必修5数列单元质量检测题
- 格式:doc
- 大小:190.00 KB
- 文档页数:4
必修5第二章《数列》单元测试班级 姓名 座号一、选择题(每小题6分)1、数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .)12()1(--=n a n nC .)21()1(n a nn --= D .)12()1(+-=n a nn2、等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3、等比数列{}n a 中,已知112733n a a q ===,,,则n 为( )A .3B .4C .5D .64、等比数列{}n a 中,9696==a a ,,则3a 等于( )A .3B .23C .916D .45、若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或156、等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么d 等于()A .3B .2C .-2D .2±7、等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( )A .130B .170C .210D .2608、 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( )A .12B .11C .10D .9二、填空题(每小题6分)9、等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________ 10、{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______11、在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += __________12、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =______三、解答题13、(本题10分)求数列11111,2,3,424816…的前n 项和。
《数列》单元质量评估试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( ) A .667 B .668 C .669 D .6722.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( ) A .1 B .2 C .4 D .84.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n,那么在此数列中( )A .a 7=a 8最大B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大5.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( )A.n (n +1)2B.2n (n +1)C.n 2(n +1)D.2nn +16.数列{(-1)n ·n }的前2 013项的和S 2 013为( ) A .-2 013 B .-1 017 C .2 013 D .1 0077.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( ) A .1或2 B .1或-2 C .-1或2 D .-1或-28.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值 9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.15810.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( ) A .(-∞,6) B .(-∞,4] C .(-∞,5) D .(-∞,3] 11.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列.则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >012.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( ) A .q B .12q C .(1+q )12 D .(1+q )12-1二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________. 16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式; (2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.18.(本小题满分12分)已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 的前n 项和为T n ,求证:16≤T n <38.19.(本小题满分12分)已知等差数列{a n },a 6=5.a 3+a 8=5. (1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .20.(本小题满分12分)求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.21.(本小题满分12分)等差数列{a n }前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.22.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.《数列》单元质量评估试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A .667B .668C .669D .672 解析:由2 014=1+3(n -1)解得n =672. 答案:D2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34解析:由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43.所以S 8=8a 1+8×72d =32. 答案:B3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( ) A .1 B .2 C .4 D .8解析:因为a 3·a 11=a 27=16,所以a 7=4, 所以a 5=a 7q 2=422=1.答案:A4.数列{a n }的通项公式是a n =(n +2)⎝ ⎛⎭⎪⎫910n,那么在此数列中( )A .a 7=a 8最大B .a 8=a 9最大C .有唯一项a 8最大D .有唯一项a 7最大解析:a n =(n +2)⎝ ⎛⎭⎪⎫910n,a n +1=(n +3)·⎝ ⎛⎭⎪⎫910n +1,所以a n +1a n =n +3n +2·910,令a n +1a n ≥1,即n +3n +2·910≥1,解得n ≤7, 即n ≤7时递增,n >7递减,所以a 1<a 2<a 3<…<a 7=a 8>a 9>…. 所以a 7=a 8最大. 答案:A5.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n 等于( )A.n (n +1)2B.2n (n +1)C.n2(n +1)D.2n n +1解析:由已知得a n -a n +1+1=0, 即a n +1-a n =1.所以数列{a n }是首项为1,公差为1的等差数列. 所以S n =n +n (n -1)2·1=12n 2+12n ,所以1S n =2n (n +1)=2⎝⎛⎭⎪⎫1n -1n +1, 所以1S 1+1S 2+1S 3+…+1S n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2nn +1.答案:D6.数列{(-1)n·n}的前2 013项的和S2 013为()A.-2 013 B.-1 017C.2 013 D.1 007解析:S2 013=-1+2-3+4-5+…+2 012-2 013=(-1)+(2-3)+(4-5)+…+(2 012-2 013)=(-1)+(-1)×1 006=-1 007.答案:D7.若{a n}是等比数列,其公比是q,且-a5,a4,a6成等差数列,则q等于()A.1或2 B.1或-2C.-1或2 D.-1或-2解析:依题意有2a4=a6-a5,即2a4=a4q2-a4q,而a4≠0,所以q2-q-2=0,(q-2)(q+1)=0.所以q=-1或q=2.答案:C8.设{a n}是等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值解析:由S5<S6,得a6=S6-S5>0.又S6=S7⇒a7=0,所以d<0.由S7>S8⇒a8<0,因此,S9-S5=a6+a7+a8+a9=2(a7+a8)<0,即S9<S5.答案:C9.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.158 解析:由9S 3=S 6=S 3+q 3S 3, 又S 3≠0,所以q 3=8,q =2. 故a n =q ·qn -1=2n -1,所以1a n =12n -1,所以⎩⎨⎧⎭⎬⎫1a n 的前5项和S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:C10.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,6)B .(-∞,4]C .(-∞,5)D .(-∞,3]解析:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,若数列是递减数列,则-λ2·(-2)≤1,即λ≤4.答案:B11.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列.则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0解析:因为{a n }是等差数列,则a n =a 1+(n -1)d ,所以2a 1a n =2a 21+a 1(n -1)d ,又由于{2a 1a n }为递减数列,所以2a 1a n2a 1a n +1=2-a 1d >1=20,所以a 1d <0.答案:C12.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q )12D .(1+q )12-1解析:设第一年第1个月的生产总值为1,公比为(1+q ),该厂一年的生产总值为S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,所以该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q )12-1.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设{a n }是递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是________.解析:设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,所以d >0,即d =2,所以a 1=2. 答案:214.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析:由题意知a 1+a 3=5,a 1a 3=4,又{a n }是递增数列,所以a 1=1,a 3=4,所以q 2=a 3a 1=4,q =2代入等比求和公式得S 6=63.答案:6315.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =______________.解析:当n =1时,S 1=2a 1-1, 所以a 1=2a 1-1,所以a 1=1.当n≥2时,a n=S n-S n-1=(2a n-1)-(2a n-1-1);所以a n=2a n-1,经检验n=1也符合.所以{a n}是等比数列.所以a n=2n-1,n∈N*.答案:2n-1(n∈N*)16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.解析:设三边为a,aq,aq2(q>1),则(aq2)2=(aq)2+a2,所以q2=5+1 2.较小锐角记为θ,则sin θ=1q2=5-12.答案:5-1 2三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)证明:1a2-a1+1a3-a2+…+1a n+1-a n<1.(1)解:设等差数列{log2(a n-1)}的公差为d.由a1=3,a3=9,得log2(9-1)=log2(3-1)+2d,则d=1.所以log2(a n-1)=1+(n-1)·1=n,即a n=2n+1.(2)证明:因为1a n+1-a n=12n+1-2n=12n,所以1a2-a1+1a3-a2+…+1a n+1-a n=121+122+123+…+12n =12-12n ·121-12=1-12n <1. 18.(本小题满分12分)已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 2成等比数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38. (1)解:因为数列{a n }是等差数列,所以a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d . 依题意,有⎩⎪⎨⎪⎧S 5=70,a 27=a 2a 22.即⎩⎪⎨⎪⎧5a 1+10d =70,(a 1+6d )2=(a 1+d )(a 1+21d ). 解得a 1=6,d =4.所以数列{a n }的通项公式为a n =4n +2(n ∈N *).(2)证明:由(1)可得S n =2n 2+4n .所以1S n =12n 2+4n =12n (n +2)=14(1n -1n +2). 所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n =14⎝⎛⎭⎪⎫1-13+14⎝ ⎛⎭⎪⎫12-14+14⎝ ⎛⎭⎪⎫13-15+…+14· ⎝ ⎛⎭⎪⎫1n -1-1n +1+14⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 因为T n -38=-14⎝ ⎛⎭⎪⎫1n +1+1n +2<0,所以T n <38. 因为T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,所以数列{T n }是递增数列,所以T n ≥T 1=16.所以16≤T n <38. 19.(本小题满分12分)已知等差数列{a n },a 6=5.a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n . 解:(1)设{a n }的首项是a 1,公差为d ,依题意得: ⎩⎪⎨⎪⎧a 1+5d =5,2a 1+9d =5,所以⎩⎪⎨⎪⎧a 1=-20,d =5.所以a n =5n -25(n ∈N *).(2)由(1)a n =5n -25,所以b n =a 2n -1=5(2n -1)-25=10n -30, 所以b n =10n -30(n ∈N *).20.(本小题满分12分)求数列1,3a ,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.解:当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2. 当a ≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1, aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有:(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a-(2n -1)a n , 此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a. 综上,S n =⎩⎪⎨⎪⎧n 2,a =1,2a (1-a n -1)(1-a )2+a n +1-2na n 1-a ,a ≠1.21.(本小题满分12分)等差数列{a n }前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解:设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列得S 22=S 1S 4. 又S 1=a 1-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ). 若a 2=0,则d 2=-2d 2,所以d =0, 此时S n =0,不合题意;若a 2=3,则(6-d )2=(3-d )(12+2d ), 解得d =0或d =2.因此{a n }的通项公式为a n =3或a n =2n -1(n ∈N *).22.(本小题满分12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n <32. 证明:(1)由a n +1=3a n +1得a n +1+12= 3⎝ ⎛⎭⎪⎫a n +12,所以a n +1+12a n +12=3, 所以⎩⎨⎧⎭⎬⎫a n +12是等比数列,首项为a 1+12=32,公比为3, 所以a n +12=32·3n -1, 因此{a n }的通项公式为a n =3n -12(n ∈N *).(2)由(1)知:a n =3n -12,所以1a n =23n -1, 因为当n ≥1时,3n -1≥2·3n -1,所以13n -1≤12·3n -1, 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32, 所以1a 1+1a 2+…+1a n <32.。
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
高一数学《数列》单元检测题及参考答案一、选择题:1.已知数列a n的首项a i 1 ,且a n 2a01 1 n 2 ,则a§为(D)A. 7B. 15C.30D. 312.等比数列a n中,a1、a99为方程x2 10x 16 0的两根,则a20 a50 a80的值为(D)A. 32B. 64C. 256D. ±643.若{a n}是等差数列,且a[ + a4+ a7=45, a2+&+ a8=39,则a3 + a e+ a9 的值是(D)A. 39B. 20C. 19.5D. 334.非常数数列{a。
}是等差数列,且{a n}的第5、10、20项成等比数列,则此等比数列的公比为(C)A. % 5C. 2D.-5 25.在等比数歹U {a n}中,a n>0,且a2 a4+2a3 a5+ a4 a6=25,刃B么a3+a5= (A)A5B10C15D206. S为等差数列{a n}的前n项之和,若a3=10, a10=—4,则S10—S等于(A)A. 14 B, 6 C. 12 D. 217 .正项等比数列{ a n }满足:a 2 • 34 = 1, &=13, b n = log 3a n,则数列{ b n }的 前10项的和是(D )8 .在等差数列{a n }中,33、38是方程x 23x 50的两个根,则S [。
是(B )A.30B.15C.50D.259 .若某等差数列中,前7项和为48,前14项和为72,则前21项和为(B ) A.96B.72C.60D.48 10 .已知等差数列{a n }的通项公式为a n 2n 1,其前n 项和为S,则数列{殳}的11 .等比数列的公比为2,且前4项之和等于1,那么前8项之和等于17 . 12 .已知数列的通项公式3n 2n 37 ,则S n 取最小俏时n = 18 , 此时S n = 324 .15 .数列{3n }为等差数列,32与36的等差中项为5, 33与37的等差中项为7,则数列的通项3n 等于2n-3.116 .数列{3n }为等差数列, S°0=145, d=—,则 31 + 33 + 35 + • • • + 399 的值为60:、解答题15.(14分)在等比数列{3n }中,$为其前n 项的和。
高中数学学习材料鼎尚图文*整理制作《数列》单元测验班别: 学号: 姓名: 一、选择题(8×5=40分)1.在数列{}n a 中,1115,332(),n n a a a n N +==-∈则该数列中相邻两项乘积是负数的项是( )(A )21a 和22a (B )22a 和23a (C )23a 和24a (D )24a 和25a 2.数列{}n a 中,372,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a =( )(A )0 (B )12 (C )23(D )-1 3.在等差数{}n a 中,若69121520,a a a a +++=则20S 等于( )(A )90 (B )100 (C )110 (D )120 4.设{}n a 是由正数组成的等比数列,公比2,q =且30123302,a a a a ⋅⋅=则36930a a a a ⋅⋅等于( )(A )102 (B )202 (C )162 (D )152 5.等差数列{}n a 共有21n +项,其中13214,n a a a ++++=2423,n a a a +++=则n 的值为( )(A )3 (B )5 (C )7 (D )96.已知数列{}n a 的首项13a =,又满足13,nn n a a +=则该数列的通项n a 等于( )(A )(1)23n n -(B )2223n n -+(C )213n n +- (D )213n n -+7.若 {}n a 是等比数列,47512,a a =-38124,a a +=且公比q 为整数,则10a =( )(A )256 (B )-256 (C )512 (D )-5128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .5 1 2 3 4 5 6 7 8二、填空题(6×5=30分) 9.在等差数列{}n a 中,12315,a a a ++=1278,n n n a a a --++=155,n S =则n =_____.10.在等比数列{}n a 中,已知12324,a a +=3436,a a +=则56a a +=_____________.11.已知数列{}n a 的通项公式112,n a n =-12,n n S a a a =+++则10S =_________12. 等差数列{}n a 中, 1239 ,a a a ++=123 15 ,a a a ⋅⋅=则1a = __, n a = .13.已知数列}{n a 满足11=a ,131+=+n nn a a a ,则n a =__ _____14.在数列}{n a 中,已知11=a ,52=a ,)N (*12∈-=++n a a a n n n ,则=2008a _________.三、解答题15.(12分)已知等差数列{}n a 中, ,d 21=315,,22k k a S ==-求1a 和k.16.(12分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18. (14分)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(1)证明数列{}n a n -是等比数列;(2)求数列{}n a 的前n 项和n S ;(3)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.19. (14分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T .20.(14分)已知数列{}n a 的首项112a =,前n 项和()21n n S n a n =≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10b =,()12n n n S b n S -=≥,n T 为数列{}n b 的前n 项和,求证:21n n T n <+.理科《数列》单元测验参考答案 1 2 34 5 6 7 8 C BBBABCD9、10 10、4 11、125 12、51或, ;7n 21n 2+--或 13、132n - 14、-1 15. 已知等差数列{}n a 中, ,d 21=315,,22k k a S ==- 求1a 和k. 15. 解: 2k2a )1k (21a 23d )1k (a a 111k -=⇒-+=⇒-+=3k .10k 030k 7k 215k 2a 1a S 2k k -==⇒=--⇒-=+=(舍去), 3a 1-=16.设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.16、(07全国2文17)解:由题设知11(1)01n n a q a S q-≠=-,,则2121412(1)5(1)11a q a q a q q q⎧=-⎪=⨯⎨--⎪-⎩,. ②由②得4215(1)q q -=-,22(4)(1)0q q --=,(2)(2)(1)(1)0q q q q -+-+=, 因为1q <,解得1q =-或2q =-.当1q =-时,代入①得12a =,通项公式12(1)n n a -=⨯-;当2q =-时,代入①得112a =,通项公式11(2)2n n a -=⨯-. 17.用数学归纳法证明: 22211131().2321nn N n n +++++≥∈+17.1n k =+时,只要证2313(1).21(1)23k k k k k ++≥+++ 23(1)312321(1)k k k k k +--+++ 22(2)0.(1)(483)k k k k k -+=<+++18.在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+. (Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.19.数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T . 解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=, 13n nSS +∴=.又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥.(Ⅱ)12323n n T a a a na =++++, 当1n =时,11T =; 当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+--11(12)3n n -=-+-.1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥.又111T a ==也满足上式, 1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N . 20.已知数列{}n a 的首项112a =,前n 项和()21n n S n a n =≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10b =,()12n n n S b n S -=≥,n T 为数列{}n b 的前n 项和,求证:21n n T n <+.5.解:(Ⅰ)由112a =,2n n S n a =, ① ∴ 211(1)n n S n a --=-, ②①-②得:2211(1)n n n n n a S S n a n a --=-=--,即()1121n n a n n a n --=≥+, 4分∵13211221n n n n n a a a a a a a a a a ---=⋅⋅ 12212143(1)n n n n n n --=⋅⋅=++,∴1(1)n a n n =+。
必修5第三章 数列测试题一、选择题1、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为( )A.128B.80C.64D.562、记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A 、2B 、3C 、6D 、73、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A .2B .4C .215D .2174、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .275、在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++6、若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )(A )12 (B )13 (C )14 (D )157、已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++ =( )(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)8、非常数数列}{n a 是等差数列,且}{n a 的第5、10、20项成等比数列,则此等比数列的公比为 ()A .51B .5C .2D .219、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .2310、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于( )A .98b a B .9b a ⎛⎫⎪⎝⎭ C .109b a D .10b a ⎛⎫⎪⎝⎭11、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的值为( ) A .25 B.C.- D.±12、等差数列{}{},n n a b 的前n 项和分别为 ,n n S T ,若73n n S n T n =+,则55a b = A. 7 B.23 C. 278 D. 2141二、填空题 13、已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________14、设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________。
新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。
单元质量评估(二)第二章 数列 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2011是等差数列:1,4,7,10,…的第几项( ) (A )669 (B )670 (C )671 (D )6722.数列{a n }满足a n =4a n-1+3,a 1=0,则此数列的第5项是( ) (A )15 (B )255 (C )20 (D )83.等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为( ) (A )4 (B )23 (C )916(D )2 4.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=( ) (A )-1 (B )1 (C )3 (D )75.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=( ) (A )40 (B )42 (C )43 (D )456.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=( )(A)2 (B)3 (C)6 (D)77.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )(A )90 (B )100 (C )145 (D )190 8.在数列{a n }中,a 1=2,2a n+1-2a n =1,则a 101的值为( ) (A )49 (B )50 (C )51 (D )529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数16111 位转换成十进制数的形式是( )(A )217-2 (B )216-1 (C )216-2 (D )215-110.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( ) (A )45 (B )50 (C )75 (D )6011.(2011·江西高考)已知数列{a n }的前n 项和S n 满足:S n +S m =S n+m ,且a 1=1,那么a 10=( )(A )1 (B )9 (C )10 (D )5512.等比数列{a n }满足a n >0,n=1,2,…,且a 5·a 2n-5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n-1=( ) (A )n(2n-1) (B )(n+1)2 (C )n 2 (D )(n-1)2二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.等差数列{a n }前m 项的和为30,前2m 项的和为100,则它的前3m项的和 为______.14.(2011·广东高考)已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q=______. 15.两个等差数列{a n }, {b n },12n 12n a a a 7n 2b b b n 3++⋯++=++⋯++,则55a b =______.16.设数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n =_____.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }是等差数列,a 2=3,a 5=6,求数列{a n }的通项公式与前n 项的和M n .18.(12分)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .19.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n-1(n ≥2),若a n +S n =n ,c n =a n -1. (1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.20.(12分)如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m , a 2=a m-1,…,a m =a 1,即a i =a m-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n }是7项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=2,b 4=11.依次写出{b n }的每一项;(2)设{c n }是49项的“对称数列”,其中c 25,c 26,…,c 49是首项为1,公比为2的等比数列,求{c n }各项的和S.[] 21.(12分)已知数列{a n }的前n 项和为()nn n 1S ,S 312=-(*n N ∈),等差数列{b n }中,b n >0(*n N ∈),且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n +b n }的前n 项和T n .22.(12分)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,每月利息按复利计算,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1),∴n=671.2.【解析】选B.由a n =4a n-1+3,a 1=0,依次求得a 2=3,a 3=15,a 4=63,a 5=255.3.【解析】选A.等比数列{a n }中,a 3,a 6,a 9也成等比数列,∴a 62=a 3a 9,∴a 3=4.4.【解析】选B.a 1+a 3+a 5=105,∴a 3=35,同理a 4=33, ∴d=-2,a 1=39,∴a 20=a 1+19d=1.5.【解析】选B.设公差为d,由a 1=2,a 2+a 3=13,得d=3,则a 4+a 5+a 6= (a 1+3d)+(a 2+3d)+(a 3+3d) =(a 1+a 2+a 3)+9d=15+27=42.6.【解析】选B.S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d), ∵d ≠0,∴d=2,从而S 10=100.[] 8.【解题提示】利用等差数列的定义. 【解析】选D.∵2a n+1-2a n =1,∴n 1n 1a a 2+-=, ∴数列{a n }是首项a 1=2,公差1d 2=的等差数列, ∴()1011a 21011522=+-=.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1.10.【解析】选B.由已知a 1+a 2+a 3+a 11+a 12+a 13=150,∴3(a 1+a 13)=150,∴a 1+a 13=50,∴a 4+a 10=a 1+a 13=50.11.【解题提示】结合S n +S m =S n+m ,对m,n 赋值,令n=9,m=1,即得S 9+S 1=S 10,即得a 10=1.【解析】选A.∵S n +S m =S n+m ,∴令n=9,m=1,即得S 9+S 1=S 10,即S 1=S 10-S 9=a 10, 又∵S 1=a 1,∴a 10=1.12.【解题提示】由已知可先求得通项公式,再由对数的性质进行运算.【解析】选C.a 5·a 2n-5=22n (n ≥3), ∴a n 2=22n ,a n >0,∴a n =2n ,log 2a 1+log 2a 3+…+log 2a 2n-1 =1+3+…+(2n-1)=n 2.13.【解题提示】利用等差数列前n 项和的性质【解析】由题意可知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,2(S 2m -S m )=S m +S 3m -S 2m∴S 3m =3(S 2m -S m )=3×(100-30)=210. 答案:21014.【解题提示】由等比数列的通项公式,可得关于公比q 的方程,从而求出q.【解析】由a 4-a 3=4得a 2q 2-a 2q=4,即2q 2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去). 答案:215.【解题提示】利用等差数列的前n 项和的有关性质进行运算. 【解析】设两个等差数列{a n },{b n }的前n 项和分别为A n ,B n .则()()195919599a a a A 7926529b b b B 93122+⨯+====++.答案:651216.【解析】∵a 1=2,a n+1=a n +(n+1), ∴a n =a n-1+n,a n-1=a n-2+(n-1),a n-2=a n-3+(n-2),…,a 3=a 2+3,a 2=a 1+2,a 1=2=1+1将以上各式相加得:()()2n n n 1n na [n n 121]111222+=+-+⋯+++=+=++. 答案:2n n122++17.【解析】设{a n }的公差为d, ∵a 2=3,a 5=6,∴11a d 3a 4d 6+=⎧⎨+=⎩,∴a 1=2,d=1, ∴a n =2+(n-1)=n+1.()2n 1n n 1n 3nM na d .22-+=+=18.【解析】(1)依题意有a 1+(a 1+a 1q)=2(a 1+a 1q+a 1q 2)由于a 1≠0,故2q 2+q=0,又q ≠0,从而1q 2=-.(2)由已知得a 1-a 1(12-)2=3,故a 1=4从而n n n 141()812S 113212--==----[][()](). 19.【解析】(1)∵a 1=S 1,a n +S n =n,① ∴a 1+S 1=1,得11a 2=.又a n+1+S n+1=n+1 ②①②两式相减得2(a n+1-1)=a n -1, 即n 1n a 11a 12+-=-,也即n 1n c 1c 2+=, 故数列{c n }是等比数列. (2)∵111c a 12=-=-, ∴n n n n n11c ,a c 1122=-=+=-, n 1n 11a 12--=-.故当n ≥2时,n n n 1n 1n n111b a a 222--=-=-=. 又111b a 2==,即n n 1b 2=. 20.【解题提示】利用等比数列的前n 项和公式进行计算.【解析】(1)设数列{b n }的公差为d ,则b 4=b 1+3d=2+3d=11,解得d=3,∴数列{b n }为2,5,8,11,8,5,2. (2)S=c 1+c 2+…+c 49 =2(c 25+c 26+…+c 49)-c 25 =2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a 1=1,a n =S n -S n-1=3n-1,n>1,∴a n =3n-1(*n N ∈),∴数列{a n }是以1为首项,3为公比的等比数列, ∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中, ∵b 1+b 2+b 3=15,∴b 2=5.又因a 1+b 1,a 2+b 2,a 3+b 3成等比数列,设等差数列{b n }的公差为d,∴(1+5-d )(9+5+d)=64,解得d=-10或d=2, ∵b n >0(*n N ∈),∴舍去d=-10,取d=2,∴b 1=3. ∴b n =2n+1(*n N ∈). (2)由(1)知∴T n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )()n n 32n 113132++-=+- n 231n 2n 22=++-. 22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论. 【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则第1次付款金额为a 1=200+2 000×0.01=220(元); 第2次付款金额为a 2=200+(2 000-200)×0.01=218(元) ……第n 次付款金额为a n =200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为()10109S 102202 2 1102⨯=⨯+⨯-= (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x 元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为()101011.01S x 11.01-=-·. 应有()1010S 2 0001.01=⨯,所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱. 【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解;(2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.。
高中同步测试卷(五)单元检测 数列的概念及表示方法和等差数列(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34 D.582.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的( )A .第100项B .第12项C .第10项D .第8项3.已知等差数列{a n }中各项都不相等,a 1=2,且a 4+a 8=a 23,则d =( ) A .0 B.12 C .2 D .0或124.已知等差数列{a n }的前n 项和为S n ,若2a 6=a 8+6,则S 7=( )A .49B .42C .35D .285.在等差数列{a n }中,若a 1,a 2017为方程x 2-10x +16=0的两根,则a 2+a 1 009+a 2 016=( )A .10B .15C .20D .406.把70个面包分五份给5个人,使每人所得的面包个数成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份面包的个数为( )A .2B .8C .14D .207.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .658.已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .219.设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3(x ≤7),a x -6(x >7),数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( )A.⎝⎛⎭⎫94,3B.⎣⎡⎭⎫94,3 C .(1,3) D .(2,3) 10.已知数列{a n }的通项公式是a n =n 2+kn +2,若对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A .(0,+∞)B .(-1,+∞)C .(-2,+∞)D .(-3,+∞)11.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.10110012.已知数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =-a n +a m +m ,则1a 1+1a 2+1a 3+…+1a 2 017=( ) A .2 017 B.12 017 C .-2 017 D .-12 017二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.在数列1,1,2,3,5,8,x ,21,34,55中,x =________.14.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=________. 15.已知等差数列的前三项依次是m ,6m ,m +10,则这个等差数列的第10项是________. 16.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)数列{a n }满足a 1=1,a n +1+2a n a n +1-a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项?18.(本小题满分12分)已知数列{a n }是等差数列,c n =a 2n -a 2n +1(n ∈N *).(1)判断数列{c n }是否为等差数列,并说明理由;(2)如果a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117,试求数列{a n }的公差d 及通项公式.19.(本小题满分12分)已知数列{a n }满足a 1=2,a n +1=2a na n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由;(2)求数列{a n }的通项公式;(3)若数列{b n }的前n 项和S n =8a 2n-n +1,求数列{b n }的通项公式.20.(本小题满分12分)设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.21.(本小题满分12分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出.(1)写出此数列的前5项;(2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项.22.(本小题满分12分)已知数列{a n }满足a 1=a ,a n +1=1+1a n,我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:1,2,32,53,…;当a =-12时,得到有穷数列:-12,-1,0.(1)当a 为何值时,a 4=0?(2)设数列{b n }满足b 1=-1,b n +1=1b n -1,求证:a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.参考答案与解析1.【解析】选B.因为a 1=1,a n +1=12a n +12n ,所以a 2=12a 1+12=1,a 3=12a 2+14=34,a 4=12a 3+18=12. 2.【解析】选C.因为a n =n -2n 2,令n -2n 2=0.08,解得n =10或n =52(舍去).3.【解析】选B.由已知得a 1+3d +a 1+7d =(a 1+2d )2,即2a 1+10d =a 21+4a 1d +4d 2.又a 1=2,所以4d 2-2d =0,所以2d (2d -1)=0,所以d =0或d =12.又因为{a n }中各项都不相等,所以d =12.4.【解析】选B.因为数列{a n }是等差数列, 所以2a 6=a 4+a 8=a 8+6,所以a 4=6,所以S 7=7(a 1+a 7)2=7×2a 42=7×a 4=7×6=42.5. 【解析】选B.由题意知a 1+a 2 017=a 2+a 2 016=2a 1 009=10,解得a 1 009=5,所以a 2+a 1 009+a 2 016=3a 1 009=15,故选B.6.【解析】选A.设等差数列为{a n },首项为a 1,公差为d >0,则有⎩⎨⎧16(a 3+a 4+a 5)=a 1+a 2,5a 1+5×42×d =70,解得⎩⎪⎨⎪⎧a 1=2,d =6.7.【解析】选C.因为a n =2n -1,b 1=2,b n =ab n -1=2b n -1-1,所以b 2=2b 1-1=3,b 3=2b 2-1=5,b 4=2b 3-1=9,b 5=2b 4-1=17,b 6=2b 5-1=33.8.【解析】选C.由a 1+a 3+a 5=105,a 2+a 4+a 6=99,两式相减得3d =-6,即d =-2.又a 1+a 3+a 5=105,所以a 1=39,所以S n =39n -n (n -1)=-(n -20)2+400,所以当n =20时,S n 有最大值400,故选C.9.【解析】选D.因为数列{a n }是递增数列, 又a n =f (n )(n ∈N *),所以⎩⎪⎨⎪⎧3-a >0,a >1,f (8)>f (7)⇒2<a <3.10.【解析】选D.由a n +1>a n , 得(n +1)2+k (n +1)+2>n 2+kn +2, 所以k >-(2n +1).因为当n =1时,-(2n +1)取得最大值-3, 只要k >-3,则都有a n +1>a n .11. 【解析】选A.由a 5=5,S 5=15,得a 1=1,d =1,所以a n =1+(n -1)=n ,所以1a n a n +1=1n (n +1)=1n -1n +1, 1a 1a 2+…+1a 100a 101=1-12+12-13+…+1100-1101=1-1101=100101. 12.【解析】选A.令m =1,得a n +1=-a n +a 1+1,即a n +1=-a n +1+1,于是a n +1=2-a n ,因此a 2=2-a 1=1,a 3=2-a 2=1,a 4=2-a 3=1,…,即a n =1,所以1a 1+1a 2+1a 3+…+1a 2 017=2 017,故选A. 13.【解析】因为数列从第三项开始每一项都等于它前面两项的和. 所以x =5+8=13. 【答案】1314. 【解析】由a 1=0,a n +1=a n -33a n +1(n ∈N *)知:a 2=a 1-33a 1+1=-3,a 3=a 2-33a 2+1=3,a 4=a 3-33a 3+1=0,…,每3项一循环,故a 20=a 6×3+2=a 2=- 3. 【答案】- 315.【解析】由已知得12m =2m +10,所以m =1, 故a 1=1,a 2=6,a 3=11, 所以d =5,所以a n =a 1+(n -1)d =1+5(n -1)=5n -4, 所以a 10=5×10-4=46. 【答案】4616.【解析】log 2(2 a 1·2 a 2·…·2 a 10)=log 22a 1+a 2+…+a 10=a 1+a 2+…+a 10=10(a 1+a 10)2=10×(a 5+a 6)2=10×42=20.【答案】2017. 【解】(1)由已知可得a 1=1,a 2=13,a 3=15,a 4=17,a 5=19.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为a n =12n -1.(3)令199=12n -1, 解得n =50,故199是这个数列的第50项.18.【解】(1)设数列{a n }的公差为d ,则c n +1-c n =(a 2n +1-a 2n +2)-(a 2n -a 2n +1) =2a 2n +1-(a n +1-d )2-(a n +1+d )2=-2d 2,所以数列{c n }是以-2d 2为公差的等差数列.(2)因为a 1+a 3+…+a 25=130,a 2+a 4+…+a 26=117, 两式相减得13d =-13,所以d =-1, 因为a 1+a 3+…+a 25=130,所以13a 13=130, 所以a 13=10=a 1+12d =a 1-12, 所以a 1=22,所以a n =22+(n -1)×(-1)=23-n .19.【解】(1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a n a n +2,所以1a n +1=a n +22a n =12+1a n ,所以1a n +1-1a n =12,即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列.(2)由(1)知1a n =1a 1+(n -1)d =12+n -12=n2,所以数列{a n }的通项公式为a n =2n .(3)因为a n =2n,所以S n =8a 2n -n +1=8⎝⎛⎭⎫n 22-n +1=2n 2-n +1.当n =1时,b 1=S 1=2×12-1+1=2;当n ≥2时,b n =S n -S n -1=2n 2-n +1-[2(n -1)2-(n -1)+1]=4n -3,所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧2,n =14n -3,n ≥2.20.【解】(1)依题意⎩⎨⎧S12=12a 1+12×112d >0,S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0,①a 1+6d <0.② 由a 3=12,得a 1+2d =12.③把③分别代入①②,得⎩⎪⎨⎪⎧24+7d >0,3+d <0,解得-247<d <-3,即公差d 的取值范围是⎝⎛⎭⎫-247,-3. (2)法一:由d <0可知{a n }是递减数列, 因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 可得a 6>-a 7>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 法二:S n =na 1+n (n -1)2d=n (12-2d )+n (n -1)2d=d 2⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2- d 2⎣⎡⎦⎤12⎝⎛⎭⎫5-24d 2,因为d <0, 所以⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小时,S n 最大. 因为-247<d <-3,6<12⎝⎛⎭⎫5-24d <132, 所以当n =6时,⎣⎡⎦⎤n -12⎝⎛⎭⎫5-24d 2最小,S 6最大. 21.【解】(1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2, 所以a 3=a 2+a 1=3, a 4=a 3+a 2=3+2=5, a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1,且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.故b 1=12,b 2=23,b 3=35,b 4=58.22.【解】(1)法一:因为a 1=a ,a n +1=1+1a n,所以a 2=1+1a 1=1+1a =a +1a ,a 3=1+1a 2=2a +1a +1,a 4=1+1a 3=3a +22a +1.故当a =-23时,a 4=0.法二:因为a 4=0,所以1+1a 3=0,得a 3=-1.因为a 3=1+1a 2,所以a 2=-12.因为a 2=1+1a ,所以a =-23.故当a =-23时,a 4=0.(2)证明:因为b 1=-1,b n +1=1b n -1, 所以b n =1b n +1+1.a 取数列{b n }中的任一个数,不妨设a =b n . 因为a 1=a =b n ,所以a 2=1+1a 1=1+1b n =b n -1,所以a 3=1+1a 2=1+1b n -1=b n -2,…,所以a n =1+1a n -1=1+1b 2=b 1=-1.所以a n +1=0.故a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }.。
必修5数列单元检测题
(时间120分钟,满分150分)
一、选择题(每小题5分,共计60分)
1.数列,的一个通项公式是( )
A. n a =
B. n a =
C. n a =
D. n a =
2. 已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( ) A. 6 B. 3- C. 12- D. 6-
3. 2005是数列7,13,19,25,31,, 中的第( )项.
A. 332
B. 333
C. 334
D. 335
4. 在等差数列{}n a 中,若45076543=++++a a a a a ,则=+82a a ( ) A.45 B.75 C. 180 D.300
5. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( ) A.-2
B.-3
C.-4
D.-5 6. 在等差数列{a n }中,设公差为d ,若S 10=4S 5,则d
a 1等于( )
A.
2
1 B.
2 C.
4
1 D.4
7. 设数列{a n }和{b n }都是等差数列,其中a 1=25,b 1=75,且a 100+b 100=100,则数列 {a n +b n }的前100项之和是( )
A.1000
B.10000
C.1100
D.11000
8.已知等差数列{a n }的公差d =1,且a 1+a 2+a 3+…+a 98=137,那么a 2+a 4+a 6+…+a 98的值等于( )
A.97
B.95
C.93
D.91
9.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( ) A.9 B.10 C.11 D.12
10. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( ) A.
2
1 B.
3
1 C.
2 D.3
11. 若数列{a n }的前n 项和为S n =a n -1(a ≠0),则这个数列的特征是( ) A.等比数列
B.等差数列
C.等比或等差数列
D.非等差数列
12. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n
n T S =1
32+n n ,
则5
5b a 等于( ) A.3
2
B.
14
9 C.
31
20 D.
17
11
二、填空题(每小题4分,共计16分)
13. 数列{a n }的前n 项和为S n =n 2
+3n +1,则它的通项公式为 . 14. 已知{
n
a 1}是等差数列,且a 2=2-1,a 4=2+1,则a 10= .
15. 在等比数列中,若S 10=10,S 20=30,则S 30= . 16. 数列1
2
1,2
4
1,3
4
1,4
16
1,…的前n 项和为 .
三、解答题:
17.(本小题满分12分)
已知等差数列{a n }中,S n =m ,S m =n (m ≠n ),求S m +n .
18.(本题满分12分)
设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.求公差d 的取值范围.
19. (本题满分12分)
已知等差数列{a n }中,a 1=29,S 10=S 20,问这个数列的前多少项和最大?并求此最大值.
20.(本题满分12分)
设a 1=5,a n +1=2a n +3(n ≥1),求{a n }的通项公式.
21.(本题满分12分) 求和:1+
5
4+
2
5
7+…+
1
5
23--n n
22.(本题满分14分)
已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n
+1-2a n (n =1,2,…)求证{b n }是等比数列;(2)设c n =
n
n a 2
(n =1,2…)求证{c n }是等差数
列;(3)求数列{a n }的通项公式及前n 项和公式.
必修5数列单元检测题参考答案
一、选择题
1.B
2.D
3.C
4.C
5.C
6.A
7.B
8.C
9.C 10.D 11.C 12.B 二、填空题
13. ⎩⎨⎧≥+==22
215
n n n a n 14. -
47
72+ 15. 70 16.
n
n n 2
12
2
2
-
++
三、解答题
17. 解析:设S n =pn 2
+qn S n =pn 2
+qn =m ; ①
则
S m =pm 2+qm =n ②
①-②得:p(n 2-m 2)+q (n -m )=m -n 即p(m +n )+q =-1 (m ≠n ) ∴S m +n =p(m +n )2+q (m +n )=(m +n )[p(m +n )+q ]=-(m +n ). 18. 解析:由S 12>0及S 13<0可得⎪⎪⎩
⎪⎪⎨⎧
〈⨯+〉⨯+021*******
1112121
1d a d a ,即⎩⎨⎧2a 1+11d >0 a 1+6d <0
又∵a 3=12,∴a 1=12-2d ∴⎩⎨
⎧24+7d >0 3+d <0
,∴-
7
24<d <-3.
19. 解析:设数列{a n }的公差为d ∵S 10=S 20,∴10×29+
2
910⨯d =20×29+
2
1920⨯d 解得d =-2
∴a n =-2n +31 设这个数列的前n 项和最大, a n ≥0 -2n +31≥0
则需: 即
a n +1≤0 -2(n +1)+31≤0 ∴14.5≤n ≤15.5 ∵n ∈N ,∴n =15
∴当n =15时,S n 最大,最大值为 S 15=15×29+
2
1415⨯ (-2)=225.
20. 解析:令a n =b n +k,则a n +1=b n +1+k ∴b n +1+k=2(b n +k)+3 即b n +1-2b n =k+3 令k+3=0,即k=-3
则a n =b n -3,b n +1=2b n 这说明{b n }为等比数列,q =2 b 1=a 1-k=8,∴b n =8·2n -1
=2
n +2
∴a n =2
n +2
-3.
21. 解析:设S n =1+5
4+
2
5
7+…+
2
5
23--n n +
1
5
2
3--n n ①
则
5
1S n =
5
1+
2
5
4+
3
5
7+…+1
5
53--n n +
n
n 5
23- ②
①-②得:
1
2
1
1
1
1(1)433332325
51131
555
5
5
5
15
75127
75127
.
45
165
n n n n
n
n
n
n n
n n n S n n S ------=+
+++
-
=+⨯-
-
⨯--⨯--=
∴=
⨯⨯
22. 解析:(1)∵S n +1=4a n +2 ① ∴S n +2=4a n +1+2 ② ②-①得S n +2-S n +1=4a n +1-4a n (n =1,2,…) 即a n +2=4a n +1-4a n ,
变形,得a n +2-2a n +1=2(a n +1-2a n ) ∵b n =a n +1-2a n (n =1,2,…) ∴b n +1=2b n . 由此可知,数列{b n }是公比为2的等比数列;
由S 2=a 1+a 2=4a 1+2,又a 1=1,得a 2=5故b 1=a 2-2a 1=3∴b n =3·2n -1.
1111
1
1
2(2)(1,2,),,2
2
2
2
2
n n n n n
n n n n n
n n
n n a a a a a b c n c c ++++++-=
=∴-=
-
=
=
将b n =3·2n -1代入,得c n +1-c n =
4
3(n =1,2,…)
由此可知,数列{c n }是公差为
4
3的等差数列,它的首项c 1=,2
12
1=a
1331(1).2
4
4
4n c n n =
+-=-
故
311(3)(31)4
44
n c n n =
-
=- ∴a n =2n ·c n =(3n -1)·2
n -2
(n =1,2,…);
当n ≥2时,S n =4a n -1+2=(3n -4)·2n -1
+2, 由于S 1=a 1=1也适合于此公式, 所以所求{a n }的前n 项和公式是:S n =(3n -4)·2n -1+2.。