2015年高考真题——文科数学(新课标II卷)Word版含解析
- 格式:doc
- 大小:885.00 KB
- 文档页数:8
2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16 D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C.144π D.256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6 2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且23AE MN == ,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知2(1)iz-=1+i(i为虚数单位),则复数z=( )A、1+iB、1-iC、-1+iD、-1-i 【答案】D【解析】试题分析:.由题根据所给复数式子进行化简即可得到复数z的代数式;由题22(1)(1)22(1i)1,1112i i i ii z iz i i-----=+∴====--++,故选D.考点:复数的运算2、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B考点:茎叶图3、设x∈R,则“x>1”是“2x>1”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】C【解析】试题分析:.由题根据明天的关系进行发现即可得到所给两个明天的关系;由题易知“x>1”可以推得“2x>1”,“2x>1”可以得到“x>1”,所以“x>1”是“2x>1”的充要条件,故选C.考点:命题与条件4、若变量x、y满足约束条件111x yy xx+≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y的最小值为( )A、-1B、0C、1D、2 【答案】A考点:简单的线性规划5、执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B考点:程序框图6、若双曲线22221x ya b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为A B、54C、43D、53【答案】D【解析】试题分析:由题利用双曲线的渐近线方程经过的点,得到a、b关系式,然后求出双曲线的离心率即可.因为双曲线22221x ya b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴=,(),=. 故选D.考点:双曲线的简单性质7、若实数a ,b 满足12a b+=,则ab 的最小值为( )A B 、2 C 、 D 、4 【答案】C考点:基本不等式8、设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】试题分析:求出函数的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可. 函数f (x )=ln (1+x )-ln (1-x ),函数的定义域为(-1,1),函数f (-x )=ln (1-x )-ln (1+x )=-[ln (1+x )-ln (1-x )]=-f (x ),所以函数是奇函数.()2111'111f x x x x =+=+-- ,已知在(0,1)上()'0f x > ,所以f(x)在(0,1)上单调递增,故选A.考点:利用导数研究函数的性质9、已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++ 的最大值为A 、6B 、7C 、8D 、9 【答案】B【解析】试题分析:由题根据所给条件不难得到该圆221x y +=是一AC 位直径的圆,然后根据所给条件结合向量的几何关系不难得到24PA PB PC PO PB PB ++++==,易知当B 为(-1,0)时取得最大值.由题意,AC 为直径,所以24PA PB PC PO PB PB ++++== ,已知B 为(-1,0)时,4PB +取得最大值7,故选B.考点:直线与圆的位置关系、平面向量的运算性质10、某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A 、89πB 、827πC 、21)πD 、21)π【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体 二、填空题:本大题共5小题,每小题5分,共25分. 11、已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.考点:集合的运算12、在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程13. 若直线3x-4y+5=0与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r=_____. 【答案】 【解析】试题分析:直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,∠AOB=120°,则△AOB 为顶角为120°的等腰三角形,顶点(圆心)到直线3x-4y+5=0的距离为12r ,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案.如图直线3x-4y+5=0与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离为12r 12r r =∴,=2 .故答案为2.考点:直线与圆的位置关系14、若函数f (x )=| 2x-2 |-b 有两个零点,则实数b 的取值范围是_____. 【答案】0<b <2考点:函数零点15、已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为,则ω =_____. 【答案】2πω=考点:三角函数图像与性质三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 3 4D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 .【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> ,点(在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I)证明EF BC;(II)若AG等于圆O半径,且AE MN【答案】(I)见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,+>;(II )>是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。
2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。
$(-1,3)$ B。
$(-1,0)$ C。
$(0,2)$ D。
$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。
$-4$ B。
$-3$ C。
$3$ D。
$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。
$-1$ B。
$0$ C。
$1$ D。
$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。
若$a_1+a_3+a_5=3$,则 $S_5=$A。
$5$ B。
$7$ C。
$9$ D。
$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。
$\frac{1}{1111}$ B。
$\frac{1}{8576}$ C。
$\frac{2}{1254}$ D。
$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。
$\sqrt{5}$ B。
$3$ C。
$2\sqrt{5}$ D。
$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。
湖北省教育考试院 保留版权 数学(文史类) 第1页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i =A .i -B .iC .1-D .1 答案:A 解析:1.6074151+33ii i i ⨯===-.故选(A ).2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A .134石B .169石C .338石D .1365石答案:B解析:这批米内夹谷约为281534169254⨯≈石.故选(B). 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠- D .(0,)x ∀∉+∞,ln 1x x =-答案:C解析:特称性命题的否定是全称性命题,且注意否定结论,故原命题的否定是:“()0,,ln 1x x x ∀∈+∞≠-”.故选(C ).4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关答案:A数学(文史类) 第2页(共5页)解析:显然x 与y 负相关.又y 与z 正相关,所以根据“正负得负”的传递性,得x 与z 负相关.故选(A )5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 答案:A解析:由12,l l 是异面直线,可得12,l l 不相交,所以p q ⇒;由12,l l 不相交,可得12,l l 是异面直线或12//l l ,所以q p ⇒.所以p 是q 的充分条件,但不是q 的必要条件.故选(A ).6.函数256()lg 3x x f x x -+=-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-答案:C解析:依题意,有40x -≥,解得44≤≤-x ①;且03652>-+-x x x ,解得2x >且3x ≠②;由①②求交集得,函数的定义域为()(]2,33,4.故选(C).7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =答案:D解析:当0>x 时,sgn x x x x ==; 当0=x 时,sgn 0x x x ==;数学(文史类) 第3页(共5页)当0<x 时,sgn x x x x =-=. 综上,sgn x x x =.故选(D).8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 答案:B解析:在直角坐标系中,依次作出不等式01,01,x y ≤≤⎧⎨≤≤⎩11,22x y xy +≤≤的可行域如下图所示:依题意,OCDEABO S S p 四边形∆=1,OCDEOEGFC S S p 四边形曲边多边形=2,而O C D EO E C S S 四边形∆=21,所以1212p p <<. 故选(B).9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e > 答案:D数学(文史类) 第4页(共5页)解析:2211a b e +=,2e =不妨令21e e <,化简得()0b b m m a a m +<>+,得am bm <,得b a <.所以当a b >时,有ma mb a b ++>,即21e e >;当a b <时,有ma mb a b ++<,即21e e <.故选(D ). 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30答案:C解析:如图,集合A 表示如下图所示的所有红心圆点,集合B 表示如下图所示的所有红心圆点+所有绿心圆点,集合A B ⊕显然是集合(){},|3,3,,x y x y x y ≤≤∈Z 中除去四个点()()()(){}3,3,3,3,3,3,3,3----之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B ⊕表示如下图所示的所有红心圆点+所有绿心圆点+所有黄心圆点,共45个.故A B ⊕中元素的个数为45 . 故选(C ).数学(文史类) 第5页(共5页)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________. 答案:9 解析:由OA AB⊥,得OA AB =.所以()2O A OB OA O A AB O A O A A=+=+22039OA =+==. 12.若变量,x y 满足约束条件4,2,30,x y x y xy +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.答案:10解析:作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是()()()3,1,1,3,1,3--,平行移动直线3y x =-,求可知当直线过点()3,1时3x y +取最大值10.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.答案:2解析:()2222sin sin 2sin cos sin 22f x x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭.令()0f x =,则数学(文史类) 第6页(共5页)2sin 2x x =,则函数()f x 的零点个数即为函数sin 2y x =与函数2y x =图像的交点个数.作出函数图像知,两函数图像的交点有2个,即函数()f x 的零点个数为2.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.答案:(Ⅰ)3;(Ⅱ)6000.解析:(Ⅰ)由频率分布直方图知,()1.5 2.5 2.00.80.20.11a +++++⨯=,解得3a =; (Ⅱ)消费金额在区间[]0.5,0.9内的购物者的人数为()100003 2.00.80.20.1⨯+++⨯=6000.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.数学(文史类) 第7页(共5页)答案:解析:依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得sin sin BC AB BAC ACB =∠∠,即600sin 30sin 45BC =︒︒,所以BC =.在BCD ∆中,30CBD ∠=︒,tan tan 30CD BC CBD =∠=︒=16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.AB数学(文史类) 第8页(共5页)答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③解析:(Ⅰ)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得r =所以圆C 的方程为()(2212x y -+=.(Ⅱ)令0x =,得1y =,所以点()1B .又点(C ,所以直线BC 的斜率为1BCk =-,所以圆C 在点B处的切线方程为)10y x -=-,即)1y x =+.令0y =,得切线在x轴上的截距为1.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.解析:17.①当0a ≤时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a f a ==-,此时()min 1g a =;②当02a <<时,作出函数()2f x x ax =-的大致图像如下:由图易知,()2f x x ax =-在0,2a ⎡⎤⎢⎥⎣⎦上是增函数,在,2aa ⎡⎤⎢⎥⎣⎦上是减函数,在[],1a 上是增函数,此时,只需比较2a f ⎛⎫⎪⎝⎭与()1f 的大小即可.数学(文史类) 第9页(共5页)由()12a f f ⎛⎫= ⎪⎝⎭,得2122a a a a ⎛⎫-=- ⎪⎝⎭,得214a a =-,解得2a =或2a =(舍去). 且当02a <<时,()12a f f ⎛⎫<⎪⎝⎭;当22a <<时,()12af f ⎛⎫> ⎪⎝⎭.(i )当02a <<-时,()12a f f ⎛⎫< ⎪⎝⎭,所以()()11g a f a ==-,此时()31g a -<<;(ii )当2a =时,()12a f f⎛⎫=⎪⎝⎭,所以()()132a g a f f ⎛⎫===- ⎪⎝⎭(iii )当22a <<时,()12a f f ⎛⎫> ⎪⎝⎭,所以()224a ag a f ⎛⎫== ⎪⎝⎭,此时()34g a -<;③当2a ≥时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a fa ==-,此时()min 1g a =.综上,当2a =时,()min 3g a =-三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;数学(文史类) 第10页(共5页)(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 解:18.(1)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为曲线sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图像的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 解:(1)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是数学(文史类) 第11页(共5页)2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② ①-②可得221111212323222222n n nnn n T --+=++++-=-, 故n T 12362n n -+=-. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =, 所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角数学(文史类) 第12页(共5页)形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(2)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(1)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC的中点,所以DE CE =, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(1)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (2)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 解:(1)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+>,即() 1.g x > ④(2)由(1)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧数学(文史类) 第13页(共5页)设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立. 综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存 在,求出该最小值;若不存在,说明理由.解:(1)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.图1图2数学(文史类) 第14页(共5页)所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为221.164x y +=(2)1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-.②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合1)2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。
2015年高考全国卷2文科数学试题及答案(word精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合A={x|-l<x<2},B={x|0<x<3},则A B=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】试题分析:因为彳={x|-l<x<2},3={x|0<x<3},所以火汕={*|一1<*<3}.故选人.考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。
2.若为a实数,且?+=3+i,则a=1+iA.-4B.-3C.3D.4【答案】D【解析】试题分析:由题意可得2+tri=(l+i)(3+i)=2+4ina=4,故选D.考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。
3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果最显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关【答案】D【解析】试题分析:由柱形图可知2006年以来,我国二氧化碳排放童基本成i走诚趋势,所以二氧化碳援放童与年份负相关,故选D.考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。
4,己知«=(0,-1),*=(-1,2),贝i](2a+6)-a=A.-1B.0C.1D.2【答案】B【解析】试题分析:由题意可得«2=1,a b=-2,所以(2a+b)a=2a1+a b=2-2=0.考点:向量数量积。
【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。
5.设&是等差数列{%}的前"项和,若tZ]+O,+a5=3,则S5=A.5B.7C.9D.11【答案】A【解析】试题解析:%+%+%= 3% = 3 => % = 1,S)=---------= 5角=5.考点:等差数列【名师点睛】本题主要考查等差数列性质及前〃项和公式,具有小、巧、活的特点。
2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2015普通高等学校招生统一考试文科数学(新课标Ⅱ卷)第Ⅰ卷一、 选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A ={x |−1<x <2},B ={x |0<x <3},则A ∪B =(A )(−1,3) (B )(−1,0) (C )(0,2) (D )(2,3)【解析】由题意可得,集合A 、B 在数轴上的表示如图,所以A ∪B =(−1,3),所以选A(2)若a 为实数,且2+ai1+i =3+i,则a =(A )-4 (B )-3 (C )3 (D )4【解析】2+ai 1+i=3+i ,即2+ai =(3+i )(1+i )=2+4i ,所以a =4,选D(3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(A )逐年比较,2008年减少二氧化硫年排放量的效果最显著 (B )2007年我国治理二氧化硫排放显现成效(C )2006年以来我国二氧化硫年排放量呈减少趋势 (D )2006年以来我国二氧化硫年排放量与年份正相关【解析】2006年以来我国二氧化硫年排放量随着年份的增长在减少,所以2006年以来我国二氧化硫年排放量与年份负相关,选D(4)已知a ⃗=(0,−1),b ⃗⃗=(−1,2),则(2a ⃗+b ⃗⃗)∙a ⃗=(A )-1 (B )0 (C )1 (D )2【解析】2a ⃗⃗+b ⃗⃗=(−1,0),则(2a ⃗⃗+b⃗⃗)∙a ⃗⃗=0,选B12345-1-2-3-4-5xAB(5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5= (A )5 (B )7 (C )9 (D )11【解析】a 1+a 3+a 5=3a 3=3,所以a 3=1,且S 5=(a 1+a 5)×52=5a 3=5,选A(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分的体积与剩余部分的比值为(A )18 (B )17 (C )16 (D )15【解析】根据三视图,可得:所以,截去的部分体积是原正方体体积的16,则截去部分的体积与剩余部分的比值为15,所以选D(7)已知三点A (1,0), B(0,√3), C(2,√3),则△ABC 外接圆圆心到原点的距离为 (A )53 (B )√213(C )2√53(D )43【解析】如图, △ABC 是正三角形,外接圆的圆心为三角形的中心,所以E 的坐标为(1+0+23,0+√3+√33),所以E 的坐标为(1,2√33),则OE 的长度为√(2√33)2+12=√213(8)右边程序框图得算法思路源于我国古代数学名著《九章算术》中的“更相减损法”,执行该程序框图,若输入a,b 分别是14,18,则输出的a =(A )0 (B )2 (C )4 (D )14【解析】执行该程序框图的运算如下表所以选Ba ≠b ? 是 a>b ? 否 b = b – a=18–14=4 a ≠b ? 是 a>b ? 是 a = a – b=14–4=10 a ≠b ? 是 a>b ? 是 a = a – b=10–4=6 a ≠b ? 是 a>b ? 是 a = a – b=6–4=2 a ≠b ? 是 a>b ? 否 b = b – a=4–2=2a ≠b ? 否输出a =2ABC DA 1B 1C 1D 1123123xyOA(1,0)B (0,3)C (2,3)D E开始输入a,ba ≠b输出a结束否是a >b否是b = b - aa = a - b(9)已知等比数列{a n }满足a 1=14,a 3∙a 5=4(a 4−1),则a 2=(A )2 (B )1 (C )12(D )18【解析】a 3∙a 5=a 42=4(a 4−1),所以a 42−4a 4+4=0,则a 4=2,因为a 4a 1=q 3=8,所以a 2=a 1∙q =12,故选C(10)已知A 、B 是球O 的球面上两点,∠AOB =90°,C 为球面上的动点,若三棱锥O −ABC 体积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π【解析】A 、B 是球O 的球面上两点,∠AOB =90°,所以平面AOB 为大圆平面,AO =BO =R ,其中R 为球的半径,三棱锥O −ABC 的体积等于三棱锥C −AOB 的体积,如图1所示:当C 点位于O 点正上方时,三棱锥C −AOB 的高最大,为球的半径,此时体积最大,如图2,V C−AOB 最大值为13∙12R ∙R ∙R =36,所以R =6, 则球O 的表面积为4πR 2=144π,故选C(11)如图,长方形ABCD 的边AB =2,BC =1,O 为AB 的中点,点P 沿着边BC,CD 与DA 运动∠BOP =x ,将动点P 到A 、B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图像大致为(A ) (B ) (C ) (D )【解析】当0≤x ≤π4时,PB =tanx ,PA =√tan 2x +22,f (x )= tanx +√tan 2x +4, 当π4<x <π2时,f (x )=√(1+1tanx)2+1+√(1−1tanx)2+1,,因为不可能是直线的图像,且在0≤x ≤π2应该为分段函数的形式。
2015年高考全国2卷文科数学考试试题(含解析)1 / 15绝密★启用前2015年高考全国2卷文科数学试题(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3- B .()1,0- C .()0,2 D .()2,32.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关4.已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5第3页 共8页 ◎ 第4页 共8页……订…………○…………线…………○线※※内※※答※※题※※……订…………○…………线…………○7.已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 4D.38.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.149.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.810.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( ) A.36π B. 64π C.144π D. 256π11.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠= ,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )12.设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭2015年高考全国2卷文科数学考试试题(含解析)3 / 15第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.已知函数()32f x ax x=-的图像过点(-1,4),则a= .14.若x,y 满足约束条件50210210x yx y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y 的最大值为 .15.已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 . 16.已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a= .三、解答题(题型注释)17.(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC. (Ⅰ)求sin sin BC∠∠ ;(Ⅱ)若60BAC ∠=,求B ∠.18.(本小题满分12分)某公司为了了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频率分布表 满意度评分分组[50,60)[50,60)[50,60)[50,60)[50,60)频数 2814106(Ⅰ)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:满意度评分 低于70分70分到89分 不低于90分…○…………线………题※※…○…………线………满意度等级不满意满意非常满意估计那个地区的用户的满意度等级为不满意的概率大,说明理由.19.(本小题满分12分)如图,长方体1111ABCD A B C D-中AB=16,BC=10,18AA=,点E,F分别在1111,A B D C上,114.A E D F==过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法与理由);(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆()2222:10x yC a ba b+=>>,点(在C上.(Ⅰ)求C的方程;(Ⅱ)直线l不经过原点O,且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率乘积为定值.21.(本小题满分12分)已知()()ln1f x x a x=+-.(Ⅰ)讨论()f x的单调性;(Ⅱ)当()f x有最大值,且最大值大于22a-时,求a的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明EF BC;(Ⅱ)若AG等于圆O半径,且AE MN==求四边形EBCF的面积.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线1cos,:sin,x tCy tαα=⎧⎨=⎩(t为参数,且0t≠),其中0απ≤<,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线23:2sin,:.C Cρθρθ==(Ⅰ)求2C与3C交点的直角坐标;(Ⅱ)若1C与2C相交于点A,1C与3C相交于点B,求AB最大值.24.(本小题满分10分)选修4-5:不等式证明选讲设,,,a b c d均为正数,且a b c d+=+.证明:(Ⅰ)若ab cd> ,>>a b c d-<-的充要条件.第7页共8页◎第8页共8页2015年高考全国2卷文科数学考试试题(含解析)1 / 15参考答案1.A 【解析】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A.考点:本题主要考查不等式基础知识及集合的交集运算. 2.D【解析】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:本题主要考查复数的乘除运算,及复数相等的概念. 3. D【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.考点:本题主要考查统计知识及对学生柱形图的理解 4.C 【解析】试题分析:由题意可得2112=+=a ,123,⋅=--=-a b 所以()222431+⋅=+⋅=-=a ba a ab .故选C.考点:本题主要考查向量数量积的坐标运算. 5.A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 考点:本题主要考查等差数列的性质及前n 项和公式的应用. 6.D 【解析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2015年普通高等学校招生全国统一考试 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关【答案】D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年19002000 2100 2200 2300 2400 2500 2600 2700试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 21B.3 25C.34D.3 【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C. 考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线的标准方程为. 【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与 ()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.考点:导数的几何意义. 三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠. 【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠= 所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠, 所以3tan ,30.3B B ∠=∠=考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II )根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I )见试题解析(II )A 地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由);(II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> 的离心率为22,点()2,2在C 上.(I )求C 的方程;(II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1.【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点,圆O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EFBC ;(II )若AG 等于圆O 半径,且23AE MN == ,求四边形EBCF 的面积.【答案】(I )见试题解析;(II )1633考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()330,0,,22⎛⎫⎪ ⎪⎝⎭;(II )4.【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化. 24. (本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明: (I )若ab cd > ,则a b c d +>+;(II )a b c d +>+是a b c d -<-的充要条件. 【答案】 【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明()()22a bc d+>+,开方即得a b c d +>+.(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析: 解:(I )因为()()222,2,a ba b ab c dc d cd +=+++=++考点:不等式证明.。