_{1}B}$,若$\bigtriangleup ABF_{2}$的周长为$8\sqrt{3}$,则$e =$____.2. 已知双曲线$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1(a > 0,b > 0)$的一条准线恰好为圆$x^{2} + y^{2} + 4x - 4y + 7 = 0$的一条切线,则该双曲线的离心率为____.3. 已知椭圆 C:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$的离心率是$\frac{\sqrt{3}}{2}$,过点$P(0,1)$作直线$l_{1},l_{2}$分别交椭圆 C 于$A,B,D,E$四点,且$\overset{\longrightarrow}{PA} = \overset{\longrightarrow}{PB},\overset{\longrightarrow}{PD} =\overset{\longrightarrow}{PE}$.若$\bigtriangleup ABD$和$\bigtriangleup BED$的面积分别为$4\sqrt{3}$和$8\sqrt{3}$,则 a = _______.4. 已知椭圆 C:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b >0)$的离心率为$\frac{\sqrt{3}}{2}$,过点$P(1,\frac{1}{2})$作直线交椭圆C 于$A,B$两点,且$\overset{\longrightarrow}{PA} \cdot\overset{\longrightarrow}{PB} = 0$,则椭圆 C 的方程为____.5. 已知椭圆 C:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$的离心率为$\frac{\sqrt{3}}{3}$,过点$P(1,1)$且方向向量为$\overset{\longrightarrow}{v} = (1,k)$的直线与椭圆C有且仅有一个公共点,则当椭圆的面积最大时,它的一个顶点为( )A.$(0,0)$B.$(1,0)$C.$(0,1)$D.$( - 1,0)$6. 已知椭圆 C:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$的离心率为$\frac{\sqrt{3}}{3}$,过点$P(1,1)$且方向向量为$\overset{\longrightarrow}{v} = (1,k)$的直线与椭圆C有且仅有一个公共点,则当椭圆的面积最大时,它的一个顶点为( )A.$(0,0)$B.$(1,0)$C.$(0,1)$D.$( - 1,0)$。
2016年高考数学理分类汇编解析几何为4,则n 的取值范围是 (A )-1,3 ( B ) -1,3(C )0,3 ( D ) 0,、.3【解析】由题意知:双曲线的焦点在 x轴上,所以m 2 • n • 3m 2「n = 4,解得:m 2 = 1,是-1,3,故选A.2.(全国1卷文)直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到I 的距离为其短轴1长的一,则该椭圆的离心率为4 112 3(A ) (B ) (C )( D )—32 3 411 【解析】如图,由题意得在椭圆中,OF 二c,OB 二b,OD 2b b422 2 2在 Rt OFB 中,|OF | |OB|=|BF| |OD |,且 a -b c ,代入解得1a =4c ,所以椭圆得离心率得:e 二?,故选B.3.(北京文)圆(x+1) 2+y 2=2的圆心到直线y=x+3的距离为(A ) 1( B ) 2( C ) 、2(D ) 2「24.(全国2)圆x 2 • y 2-2x-8y • 13 = 0的圆心到直线 ax ,y-1=0的距离为1,贝U a=43厂()(A ) -—(B ) - 一(CW 3( D ) 23 4【解析】圆的方程可化为(x -1)2 (y -4)2 =4,所以圆心坐标为(1,4),由点到直线的距i .(全国i 卷理)已知方程2 2m n 3m - n=1表示双曲线,且该双曲线两焦点间的距离因为方程2y3 —n=1表示双曲线, 所以 ” f n 兮一1,解得[n <3所以n 的取值范围【解析】圆心坐标为(-1,0),由点到直线的距离公式可知d3|V 2=2,故选C.离公式得:a *4 _1 ” /口 4 d」——=-=1,解得a=一一,故选A..a21 32 25.(全国2)已知R,F 2是双曲线E:笃-爲-1的左,右焦点,点 M 在E 上,MF i 与X 轴 a b1垂直,sin MF ? F 1 =—,则E 的离心率为(3 Q (A ) .2 (B )-2为C 的左,右顶点.P 为C 上一点,且PF _x 轴.过点A 的直线l 与线段PF 交于点M 与y 轴交于点E.若直线BM 经过0E 的中点,则 C 的离心率为1123 (A ) —(B ) —(C )(D )-3 2 34【解析】由题意设直线丨的方程为y = k(x • a),分别令x 二-c 与x = 0得点k a a c 11,整理,得,所以椭圆离心率为 e ,故选A.2k (a c ) a ca 3 37.(山东文)已知圆 M x 2 + y 2- 2ay= 0(a> 0)截直线x+ y = 0所得线段的长度是 272 , 则圆M 与圆N : (x-1 )2 + (y- 1)2 = 1的位置关系是 (A )内切(B )相交(C )外切(D )相离【解析】由x 2 +y 2 —2ay = 0 ( a >0 )得x 2 +( y —a $ =a 2 ( a >0),所以圆M 的圆心(C )3(D ) 2【解析】 因为MR 垂直于x 轴, 所以MF 1b 2= 2a ®,因为 sin.MF 2Fj ,3b 2即MF 1MF 211,化简得3b 二a ,故双曲线离心率6.(全国 3)已知0为坐标原点,22F 是椭圆C :笃 爲=1(a b 0)的左焦点,A ,a bB 分别| F M H k( a C , |OE| = ka ,由 O B E :C B ,1|OE| |OB| |FM| ~|BC|为0,a ,半径为*二a ,因为圆M 截直线x ^0所得线段的长度是2 2,所以__ a _ :1厂12a =2 ,圆、的圆心为1,1 ,半径为r 2 = 1 ,所以MN| = J (o _1 $ +(2T $ =4i ,A+r2 =3 , »—r2 =1,因为n—r2v^N < +r2,所以圆切与圆、相交,故选B .& (四川理)设 0为坐标原点,P 是以F 为焦点的抛物线 y ? =2px(p .0)上任意一点,M 是线段PF 上的点,且 PM =2 MF ,则直线OM 的斜率的最大值为(A ) I3( B )-(C 二(D 1332【解析】 设 P 2pt 2,2pt , M x, y (不妨设 t 0), 则T f 2P ) .T 1 T FP = 2pt --,2 pt L FM =—FP ,I 2丿3x 」0t 2232£t 2 ■ P3 x 二 3 2pt y 二32t _1 2t,故选C.9.(四川文)抛物线 y 2=4x 的焦点坐标是 (A ) (0,2 )( B ) (0,1 ) (C (2,0 )(D ) (1,0 )【解析】由题10.(天津理)已知双曲线2 2x y2=1 (b > 0),以原点为圆心,双曲线的实半轴长为半径4 b长的圆与双曲线的两条渐近线相交于 曲线的方程为(A 、BC 、D 四点,四边形的ABCD 勺面积为2b ,则双2 2(A)—』=14 4(B )x 2 4y 2=1 (C )(D )2y 12=【解析】根据对称性,不妨设A 在第一象限,x 2 y 2 = 4A(x, y), ••• b 二• xy 聽 b =-= b 2=12,故双曲线的方程为 b+4 2 22 2行,故选D.合,e 1, e 2分别为G, C 的离心率,贝UA. m >n 且 eo 1 B . m > n 且 ec v 1 C . m x n 且 83> 1 D . m x n 且 8e 2V 111.(浙江理)已知椭圆x 2C : — +y 2=1 (m > 1)与双曲线m2 x2ny 2=1 (n >0)的焦点重点.已知|AB|= 4.2 , |DE|= 2、、5,贝U C 的焦点到准线的距离为 (A ) 2( B ) 4(C ) 6( D ) 8【解析】设抛物线方程为y 2 =2px , AB,DE 交x 轴于C,F 点,则AC =2. 2,即A 点纵 坐标为2 2,贝U A 点横坐标为4,即0C = 4,由勾股定理知DF 2 • OF 2 =D02 =r 2 ,P PAC 2 ・OC 2 = AO 2 =r 2,即(^5)2 (卫)2 =(2 .2) 2 ( ^)2,解得 p =4,即 C 的焦点到2 P准线的距离为4,故选B.14. (全国1卷文)设直线y=x+2a 与圆C: x 2+y 2-2ay-2=0相交于A , B 两点,若’'''-:^- 则圆C 的面积为【解析】 圆 C : x 2 • y 2 -2ay - 2 = 0,即 C : x 2 (a)^ a 2 2,圆心为 C(0, a),由22 丨2 2 2=a) 1得a 21,所以圆的面积为 二(a *2)=3二.2 215.(北京文)已知双曲线 乡 与=1 (a >0, b > 0)的一条渐近线为2x+y=0 , 一个焦点【解析】 由 题意 知m 2 = n 2 1(&02)22m -1 2~m2 2=n 2,得 m n ,(e^) • 1 .故选A.12.(天津文)已知双曲线2 2笃一爲=1(a . 0,b . 0)的焦距为2 5,且双曲线的一条渐近 a b线与直线2x ^0垂直, 则双曲线的方程为2(A )(B ) 2y 1 x1(C )2 23x 3y ,1 5 202 2(D )竺一空=15 20【解析】由题意得 13.(全国1卷理)24T =1,选 A.1 八-—:a=2,b=1 =2-以抛物线 C 的顶点为圆心的圆交 C 于A B 两点,交C 的准线于D E 两C 「5上 a |AB|=2.3,C的距离为|0 -a 2a |、・、2所以由(|a 0 a 、2a b为(45 ,0 ),贝H a= ________ ; b= ____________c = •.. 5 【解析】依题意有 b—=a2.3 2 b 22 2c -(2a) (2)亠任七二®18.(全国3)已知直线l : mx • y • 3m -3 = 0错误!未找到引用源。
2016年全国各省市高考数学(理)试题及答案2016年全国各省市高考数学(理)试题及答案试题类型:2016年普通高等学校招生全国统一考试卷3 理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S xx x =--≥=I > ,则S T =(A)[2,3](B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA = ,31(,),2BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825(C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC△中,π4B,BC边上的高等于13BC,则cos A (A)310(B)10(C)10(D)310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)185+(B)545+(C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是π(A)4π (B)92π(C)6π (D)323(11)已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016年普通高等学校招生全国统一考试(四川卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.【题设】设集合,Z为整数集,则中元素的个数是(A)3 (B)4 (C)5 (D)6【答案】C【解析】试题分析:由题意,,故其中的元素个数为5,选C。
考点:集合中交集的运算。
2。
【题设】设i为虚数单位,则的展开式中含x4的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A考点:二项展开式,复数的运算.3。
【题设】为了得到函数的图象,只需把函数的图象上所有的点(A)向左平行移动个单位长度(B)向右平行移动个单位长度(C)向左平行移动个单位长度(D)向右平行移动个单位长度【答案】D【解析】试题分析:由题意,为得到函数,只需把函数的图像上所有点向右移个单位,故选D。
考点:三角函数图像的平移。
4。
【题设】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A)24 (B)48 (C)60 (D)72【答案】D【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5,其他位置共有,所以其中奇数的个数为,故选D。
学科。
网考点:排列、组合5. 【题设】某公司为激励创新,计划逐年加大研发资金投入。
若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0。
05,lg 1.3≈0.11,lg2≈0.30)(A)2018年(B)2019年(C)2020年(D)2021年【答案】B考点:等比数列的应用。
6。
【题设】秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(A)9 (B)18 (C)20 (D)35【答案】B考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史。
2016 年全国各地高考数学试题及解答分类大全(立体几何 )一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D.1 【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱 锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【名师点睛】由三视图还原几何体的方法:6.(2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+(B )54185+(C)90 (D)81【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7. (2016全国Ⅲ文、理) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )123+π (C )123+π (D )21+π 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D【解析】只有11B C 与EF 在同一平面内,是相交的,其他A ,B ,C 中直线与EF 都是异面直线,故选D . 考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理) 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1. (2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin1201323V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos 1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219-试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =.从而可得(C 3-.所以(C 3E =,()0,4,0EB =,(C 3,3A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取(3,0,3n =-.设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xyF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C '--的正弦值是29525. 考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;(Ⅱ)453. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ......3分 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB , 所以//MN 平面PAB . ........6分(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S , 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D 是AC 的中点,EF ∥DB . (I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析. 【解析】试题分析:(Ⅰ))根据BD EF //,知EF 与BD 确定一个平面, 连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF , 证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在CEF ∆,CFB ∆中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC . 试题解析:(Ⅰ))证明:因BD EF //,所以EF 与BD 确定一个平面,连接DE ,因为E EC AE ,=为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥,又因为D DE BD = ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,FB AC ⊥。
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。
考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。
(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
2016年高考数学理试题分类汇编 —— 圆锥曲线 李远敬一、求离心率1、(2016年全国II 高考)圆已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A(B )32(C (D )2【答案】A2、(2016年全国III 高考)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中 点,则C 的离心率为(A )13(B )12(C )23(D )34【答案】A3、(2016年浙江高考) 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A4、(2016年山东高考)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=bc -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2. 二.求曲线的方程5、(2016年天津高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 【答案】D1、(2016年北京高考) 已知椭圆C :22221+=x y a b (0a b >> ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程; (解析参考五解答题)2、(2016年山东高考)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> ,抛物线E :22x y=的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(解析参考五解答题)3、(2016年上海高考) 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图求菜地内的分界线C 的方程 (解析参考五解答题)(1)4、(2016年上海高考)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。
(1)若l 的倾斜角为2π,1F AB ∆是等边三角形,求双曲线的渐近线方程;6、(2016年天津高考)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(解析参考五解答题)7、(2016年全国III 高考)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 三.求距离8、(2016年全国I 高考)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B0、(2016年上海高考)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________10、(2016年浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9四、求参数及参数取值范围11、(2016年四川高考)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A (B )23 (C (D )1【答案】C12、(2016年全国II 高考)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C (D )2 【答案】A13、(2016年全国I 高考)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)【答案】A14、(2016年北京高考)双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】2 五、解答题15、(2016年北京高考) 已知椭圆C :22221+=x y a b (0a b >>,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.解得2,1,a b c === ∴椭圆的方程为2214x y +=.⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅ 故AN BM ⋅为定值.【解析】⑴由已知,112c ab a ==,又222a b c =+,方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.16、(2016年山东高考)平面直角坐标系xOy 中,椭圆C:()222210x y a b a b +=>> 抛物线E :22x y=的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为)0>(),2m m,P 2m (,由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m m x -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m m x -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y ,于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-. 所以点M 在定直线41=y -上. (ii )在切线l 的方程为2=2m m x -y 中,令0=x ,得2m =y 2-,即点G 的坐标为)2m G(0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得)1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(.所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.17、(2016年上海高考) 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。