分式与分式方程复习
- 格式:doc
- 大小:181.00 KB
- 文档页数:5
分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB =,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y )2=(y--2)2二、分式的乘除法 【巩固训练】 1、要使分式51x -有意义,则x 的取值范围是( )(A)x ≠1 (B)x >1 (C)x <1 (D)x ≠-12、分式242x x -+的值为0,则x 的取值是A .2x =-B .2x =±C .2x =D .0x =3、函数y=中自变量x 的取值范围是( ) A . x >3 B .x <3 C .x ≠3 D . x ≠﹣34.式子有意义的x 的取值范围是( ) 5.分式的值为零,则x 的值为( )A . ﹣1B .0 C .±1 D . 16.当x= 时,分式无意义.7、使式子1+1 x -1有意义的x 的取值范围是 。
8、在函数3xy x =+中,自变量x 的取值范围是 . 9、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、化简:111x x x ---= . 11、化简212(1)211a a a a +÷+-+-的结果是( )A .11a - B .11a + C .211a - D .211a + 12、 化简:111x x x ---= . 13、化简的结果为( ) A . ﹣1 B . 1 C .D .14、化简+的结果为 .15、化简分式的结果是( )A .2B .C .D .-216.若m 为正实数,且13m m -=,221m m-则= 17分式方程2102x x-=-的根是( ) A .x =1 B .x =-1 C .x =2D .x =-218、分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34-19、分式方程的解是( ) A . x =﹣2B .x =1 C . x =2 D . x =320、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 21.分式方程21311x x x+=--的解是_________________.22. 从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、先化简,再求值:,其中,.24.先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-2.25.先化简,再求值: (1)12a )111(2++÷+-a a a ,其中a=3-1.6.(2)244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.先化简,再求值: 22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中27.解方程:.28.解分式方程:12422=-+-x xx .29.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.530、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。
【注意】A 、B 都是整式,B 中含有字母,且B ≠0。
2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。
3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。
(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。
(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。
(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。
【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。
【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。
4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nn aa-=。
5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。
【注意】不论是分式的哪种运算,都要先进行因式分解。
6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。
分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。
分式可以表示为a/b的形式,其中a为分子,b为分母。
分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。
即(a/b)*(c/d)=(a*c)/(b*d)。
2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。
即(a/b)/(c/d)=(a*d)/(b*c)。
分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行加法运算。
即a/b+c/d=(a*d+b*c)/(b*d)。
2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行减法运算。
即a/b-c/d=(a*d-b*c)/(b*d)。
分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。
即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。
2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。
即a/b=a/b,其中a能整除b。
3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。
分式方程是包含一个或多个分式的方程。
求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。
2.对于有理式的方程,可以通过解方程的方法求出x的值。
3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。
在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。
2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。
3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。
分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。
分式可以表示为 a/b,其中 a 是分子,b 是分母。
分式可以是一个整数、一个小数、或者是两个整数的比值。
分式可以用于表示实际问题中的比例、率、百分比等。
在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。
在处理分式时,有几个关键概念和知识点需要了解。
一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。
可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。
二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。
三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。
解分式方程的关键是找到合适的方法将方程转化为整式方程。
1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。
3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。
需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。
四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。
2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。
分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。
知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。
字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。
知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。
式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。
分式的一般形式为a/b,其中a为分子,b为分母。
分式也可以是带有字母的表达式。
1.分式的定义:分式表示两个数的比。
分子表示比的被除数,分母表示比的除数。
2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。
②分式的约定:分式的分母不能为0,即b≠0。
③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。
④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。
⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。
⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。
⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。
例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。
(2)解整式方程:使用解整式方程的方法解方程。
(3)检验解:将求得的解代入原分式方程,检验是否满足。
2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。
(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。
3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。
(2)变量的取值范围:要满足约束条件。
分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
分式与分式方程复习(1)
知识点1:分式的意义
1. 若分式
12
x -有意义,则x 的取值范围是( ) A. 2x = B. 2x ≠ C. 2x > D. 2x <
2. 当x 时,分式11x x +-有意义.
3. 若分式242
x x --的值为0,则x=
知识点2:分式运算
1. 若分式12
x x +-的值为0,则x 的值是( ) A. 0 B. 1 C. -1 D. 2
2. 化简
239
m m --的结果是( ) A. 13m + B. 13m - C. 3m m -+ D. 13 3. 下列约分正确的是( )
A. 21x y x xy x +=+
B. 0x y x y +=+
C. 623a a a =
D. 222142
xy x y = 4.下列四个分式中,是最简分式的为( )
(A )23ax ay (B )2211x x x +++ (C )22a b a b -- (D) 22
a b a b
++ 5.计算(x-4) 16-x2x2-8x+16
的结果是( ) (A )x+1 (B )-x-4 (C )x-4 (D )4-x
6. ()()22111a
a a +++=
7. 计算:
(1)22
a b a b a b
-++ (2)2212b a b a b ++-
8. 化简: 22121(1)1
x x x x -++∙-
9. 先化简,再求值:11(
)111
x x x x +⋅--+,其中x=2.
10. 先化简代数式22121(
)111x x x x x -+÷+--,然后选取一个使原式有意义的x 值代入求值.
11. 已知2ab =-,3a b +=,求
b a a b +的值.
12. 已知15x x +
=,求221x x +的值
分式与分式方程复习(2)
知识点3:解分式方程
1. 分式方程121
x x =+的解是 2. 解下列分式方程
(1)
322x x =- (2) 43122x x x -=--
(3)
22142x x x +=-- (4) 23221x x x x x ++=++
3. 若关于x 的方程1233
x m x x -=+--无解,则m 的值为 4. 已知关于x 的方程()()11212
m
x x x x x x -=-+-+- (1)当m=2时,求方程的解.
(2)当m 满足什么条件时,方程的解为正数?
知识点4: 整数的指数幂
1. 计算:212-⎛⎫ ⎪⎝⎭
=( ) A .
14 B .4 C . 14
- D . 4- 2. 小数0.00000108用科学记数法可表示为 3. 小数-0.000 002 5用科学记数法可表示为
4. 计算:
(1)()022201532--+- (2) ()()
34410610--⨯⨯⨯
知识点5:分式方程的应用
1. 甲乙两班学生参加植树造林,已知甲班每天比乙班少值2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等,若设甲班每天植树x 棵,则根据题意列出方程正确的是( ) A. 60702x x =+ B. 60702x x =+ C. 60702x x =- D. 60702
x x =-
2. 小明每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行速度的4倍,骑自行车比步行上学早到30分钟.
(1)求小明步行上学的平均速度;
(2)求小明骑自行车上学所用的时间?
3. 八年级学生去学校20千米的长隆欢乐世界游玩,一部分学生骑自行车先走,过了3小时20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是学生骑车速度的6倍,求学生骑车的速度.
4. 甲、乙两班学生植树,原计划6天完成任务,他们共同劳动4天后,乙班另有任务调走,甲班又用6天种完.求甲、乙两班单独完成各需多少天?
5. 学校图书馆新购买了一批图书,管理员计划用若干个工作日完成这批图书的登记、归类与放置工作。
管理员做了两个工作日,从第三日起,二(1)班陈浩同学作为志愿者加盟此项工作,且陈浩与管理员工效相同,结果提前3天完成任务。
求管理员计划完成此项工作的天数。
6. 某工程,甲工程先做20天后,由于另有任务不做,由乙工程队接替,结果乙队再做50天就恰好完成任务。
已知乙队单独完成任务的时间是甲队的2.5倍。
请问:
(1)甲队单独做需要多少天才能完成任务?
(2)若甲工程队先做x天后,由乙工程队接替,结果乙队再做y天就恰好完成任务。
其中x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?。