初二数学一次函数的练习题及答案
- 格式:doc
- 大小:2.87 MB
- 文档页数:13
八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
初二数学一次函数试题答案及解析1.某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是()A.B.C.D.【答案】C.【解析】∵某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间,∴休息时油量不在发生变化.从而可排除A,B选项.又∵再次出发油量继续减小,到B地后发现油箱中还剩油4升,∴只有C符合要求.故选C.【考点】函数的图象.2.已知一次函数y=2x+1,则它的图象与坐标轴围成的三角形面积是.【答案】.【解析】求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积:∵一次函数的关系式是y=2x+1,∴当x=0时,y=1;当y=0时,x=.∴它的图象与坐标轴围成的三角形面积是:.【考点】一次函数图象上点的坐标特征.3.在平面直角坐标系中,点,,,…和,,,…分别在直线和轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点的纵坐标是_ _____.【答案】.【解析】利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.试题解析:如图:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得.∴直线解析式为,如图,设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,,解得x=-4,∴点M、N的坐标分别为M(0,),N(-4,0),∴tan∠MNO=,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO=,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3=,同理可求,第四个等腰直角三角形A4C4=,依此类推,点An的纵坐标是.【考点】一次函数综合题.4.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第____象限.【答案】四.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案是四.【考点】一次函数图象与系数的关系.5.已知一次函数y=kx+b的图象经过点A(0,-1),B(1,0),求这个一次函数的表达式.【答案】y=x-1.【解析】设出函数解析式为y=kx+b,再将点A(0,-1)和B(1,0)代入可得出方程组,解出即可得出k和b的值,即得出了函数解析式.试题解析:设一次函数解析式为y=kx+b,∵一次函数y=kx+b经过点A(0,-1)和B(1,0),∴,解得:,∴这个一次函数的解析式为y=x-1.考点: 待定系数法求一次函数解析式.6.某市推出电脑上网包月制,每月收取费用用y(元)与上网时间x(小时)的函数关系式如图所示,其中AB是线段,且BC是射线.(1)写出y与x之间的函数关系式及自变量的取值范围.(2)若小王6月份上网25小时,他应付多少元的上网费用?7月份上网50小时又应付多少元呢?(3)若小王8月份上网费用为100元,则他在该月份的上网时间是多少?【答案】(1);(2)40,80;(3)60.【解析】(1)分两段表示函数关系式;(2)取x=25,50分别代入相应的关系式计算求解;(3)求y=100时x的值.试题解析:(1)线段AB对应的解析式为;设射线BC对应的解析式为.∵B(30,40),C(40,60),∴,解之得:,∴,∴与之间的函数关系式为;(2)当x=25时,y=40;当x=50时,y=2×50﹣20=80,故上网25小时,他应付40元的上网费用;上网50小时应付80元上网费;(3)当y=100时,2x﹣20=100.解得 x=60,故若小王8月份上网费用为100元,则他在该月份的上网时间是60小时.【考点】一次函数的应用.7.如图,已知函数和的图像交于点P(-2,-5),则根据图像可得不等式的解集是.【答案】x>-2.【解析】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y=3x+b和y=ax-3的图象交于点P(-2,-5),求不等式3x+b>ax-3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax-3的图象上面.从图象得到,当x=-2时,y=3x+b的图象对应的点在函数y=ax-3的图象上面,所以不等式3x+b>ax-3的解集为x>-2.故答案是:x>-2.【考点】一次函数与一元一次不等式.8.华盛印染厂生产某种产品,每件产品出厂价为30元,成本价为20元(不含污水处理部分费用).在生产过程中,平均每生产1件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计了两种对污水进行处理的方案并准备实施.方案一:工厂污水先净化处理后再排出,每处理1立方米污水所用的原料费用为2元,并且每月排污设备损耗等其它各项开支为27000元.方案二:将污水排放到污水处理厂统一处理,每处理1立方米污水需付8元排污费.(1)若实施方案一,为了确保印染厂有利润,则每月的产量应该满足怎样的条件?(2)你认为该工厂应如何选择污水处理方案?【答案】(1)每月的产量大于3000件;(2)每月的产量小于9000件时选择方案二利润较高;同理,每月的产量大于9000件时选择方案一利润较高;每月的产量9000件时,两种方案利润相同。
初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网打出时间t(分钟)与打出费s(元)的函数关系如图3,当打出150分钟时,这两种方式费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。
初二数学一次函数试题答案及解析1.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.2. (2012广西桂林)如图,已知函数y=ax-1的图象过点(1,2),则不等式ax-1>2的解集是________.【答案】x>1【解析】解法一:ax-1>2的解集就是函数y=ax-1的图象在直线y=2上面的部分所对应的x 的取值集合,所以不等式ax-1>2的解集是x>1.解法二:根据一次函数y=ax-1的图象过点(1,2)可得a=3,不等式ax-1>2即3x-1>2,解之得x>1.3.一次函数y=-2x+4的图象与x轴交点的坐标是________.【答案】(2,0)【解析】当y=0时,-2x+4=0,解得x=2,所以函数图象与x轴交点的坐标为(2,0).4.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则的解集为________.【答案】3<x<6【解析】将(3,1),(6,0)代入y=kx+b,得解得∴,即解得3<x<6.5.一次函数y=kx+b(k≠0)的图象如图所示,则方程kx+b=0的解是________,方程kx+b=1的解是________.【答案】x=-2;x=0【解析】观察图象发现:当x=-2时,y=0;当x=0时,y=1.所以方程kx+b=0的解是x=-2,方程kx+b=1的解是x=0.6.对于一次函数y=-2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得函数y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A.∵一次函数y=-2x+4中k=-2<0,∴函数值y随x的增大而减小,故本选项正确,不符合题意;B.∵一次函数y=-2x+4中k=-2<0,b=4>0,∴此函数的图象经过第一、二、四象限,不经过第三象限,故本选项正确,不符合题意;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故本选项正确,不符合题意;D.∵令y=0,得x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误,符合题意.故选D.7.直线y=3x+6与x轴的交点的横坐标x是方程2x+a=0的解,则a的值是________.【答案】4【解析】y=3x+b,令y=0,则x=-2.把x=-2代入2x+a=0,得2×(-2)+a=0,∴a=4.8.(2013黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.B.x<3C.D.x>3【答案】A【解析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,,∴点A的坐标(,3),∴不等式2x<ax+4的解集为.故选A9.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为________.【答案】-2<x<-1【解析】由题意知,当kx+b<0时,x>-2;当kx+b>2x时,直线y=kx+b在直线y=2x上方,所以x<-1.所以不等式2x<kx+b<0的解集为-2<x<-1.10.直线y=kx-1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,-1)【答案】D【解析】将x=0代入y=kx-1中,得y=-1.故选D.11.点A、B、C、D的坐标如图所示,求直线AB与直线CD的交点坐标.【答案】(-2,2)【解析】解:由已知得,直线AB的解析式为y=2x+6,直线CD的解析式为.解方程组得所以直线AB,CD的交点坐标为(-2,2).12.已知两直线和y=2x-1,求它们与y轴所围成的三角形的面积.【答案】3【解析】解:直线和y轴的交点坐标为(0,3),直线y=2x-1和y轴的交点坐标为(0,-1).联立y=2x-1,得方程组解得故两直线的交点坐标为(,2).∴所围成的三角形的面积为.13.(2013四川成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】将点(3,5)的坐标代入y=ax+b得,5=3a+b,即b-5=-3a,∴.14.(2013绥化)某地发生地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小(千米)、y时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y甲(千米)与时间x(时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:乙(1)由于汽车发生故障,甲组在途中停留了________小时.(2)甲组的汽车排除故障后,立即提速赶往灾区.请问:甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】解:(1)1.9(2)设直线EF的解析式为y乙=kx+b.∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴解得∴直线EF的解析式是y乙=80x-100.∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6-100=380,∴点C的坐标是(6,380).设直线BD的解析式为y甲=mx+n.∵点C(6,380)、点D(7,480)在直线BD上,∴解得.∴直线BD的解析式y甲=100x-220.∵B点在直线BD上且点B的横坐标为4.9,∴点B的纵坐标为100×4.9-220=270,∴甲组在排除故障时,距出发点的路程是270千米.(3)由图象可知:甲、乙两组第一次相遇后,在B处,乙超过甲最远,在D处,甲超过乙最远.在点B处,有y乙-y甲=80×4.9-100-(100×4.9-220)=22,22千米<25千米,在点D处,有y甲-y乙=100×7-220-(80×7-100)=20,20千米<25千米.∴按图象所表示的走法符合约定.【解析】(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙-y甲,在点D有x=7,也求出此时的y甲-y乙,分别同25比较即可.15. (2014四川攀枝花)当kb<0时,一次函数y=kx+b的图象一定经过( )A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限【答案】B【解析】因为kb<0,所以k>0,b<0或k<0,b>0.当k>0,b<0时,一次函数y=kx+b 的图象经过第一、三、四象限;当k<0,b>0时,一次函数y=kx+b的图象经过第一、二、四象限,所以其图象一定经过第一、四象限.16.有下列函数:①y=-8x,②,③y=8x2,④y=8x+1,⑤.其中是一次函数的有()A.0个B.1个C.2个D.3个【答案】D【解析】题中所给函数是一次函数的有①④⑤,共3个.17.点P(3,-1)、Q(-3,-1)、R(,0)、S(,4)中,在函数y=-2x+5的图象上的点有()A.1个B.2个C.3个D.4个【答案】C【解析】题目中所给的点中在函数y=-2x+5的图象上的有点P、R、S,共3个.18.要使函数y=(m-2)x n-1+n是一次函数,则m,n应满足()A.m≠2,n=0B.m=2,n=2C.m≠2,n=2D.m=2,n=0【答案】C【解析】由一次函数的定义知,n-1=1,m-2≠0,可得n=2,m≠2.19.(2013眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.【答案】C【解析】根据题中所给条件可判断c>0,a<0.20.如图所示的计算程序中,y与x之间的函数关系的图象应为()A.B.C.D.【答案】D【解析】根据题意可得y=-2x+4,此函数图象呈下降趋势,与y轴交于正半轴,故选D.21.如图,正比例函数y=kx的图象经过点A(2,4),AB⊥x轴于点B.(1)求该正比例函数的解析式.(2)将△ABO绕点A逆时针旋转90°得到△ADC,写出点C的坐标,试判断点C是否在直线上,并说明理由.【答案】见解析【解析】解:(1)∵正比例函数y=kx(k≠0)的图象经过点A(2,4),∴4=2k,∴k=2,∴y=2x.(2)∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4.∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4,∴C(6,2).∵当x=6时,.∴点C不在直线上.22.(2013陕西)“五一”期间,申老师一家自驾游去了离家170千米的某地,图是他们离家的距离y(千米)与汽车行驶时间x(时)之间的函数图象.(1)他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式.(3)他们出发2小时时,离目的地还有多少千米?【答案】解:(1)由图象可设OA段图象的函数表达式为y=kx(k≠0).当x=1.5时,y=90,所以1.5k=90,解得k=60,即y=60x(0≤x≤1.5).当x=0.5时,y=60×0.5=30.答:他们出发半小时时,离家30千米.(2)由图象可设AB段图象的函数表达式为y=k′x+b,将A(1.5,90),B(2.5,170)的坐标代入,得解得所以y=80x-30(1.5≤x≤2.5).(3)当x=2时,y=80×2-30=130.170-130=40(千米).答:他们出发2小时时,离目的地还有40千米.【解析】此题主要是将实际问题转化为函数的问题来解决,利用待定系数法来确定一次函数的表达式,给出自变量的值来求出相应的函数值.23.已知函数y=(k-2)x|k|-1是正比例函数,则k的值为________.【答案】-2【解析】由正比例函数的定义知|k|-1=1,且k-2≠0,所以k=-2.24.(2013浙江湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.B.-2C.D.2【答案】D【解析】已知某点在函数的图象上,则这点的坐标满足函数解析式.本题把点(1,2)的坐标代入已知函数解析式,解方程可以求得k的值.25.(2013广东珠海)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y 1________y2(填“>”“<”或“=”).【答案】>【解析】分别把点A(-1,y1),点B(-2,y2)的坐标代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.∵点A(-1,y1),点B(-2,y2)是函数y=3x的图象上的点,∴y1=-3,y2=-6,∵-3>-6,∴y1>y2.26.已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=0,当x=-3时,y=4.求x=3时,y的值.【答案】10【解析】解:∵y1与x2成正比例,∴y1=k1x2(k1≠0).∵y2与x-2成正比例,∴y2=k2(x-2)(k2≠0).∵y=y1+y2,∴y=k1x2+k2(x-2).由当x=1时,y=0,x=-3时,y=4,得解得∴y=x2+x-2,∴当x=3时,y=32+3-2=10.27.已知正比例函数y=kx(k≠0),当x=-1时,y=-3,则它的图象大致是( ) A.B.C.D.【答案】C【解析】将x=-1,y=-3代入正比例函数解析式y=kx(k≠0),得-3=-k,即k=3>0,∴函数图象过原点和第一、三象限,故选C.28.对于正比例函数y=(1-k)x,若y随x的增大而减小,则k的值可以是( )A.-1B.3C.0D.-3【答案】B【解析】∵y随x的增大而减小,∴1-k<0,∴k>1.选项中符合条件的数只有3.故选B.29.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)①如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°,求直线l3的函数表达式;②若过原点的直线l4向上的方向与y轴的正方向所成的角为30°,求直线l4的函数表达式;(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系.请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式.【答案】见解析【解析】(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴OM=2,.设直线l3的函数表达式为y=kx(k≠0),把(,1)代入y=kx,得,∴.∴直线l3的两数表达式为.②如图,作出直线l4,且在l4上任取一点P,使OP=OM,作PQ⊥y轴于Q,由∠POQ=30°,PO=2,得PQ=1,∴,设直线l4的函数表达式为y=k'x(k'≠0),把(-1,)代入y=k'x,得,∴.∴直线l4的函数表达式为.(3)猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.由猜想得过原点且与直线垂直的直线l5的函数表达式为y=5x.30.下列函数中,哪些是正比例函数?(1);(2);(3)y=8x2+x(1-8x);(4)y=1+8x.【答案】(1),即,其中.∴是正比例函数.(2)∵正比例函数都是常数与自变量积的形式,而是商的形式,∴不是正比例函数.(3)y=8x2+x(1-8x)经过恒等变形转化为y=x,其中k=1.∴y=8x2+x(1-8x)是正比例函数.(4)y=1+8x,即y=8x+1,不符合y=kx(k≠0)的形式.∴y=1+8x不是正比例函数.综上所述,,y=8x2+x(1-8x)是正比例函数.【解析】看每个函数解析式能否通过恒等变形转化为y=kx(k≠0)的形式.。
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。
答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。
答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。
答案:14.函数y = -2x - 1与y轴交于点(____,0)。
答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。
解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。
所以当x = 3时,y的值为7。
(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。
所以当y = 5时,相应的x值为2。
2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。
(2)求函数的斜率和截距。
解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。
所以与x轴的交点坐标为(5/3, 0)。
当函数与y轴交点时,x = 0,代入函数得到y = 5。
所以与y轴的交点坐标为(0, 5)。
(2)已知函数y = -3x + 5,斜率为-3,截距为5。
四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。
初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。
一、单选题(共7题;共14分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B−E−D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是().A. 监测点AB. 监测点BC. 监测点CD. 监测点D2.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2B. y=2x+1C. y=2xD. y=2x+23.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )A. (√5)7B. 2(√5)7C. 2(√5)8D. (√5)94.如图所示,一次函数y=kx+b(k、b为常数,且k ≠0)与正比例函数y=ax(a为常数,且a ≠0)相交于点P,则不等式kx+b>ax的解集是()A. x>1B. x<1C. x>2D. x<25.如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A7B8的长为()A. 64B. 128C. 256D. 5126.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A. x≤﹣2B. x≥﹣2C. x<﹣2D. x>﹣27.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A. M处B. N处C. P处D. Q处二、填空题(共6题;共6分)8.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+ b=________.9.设m、x、y均为正整数,且√m−√28=√x−√y,则(x+y+m)²=________.10.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________.11.如图,在平面直角坐标系中,一次函数y=x+3 √2的图象与x轴交于点A,与y轴交于点B,点P在线12.已知一次函数的图象过点且不经过第一象限,设,则m的取值范值是________;13.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标是________.三、计算题(共1题;共5分)14.计算:(1)√2+1√8+(√3−1)0(2)(−12)−1−3√13+(1−√2)0+√12四、解答题(共2题;共20分)15.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)16.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 √5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.五、综合题(共6题;共88分)17.已知四边形OABC是边长为4的正方形,分别以OA,OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A,C两点.(1)写出点A,点C坐标并求直线l的函数表达式;(2)若P是直线l上的一点,当△OPA的面积是5时,请求出点P的坐标;(3)如图2,点D(3,﹣1),E是直线l上的一个动点,求出使|BE﹣DE|取得最大值时点E的坐标和最大值(不需要证明).18.如下图所示,直线y=-1x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q2以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)综上所述,若△OCQ是等腰直角三角形,则t的值为2或4. (3)若CQ平分△OAC的面积,求直线CQ 对应的函数表达式.19.如图,直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(-8,0),点A的坐标为(-6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3?并求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图1,在平面直角坐标系中,直线l:y=34x+32与x轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒√2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.已知:如图,直线l1:y1=−x+n与y轴交于A(0,6),直线l2:y2=kx+1分别与x轴交于点B(−2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求ΔABD的面积;(3)在x轴上存在点P,能使ΔABP为等腰三角形,求出所有满足条件的点P的坐标.22.如图,己知函数y= 4x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、3Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO(1)点A的坐标为________,AC的长为________;(2)判断∠BPQ与∠CAP的大小关系,并说明理由;(3)当△APQ为等腰三角形时,求点P的坐标.六、综合题(共1题;共11分)x+4的图像与x轴和y轴分别相交于A、B两点.动23.如图,在平面直角坐标系中,一次函数y=−23点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=1秒时,点Q的坐标是________;3(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.答案解析部分一、单选题1. C2. B3. B4. D5.【答案】 C6.【答案】 A7.【答案】 D二、填空题8.【答案】2.5 9.【答案】 256 10.【答案】( 2√3−3,2−√3 ) 11.【答案】59≤m ≤1 12.【答案】 3+3√2 13.【答案】 (−1,−1)三、计算题14.【答案】 (1) 原式=√2−1−2√2+1=−√2(2)原式=−2−√3+1+2√3=√3−1四、解答题15.【答案】 解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x ﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x 1=﹣25(舍去),x 2=10.答:该月需售出10辆汽车.16.【答案】 (1)解:∵ OC OA =12 ,∴ 可设OC=x ,则OA=2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2 ,∴x 2+(2x )2=(4 √5 )2 , 解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A (8,0),C (0,4),设直线AC 解析式为y=kx+b ,∴ {8k +b =0b =4, 解得: {k =−12 ,∴直线AC 解析式为y= −12 x+4(2)解:由折叠的性质可知AE=CE ,设AE=CE=y ,则OE=8-y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2 ,∴(8-y )2+42=y 2 , 解得y=5,∴AE=CE=5,∵∠AEF=∠CEF ,∠CFE=∠AEF ,∴∠CFE=∠CEF ,∴CE=CF=5,∴S △CEF = 12 CF•OC= 12 ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E (3,0),F (5,4),设直线EF 的解析式为y=k′x+b′,∴ {3k ′+b ′=05k ′+b ′=4 , 解得: {k ′=2b ′=−6, ∴直线EF 的解析式为y=2x-6五、综合题17.【答案】 (1)解:∵四边形OABC 是边长为4的正方形,∴A (4,0)和C (0,4);设直线l 的函数表达式y=kx+b (k≠0),经过A (4,0)和C (0,4)得 {0=4k +b b =4, 解之得 {k =−1b =4, ∴直线l 的函数表达式y=﹣x+4(2)解:设△OPA 底边OA 上的高为h ,由题意等 12 ×4×h=5,∴h= 52, ∴|﹣x+4|= 52 ,解得x= 32 或132 ∴P 1( 32 , 52 )、P 2(132, −52 )(3)解:∵O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时|BE ﹣DE|=|OE ﹣DE|=OD ,OD 即为最大值,如图2.∴﹣1=3k 1 , ∴k 1= −13∴直线OD 为 y =−13x ,解方程组: {y =−x +4y =−13x,得 {x =6y =−2 , ∴点E 的坐标为(6,﹣2). 又D 点的坐标为(3,﹣1) 由勾股地理可得OD= √10 .18.【答案】 (1)解:由 {y =−12x +3y =x解得: {x =2y =2 ,∴点C 的坐标为(2,2)(2)4 3)解:令- x +3=0,得x =6, ∴A(6,0). ∴点Q 的坐标为(3,0)时,CQ 平分△OCA 的面积. 设直线CQ 的函数表达式为y =kx +b. 把C(2,2),Q(3,0)代入y=kx+b 得: {3k +b =02k +b =2,解得k =-2,b =6, ∴当直线CQ 平分△OCA 的面积时,其对应的函数表达式为y =-2x +6. 19.【答案】 (1)解:直线l :y=kx+6过点B (-8,0), 0=-8k+6,K= 34(2)解:当x=0时,y= 34 x+6=6,∴点C 的坐标为(0,6) 如图,设点P 的坐标为(x , 34 x+6),∴S △PAC =S △BOC +S △BAP +S △AOC = 12 ×8×6- 12 ×2( 34 x+6)- 12 ×6×6=- 34 x取S △PAC =3,解得x=4,∴点P 的坐标为(4,3),设此时直线AP 的解析式为y=ax+b (a≠0), 将A (-6,0),P (-4,3)代入y=ax+b , 得 {-6a +b =0−4a +b =3 解得= a =32b =9,∴当点P 的坐标为(-44,3)时,△PAC 的面积为3,此时直线AP 的解析式为y= 32 x+9 (3)解:点M 的坐标为(-18,0)或(- 74 ,0)或(2,0)或(8,0) 20.【答案】 (1)解:将点B (2,m )代入 y =34x +32 得m=3 ∴ B(2,3)C(3,0)设直线BC 解析式为 y =kx +b 得到 {2k +b =33k +b =0 ∴ {k =−3b =9 ∴直线BC 解析式为 y =−3x +9(2)解:如图,过点O 作 OD//AB 交BC 于点D∴S △ABC =S △ABD , k AB =k OD =34 ∴直线OD 的解析式为y= 34x ,∴ 联立方程组{y =34xy =−3x +9解得 {x =125y =95∴D(125,95) (3)解:①如图,当P 点在y 轴负半轴时,作 M 1N ⊥OP 于点N ,∵直线AB 与x 轴相交于点A ,∴点A 坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM 1=90° ∴∠PAO=∠PNM 1 , 又∵AP=PM 1 , ∠POA=∠PNM 1=90° ∴△AOP ≅ △PNM 1 , ∴PN=OA=2, 设OP=NM 1=m ,ON=m-2 ∴ M 1(m ,2−m)代入y =−3x +9 解得 m =72 ∴ M 1(72,−32) ②如图,作 M 2H ⊥OP 于点H可证明△AOP ≅ △PHM 2 ,设HM 2=n ,OH=n-2∴ M 2(n,n −2)代入y =−3x +9 ,解得 n =114,∴M 2(114, 34 ),∴综上所述 M 1(72,−32) 或M 2( 114, 34 ) (4)解:如图,作射线AQ 与x 轴正半轴的夹角为45°,过点B 作x 轴的垂线交射线AQ 于点Q ,作 EK ⊥AQ 于点K ,作 BT ⊥AQ 于点T ,∵∠CAQ=45°BG ⊥x 轴,B (2,3)∴AG=4,∴AQ=4 √2 ,BQ=7,t=BE 1+√2 =BE+EK≥BT ,由面积法可得: 12AQ ⋅BT =12BQ ⋅AG ∴ 12 ×4 √2 ×BT= 12 ×7×4,∴BT= 72√2 因此t 最小值为 72√2 . 21.【答案】 (1)解:∵直线 l 1 : y 1=−x +n 与y 轴交于A (0,6), ∴n =6, ∴直线 l 1 : y 1=x +6 ,∵ y 2=kx +1 分别与x 轴交于点B (−2,0),∴−2k +1=0, ∴k = 12 ,直线 l 2 : y 2=12x +1(2)解:设 l 1 与 x 轴交于点 E ,令 y 1=−x +6=0 ,得 x =6 , ∴点 E 坐标为 (6,0) , BE =8 . 由 {y =−x +6y =12x +1解得 x =103 , y =83 ,∴点 D 的坐标为 (103,83) , ∴ S ΔABD =S ΔABE −S ΔBDE =12×8×6−12×8×83=403.(3)解:在 RtΔAOB 中,由勾股定理可得 AB =√22+62=2√10 ,①当 BP =BA 时,满足条件的点 P 有两个,分别为 P 1(−2−2√10,0) , P 2(−2+2√10,0) ; ②当 AP =AB 时,由等腰三角形的三线合一可得 OP =OB ,于是满足条件的点 P 为 P 3(2,0) ; ③当 AP =AB 时,如图,设 OP =t ,则 AP =BP =t +2 ,在RtΔAOP中,AP2=AO2+OP2,∴(t+2)2=62+t2,解得t=8,∴P4(8,0).综上,满足条件的点P为P1(−2−2√10,0),P2(−2+2√10,0),P3(2,0),P4(8,0).22.【答案】(1)(3,0);5(2)解:∠BPQ=∠CAP.理由如下:∵点C与点B关于x轴对称,∴AB=AC,∴∠1=∠2,∵∠APQ=∠1,∴∠2=∠APQ,∵∠BPA=∠2+∠3,即∠BPQ+∠APQ=∠2+∠3,∴∠BPQ=∠3;(3)解:当PA=PQ,如图1,则∠PQA=∠PAQ,∵∠PQA=∠1+∠BPQ=∠APQ+∠BPQ=∠BPA,∴BP=BA=5,∴OP=BP﹣OB=1,∴P(0,﹣1);当AQ=AP,则∠AQP=∠APQ,而∠AQP=∠BPA,所以此情况不存在;当QA=QP,如图2,则∠APQ=∠PAQ,而∠1=∠APQ,∴∠1=∠PAQ,∴PA=PB,设P(0,t),则PB=4﹣t,∴PA=4﹣t,在Rt△OPA中,∵OP2+O A2=PA2,∴t2+32=(4﹣t)2,解得t= 78,∴P(0,78),综上所述,满足条件的P点坐标为(0,﹣1),(0,78).六、综合题23.【答案】(1)(4,0)(2)解:当点Q与原点O重合时,即OA=6, ∴AP= 12AO=3=3t, ∴t=1,①当0<t≤1时(如图1),∵一次函数与y轴交于B点,令x=0,∴y=4,∴B(0,4),即OB=4由(1)知OA=6,在Rt△AOB中,∴tan∠OAB= OBOA= 46= 23,∵AP=3t,∴OP=OA-PA=6-3t,∴P(6-3t,0),又∵点A关于点P的对称点为点Q,∴AP=PQ=3t,∴OQ=OA-AP-PQ=6-3t-3t=6-6t,∴Q(6-6t,0),∵四边形PQMN是正方形,∴PN=PQ=3t,MN∥AO,在Rt△APD中,∴tan∠PAD= PDPA= PD3t= 23,∴PD=2t,∴DN=PN-PD=3t-2t=t,∵MN∥AO,∴∠PAD=∠DCN,在Rt△DCN中,∴tan∠DCN= DNCN= tCN= 23,∴CN= 32t,∴S=S正方形PQMN-S△CDN,=(PQ)2- 12·DN·CN,=(3t)2- 12·t·32t,= 334t2,②当1<t≤ 43时(如图2),由①可知:DN=t,CN= 32t,OP=6-3t,PN=3t,∴S=S矩形POEN-S△CDN,=PO·PN-12·DN·CN,=(6-3t)×3t- 12·t·32t,=18t- 394t2,③当43<t≤2时(如图3),由①可知:PD=2t,OP=6-3t,OB=4,∴S=S四边形POBD,= 12·(PD+OB)·OP,= 12×(2t+4)×(6-3t),=-3t2+12t,综上所述:S={334t2,0≤t<1−394t2+18t,1≤t≤43−3t2+12,43<t≤2(3)解:解:如图4,由(2)中①可知:P(6-3t,0),Q(6-6t,0),PN=PQ=3t,A(6,0),∴M(6-6t,3t),N(6-3t,3t),∵T是正方形PQMN对角线的交点,∴T(6- 92t,32t),设直线AT解析式为:y=kx+b,∴{6k+b=0(6−92t)k+b=32t,解得:{k=−13b=2,∴AT解析式为:y=- 13x+2,∴点T是直线y=- 13x+2上一段线段上的点(-3≤x<6),同理可得直线AN解析式为:y=-x+6, ∴点N是直线y=-x+6上一段线段上的点(0≤x≤6),∴G(0,6),∴OG=6,∵OA=6,在Rt△AOG中,∴AG=6 √2,又∵T是正方形PQMN对角线的交点,∴PT=TN,∴OT+PT=OT+TN,∴当O、T、N在同一条直线上,且ON⊥AG时,OT+TN最小,即OT+PT最小, ∵S△AOG= 12·AO·GO= 12·AG·NO,∴NO= AO×GOAG =6√2=3 √2,∴OT+PT=OT+TN=ON=3 √2, 即OT+PT最小值为3 √2.。
求一次函数解析式专项练习1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x 轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.1---求一次函数的解析式7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.(,﹣1),其中常量m≠(,m)和B﹣1.已知一次函数的图象经过点13A,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.2 ---求一次函数解析式15.一次函数y=kx﹣4与正比例函数y=kx的图象经过点(2,﹣1).21(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:3 ---求一次函数解析式(3)如果y的取值范围是0≤y≤5,求x的取值范围;.S点,求y轴交于B4)若函数图象与x轴交于A点,与(AOB△24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;)当时,求y的值;(2(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围..正比例函数与一次函数y=﹣x+b的图象交于点(2,a)27,求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.4 ---求一次函数解析式30.已知:关于x的一次函数y=(2m﹣1)x+m﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x轴围成的三角形面积.5 ---求一次函数解析式一次函数的解析式30题参考答案:,解析式为y=kx+b(1)设直线AB1.,),0)和(0 .(1)由图象可知,直线l过点(1,4依题意,得,解得,,解得:则∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,a+1,解得;a=∴a=﹣b=;k=,即,0(2)直线AB与x轴、y轴的交点分别为(1,0),(y=l1)知,直线的解析式为x+,(2)由(1)AB与坐标轴围成的三角形的面积为∴直线=;2+当x=2时,有y=×l的解析式为y=kx+b,.2(1)设直线x+(3)当y=4时,代入,y=4= x+得:B,与y轴交于点(﹣x轴交于点A1.5,0)∵直线l与解得x=﹣5.3(0,),5.∵图象经过点A(﹣6,0),代入得:∴,∴0=﹣6k+b,即b=6k ①,,解得:k=2,b=3∵图象与y轴的交点是B(0,b)∴直线l的解析式为y=2x+3;,,?OB=12∴即:,∴|b|=4,b∴=4,b=﹣4,21)(2,,式,得代入①解:分为两种情况:①当P轴的负半轴上时,在x ),3B(0,∵A(﹣1.5,0),或一次函数的表达式是,∴OP=2OA=3,0B=3∴AP=3﹣1.5=1.5,,.根据题意,得6;AP×OB=×1.5×∴△ABP3=2.25的面积是×x轴的正半轴上时,②当P在解得.,(A∵(﹣1.5,0),B0,3)OP=2OA=3∴,0B=3,∴AP=3+1.5=4.5,x+.故该一次函数的关系式是y= ﹣ABP的面积是×APOB=×4.5××3=6.25.∴△7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得)(.设一次函数的解析式为3y=kx+bk≠0,k=1,所以y与x的函数关系式是y=x+2;,由已知得:,得;)由(2,解得:,得由,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交x=∴﹣1,点坐标为:(0,2).轴交点的坐标是(﹣该函数图象与∴x1),0 成正比例,x+2与y+3∵)1(.86 ---求一次函数解析式∴设y+3=k(x+2)(k≠0),,时,y=7∵当x=3 ,3+2)∴7+3=k(.解得,k=2 ;,即y=2x+1y+3=2(x+2)则(2)从图上可以知道,当﹣1<y≤0时x的取值范围﹣2≤x.)由(1)知,y=2x+1(2<﹣.,.令x=0,则y=111.∵y﹣2与2x+1成正比例,﹣x=,令y=0,则∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,,其图象如))和(﹣,01所以,该直线经过点(0,∴﹣7﹣2=k(﹣4+1),∴k=3,图所示:∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.之间的函数关系式是x 所以y与0y时,x由图示知,当<<﹣13.设过点A,B的一次函数的解析式为y=kx+b,,且2,)6y=kx+b.9(1)一次函数的图象经过点(﹣1=k+b,﹣k+b,则m= 的图象平行,xy=与﹣,﹣1k=则y=kx+b中m+1=(m+1)m+1=,k+k,即两式相减,得,﹣x+by=y=62当x=﹣时,,将其代入∵m≠﹣1,则k=2,解得:b=4.∴b=m﹣1,则直线的解析式为:y=﹣x+4;则函数的解析式为y=2x+m﹣1(m ≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x ﹣2)的一切)如图所示:(2x直线的解析式与轴交于点,B∵直线y=0∴,,x+40=﹣14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,,x=4∴3),∴3=(),(B∴点坐标为:40,k﹣1)×1+5.∴k=﹣1.的增大而减小,随,且经过点直线∵y=mx+nByxx+4增减性相同,﹣,此图象与<m∴0y=(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x的解集为:0<>x=2.4mx+nx∴关于的不等式15.(1)把点(2,﹣1)代入y=kx﹣4 1得:2k﹣4=﹣1,1=,解得:k 1y=x﹣4;所以解析式为:,)(y=k)设(.101x+2 6y=时,x=1∵﹣.把点(2,﹣1)代入y=kx 2﹣∴)(6=k1+2得:2k=﹣1,2.2﹣k=﹣,k解得:=2﹣y=∴=)x+2(2﹣4﹣2x.)和(﹣4,﹣0图象过(,20)点﹣x;y=所以解析式为:7 ---求一次函数解析式﹣x+4.∴函数解析式为y=,且x﹣4与x)轴的交点是(,0(2)因为函数y=,1)两图象都经过点(2,﹣﹣x+4 或y=y=x﹣因此,函数解析式为6轴围成的三角形的面积是:x所以这两个函数的图象与19.设一次函数解析式为y=kx+b,根据题意.S=1=××①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,解得,∴y=x﹣4∴函数的解析式为:;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,解得,∴(16.1)设y﹣3=k(4x分)(2﹣2),1,x=1时,y=﹣当﹣2),1∴﹣1﹣3=k(4×﹣x﹣y=3;∴函数解析式为分)﹣∴k=2(4,∴),22(4x﹣y﹣3=﹣﹣x﹣y=3.因此这个函数的解析式为y=x﹣4或.(5分)8x+7∴函数解析式为y=﹣20.设直线AB,y=3时,﹣8x+7=3 的解析式为y=kx+b,)当(2∵A(﹣3,1),B(0,﹣2),,解得:x=∴,,时,﹣8x+7=5y=5当x=解得:,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,.x≤∴x的取值范围是≤∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;,y=bx=017.当时,(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的﹣,x=y=0当时,交点坐标为(0,﹣5),与两坐标轴围成的三角形面积为×|,0),一次函数与两坐标轴的交点为(∴0b(﹣,)﹣MN5|×||∴直线﹣5=12.5.﹣|=24,||b|∴三角形面积为:××21.设与x轴的交点为B,则与两坐标轴围成的直角三2即b=144,=AO?角形的面积BO,12,±解得b=∵这个一次函数的解析式为AO=2,∴12 y=3xy=3x+12或﹣BO=3,∴∴点B纵坐标的绝对值是3,增大而增大,随时,0>当.根据题意,18①kyx∴点B横坐标是y=9 x=6,11y=2x=当∴﹣时,﹣时,±3;设一次函数的解析式为:y=kx+b,∴解得,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,∴;6﹣y=函数解析式为xk=,b=﹣2,得:增大而减小,x时,函数值随0k当②<y=x﹣2,所以:﹣x=x=6,y=9时,211﹣时,y=,当∴当点B纵坐标=﹣3时,B(﹣3,0),∴解得,把A(0,﹣2),B(﹣3,0)代入y=kx+b,8 ---求一次函数解析式y=kx﹣3,,b=﹣2得k=,﹣过A(2,1),1=2k﹣3,所以:y=.﹣x﹣2k=2.故解析式为:y=2x﹣,3.22.(1)依题意,设y+2=k(x+1)26.(1)∵一次函数y=(3﹣y=将x=1,﹣5代入,得k)x+2k+1的图象经过(﹣1,2)(1+1)=﹣5+2,,k∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2, 1.5,﹣解得k= ,(y+2=﹣1.5x+1)∴k=;解得1.5x即y=﹣﹣3.5;((2)把2))∵一次函数y=(﹣3.5中,得3﹣k)x+2k+1的图象经过一、y=4代入y=﹣1.5x二、四象限, 3.5=4﹣1.5x﹣,5,x=解得﹣∴,4 ﹣5时,函数值为即当x= y)设﹣3=k(4x﹣2),.23(1 y=5,时,∵x=1解得,k>3.∴5﹣3=k(4﹣2,)故k的取值范围是k>3.27.根据题意,得k=1解得,;y∴与x的函数关系式y=4x+1,解得,,7;,得﹣2)将x=2代入y=4x+1y=﹣(所以一次函数的解析式是y= ﹣x+3.28≤的取值范围是3()∵y0≤y5,.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数,且k≠,≤∴0≤4x+15 0).,时,y=2∵当x=1;≤解得﹣≤x1 ,)k(3×1∴2+5=,解得,k=1 ﹣x=,,则;令,则(4)令x=0y=1y=0 1;x的函数关系式是:y=3x﹣y故与2)在这条直线上,P(a,﹣(2)∵点∴A,,0)B)(0,1,(﹣1,﹣2=3a﹣∴S∴1=.×=×﹣解得,a=,AOB△1.24()与3x成正比例,﹣∵y )点的坐标是(﹣,﹣∴P2 ∴y≠k0)成正比例,(﹣3=kx 中,得)代入;,﹣代入,得y=7时,把x=273=2kk=2 y=kx+b、)(6,029.把(1,5,的函数关系式为:与∴yxy=2x+3,,解得y=2代入得:﹣;+3=2×(﹣)x=)把(2 x+6.y=∴一次函数的解析式是﹣3()设平移后直线的解析式为y=2x+3+b,)由题意得:.(1,30 ,2+3+b1=21,﹣2把点()代入得:﹣×﹣8,b=解得:5 ﹣y=2x故平移后直线的解析式为:,m<<2解得:25.根据题意得:时,当b=3为正整数,又∵m .﹣1∴m=1,函数解析式为:y=x .)12(A,过y=kx+3,y)与1,0轴交点为()由((211=2k+3 )得,函数图象与x ),,﹣.﹣k=1轴交点为(01 .x+3﹣y=解析式为:∴××∴所围三角形的面积为:11= 时,3﹣b=当9 ---求一次函数解析式。
第二讲一次函数的图象和性质选择题1.已知一次函数y kx k=-,若y随着x的增大而减小,则该函数图象经过:(A)第一,二,三象限 (B)第一,二,四象限(C)第二,三,四象限 (D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为1R和2R的两个电阻,其两端电压U关于电流强度I的函数图象如图,则阻值(A)1R>2R(B)1R<2R(C)1R=2R(D)以上均有可能4.若函数bkxy+=(bk,为常数)的图象如图所示,那么当0>y时,x的取值围是A、1>x B、2>x C、1<x D、2<x5.下列函数中,一次函数是().(A)(B)(C)(D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2 B.y=2x-2 C.y=2(x-2) D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线y x=-上运动,当线段AB最短时,点B的坐标为yx211A. (0,0)B.11(,)22- C.22(,)22- D.11(,)22-9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点( )A.(1,0) B.(1,k) C.(0,k) D.(0,1) 11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是( )A.y=5x B.y=45x C.y=54x D.y=920x12.下列函数中,是正比例函数的为A.y=12x B.y=4xC.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx (m≠0)和反比例函数y=nx(n≠0)的图象都经过点(2,3),则m=______,n=_________ .2.如果函数()1f x x=+,那么()1f=3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).yxEDCBAA B C D5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程y与经过的时间x之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为 km / h,汽车的速度为 km / h.汽车电动自行车908070605040302010y(km)h)第16题图6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网打出时间t(分钟)与打出费s(元)的函数关系如图3,当打出150分钟时,这两种方式费相差元.7.若一次函数y=a x+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―2a= 。
8.已知,如图,一轮船在离A港10千米的P地出发,向B港匀速行驶,30分钟后离A 港26千米(未到达B港),设出发x小时后,轮船离A港y千米(未到达B港),则 y 与x的函数关系式为四、解答题1.某产品每件成本10元,试销阶段每件产品的日销售价x(元)与产品的日销售量yx(元)15 20 25 30 …y(件)25 20 15 10 …⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.】红和明正在玩掷骰子游戏,两人各掷一枚骰子。
⑴当两枚骰子点数之积为奇数时,红得3分,否则,明得1分,这个游戏公平吗?为什么?⑵当两枚骰子的点数之和大于7时,红得1分,否则明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见。
3.小明子在银行存入一笔零花钱,已知这种储蓄的年利率为n 00。
若设到期后的本息和(本金+利息)为y(元),存入的时间为x (年),那么(1)下列那个图像更能反映y 与x 之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?100102.25y(元)x(年)21图15100102.25y(元)x(年)21图16100102.25x(年)y(元)21图17100102.25y(元)x(年)21图18(2)根据(1)的图象,求出y 于x 的函数关系式(不要求写出自变量x 的取值围),并求出两年后的本息和。
4.某商场的营业员小销售某种商品,他的月收入与他该月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题:第21题图x (件)(1)求出小的个人月收入y (元)与他的月销售量x (件)(0x )之间的函数关系式;(2)已知小4月份的销售量为250件,求小4月份的收入是多少元?5、如图,在平面直角坐标系中,正方形AOCB 的边长为6,O 为坐标原点,边OC 在x 轴的正半轴上,边OA 在y 轴的正半轴上,E 是边AB 上的一点,直线EC 交y 轴于F ,且S △FAE ∶S 四边形AOCE =1∶3。
xyECBAOF⑴ 求出点E 的坐标; ⑵ 求直线EC 的函数解析式.6如图,1l 表示神风摩托车厂一天的销售收入与摩托车销售量的关系;2l 表示摩托车厂一天的销售成本与销售量的关系。
(1)写出销售收入与销售量之间的函数关系式; (2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本; (4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入-成本)7.在“五一黄金周”期间,小明和他的父母坐游船从甲地到乙地观光,在售票大厅看到表(一), 爸爸对小明说:“我来考考你,你能知道里程与票价之间有何关系吗?”小明点了点头说:“里程与票价是一次函数关系,具体是……”.在游船上,他注意到表(二),思考一下,对爸爸说:“若游船在静水中的速度不变,那么我还能算出它的速度和水流速度.”爸爸说:“你真聪明!”亲爱的同学,你知道小明是如何求出的吗?请你和小明一起求出:(1)票价y (元)与里程x (千米)的函数关系式;里程(千米) 票价(元)甲→乙 16 38 甲→丙 20 46 甲→丁1026… … …表(一) 表(二)8. 教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y (升)与放水时间x (分钟)的函数关系如图所示:(1)求出饮水机的存水量y (升)与放水时间x (分钟)(x ≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟班级中最多有多少个同学能及时接完水?9.某出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数x (册) 5000 8000 10000 15000 …… 成本y (元) 28500360004100053500……(1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值围);出发时间 到达时间 甲→乙8:00 9:00 乙→甲9:20 10:00 甲→乙10:20 11:20 …… …y (升)1817 x (分钟)8(2)如果投入成本48000元,那么能印该读物多少册?10.阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线=1与直线y =2x +1的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③。
回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组222x y x =-⎧⎨=-+⎩的解;(2)用阴影表示2y 2x 2y 0x ⎧⎪⎨⎪⎩≥-≤-+≥,所围成的区域。
11一天上行6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间的行程S (km )(即离开学校的距离)与时间(h )的关系可用图4中的折线表示,根据图4提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)求出汪老师在返校途中路程S (km )与时间t (h )的函数关系式;第9题图①第9题图②(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.12.已知正比例函数y=kx与反比例函数y=3x的图象都过A(m,,1)点,求此正比例函数解析式及另一个交点的坐标.13.小明暑假到华东第一高峰—黄岗山(位于武夷山境)旅游,导游提醒大家上山要多带一件衣服,并介绍当地山区气温会随海拔高度的增加而下降.沿途小明利用海拔高度x米400 500 600 700 …气温y(0C)28.6 28.0 27.4 26.8 …(1)以海拔高度为x轴,气温为y轴,根据上表提供的数据在下列直角坐标系中描点;(2)观察(1)中所苗点的位置关系,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表中提供的数据验证你的猜想;(3)如果小明到达山顶时,只告诉你山顶的气温为18.1,你能计算出黄岗山的海拔高度大约是多少米吗?13.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图12所示。
请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;⑵分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;⑶当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?14. 如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m-3=O 的两根,且x 1<0<x 2. (1)求m 的取值围;(2)设点C 在y 轴的正半轴上,∠ACB=90°,∠CAB=30°,求m 的值;(3)在上述条件下,若点D 在第二象限,△DAB ≌△CBA ,求出直线AD 的函数解析式:参考答案 一、选择题1.B2.B3.A4.D5. B6.A7.A8.B9.C 10.D 11.C 12. A 13.C 二、填空题1. 326. 2.()2f x x = 3.()2f x x = 4.答案不唯一;如 ,2,1x y x y =+=5.甲(或电动自行车) 2 乙(或汽车) 2 18 906.107. 18.3210(0)y x x =+>三、解答题1、⑴ 经观察发现各点分布在一条直线上 ∴设b kx y += (k ≠0)用待定系数法求得40+-=x y⑵ 设日销售利润为z 则y xy z 10-==400502-+-x x 当x=25时,z 最大为225每件产品的销售价定为25元时,日销售利润最大为225元2、⑴ 这个游戏对双方公平 ∵P(奇)=412121=⨯, P(偶)=43 3 P(奇)= P(偶), ∴这个游戏对双方公平⑵ 不公平 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 894 5 6 7 89 10得:P(和大于7)=12,P(和小于或等于7)=127 红和明得分的概率不等,∴这个游戏对双方不公平3、(1)图16能反映y 与x 之间的函数关系 从图中可以看出存入的本金是100元 一年后的本息和是102.25元(2)设y 与x 的关系式为:y=100 n 00x+100 把(1,102.25)代入上式,得n=2.25 ∴y=2.25x+100 当x=2时,y=2.25*2+100=104.5(元)4、(1)由题意可设y 与x 的函数关系式为:b kx y +=由图象可知:当0=x 时,400=y ,200=x 时,1000=y有⎩⎨⎧=+=1000200400b k b解得,⎩⎨⎧==4003b k∴y 与x 的函数关系式为:4003+=x y(2)当250=x 时,11504002503=+⨯=y (元)5、⑴ ∵S △FAE ∶S 四边形AOCE =1∶3, ∴S △FAE ∶S △FOC =1∶4,∵四边形AOCB 是正方形, ∴AB ∥OC , ∴△FAE ∽△FOC , ∴AE ∶OC =1∶2,∵OA =OC =6, ∴AE =3, ∴点E 的坐标是(3,6) ⑵ 设直线EC 的解析式是y =kx +b , ∵直线y =kx +b 过E(3,6)和C(6,0) ∴⎩⎨⎧3k +b =66k +b =0 ,解得:⎩⎨⎧k =-2b =12∴直线EC 的解析式是y =-2x +12 6、1)y=x(2)设y kx b =+ ∵直线过(0,2)、(4,4)两点∴2y kx =+又442k =+∴12k =∴122y x =+ (3)由图像知,当4x =时,销售收入等于销售成本或122x x =+∴4x = (4)由图像知:当4x >时,工厂才能获利 或1(2)02x x -+>时,即4x >时,才能获利。