高考物理总复习第五章 第2讲 动能定理
- 格式:ppt
- 大小:4.94 MB
- 文档页数:58
第二讲动能定理及其应用[小题快练]1.判断题(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.( √ )(2)动能不变的物体一定处于平衡状态.( × )(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.( √ )(4)物体在合外力作用下做变速运动时,动能一定变化.( × )(5)物体的动能不变,所受的合外力必定为零.( × )(6)做自由落体运动的物体,动能与时间的二次方成正比.( √ )2.(多选)关于动能定理的表达式W=E k2-E k1,下列说法正确的是( BC )A.公式中的W为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C.公式中的E k2-E k1为动能的增量,当W>0时动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功3.NBA篮球赛非常精彩,吸引了众多观众.比赛中经常有这样的场面:在临终场0.1 s的时候,运动员把球投出且准确命中,获得比赛的胜利.若运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( C ) A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh1考点一 动能定理的理解及应用 (自主学习)1.动能定理公式中体现的“三个关系”(1)数量关系:即合力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两侧物理量的国际单位都是焦耳. (3)因果关系:合力做的功是引起物体动能变化的原因. 2.对“外力”的理解动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.应用动能定理的“四点注意”(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)动能定理的表达式是一个标量式,不能在某方向上应用动能定理.(3)动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,比动力学研究方法更简便.(4)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.1-1.[解决曲线运动问题] (2015·某某卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( ) A .一样大 B .水平抛的最大 C .斜向上抛的最大D .斜向下抛的最大解析:根据动能定理可知12mv 2末=mgh +12mv 20,得v 末=2gh +v 20,又因三个小球的初速度大小以及高度相等,则落地时的速度大小相等,A 项正确. 答案:A1-2.[解决直线运动问题] 一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示.当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为( )A .tan θ和H2B .(v 22gH -1)tan θ和H 2C .tan θ和H4D .(v 22gH -1)tan θ和H 4解析:由动能定理有-mgH -μmg cos θH sin θ=0-12mv 2-mgh -μmg cos θh sin θ=0-12m (v 2)2解得μ=(v 22gH -1)tan θ,h =H4,故D 正确.答案:D1-3.[解决变力做功问题] (2015·全国卷Ⅰ)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离解析:根据质点滑到轨道最低点N 时,对轨道压力为4mg ,利用牛顿第三定律可知,轨道对质点的支持力为4mg .在最低点,由牛顿第二定律得,4mg -mg =m v 2R,解得质点滑到最低点的速度v =3gR .对质点从开始下落到滑到最低点的过程,由动能定理得,2mgR -W =12mv 2,解得W =12mgR .对质点由最低点继续上滑的过程,到达Q 点时克服摩擦力做功W ′要小于W =12mgR .由此可知,质点到达Q 点后,可继续上升一段距离,C 正确.答案:C考点二 动能定理在多过程问题中的应用 (师生共研)1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息. 2.应用动能定理解题的基本思路[典例] 如图,一个质量为0.6 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.g 取10 m/s 2,求:(1)小球做平抛运动的初速度v 0; (2)P 点与A 点的高度差;(3)小球到达圆弧最高点C 时对轨道的压力.解析:(1)由题意知小球到A 点的速度v A 沿曲线上A 点的切线方向,对速度分解如图所示: 小球做平抛运动,由平抛运动规律得v 0=v x =v A cos θ=2 m/s.(2)小球由P 至A 的过程由动能定理得mgh =12mv 2A -12mv 2解得:h =0.6 m.(3)小球从A 点到C 点的过程中,由动能定理得 -mg (R cos θ+R )=12mv 2C -12mv 2A解得:v C =7 m/s小球在C 点由牛顿第二定律得F N C +mg =m v 2CR解得F N C =8 N由牛顿第三定律得F N C ′=F N C =8 N 方向竖直向上.答案:(1)2 m/s(2)0.6 m(3)8 N ,方向竖直向上 [反思总结]动能定理在多过程问题中的应用1.对于多个物理过程要仔细分析,将复杂的过程分割成多个子过程,分别对每个过程分析,得出每个过程遵循的规律.当每个过程都可以运用动能定理时,可以选择分段或全程应用动能定理,题目不涉及中间量时,选择全程应用动能定理更简单方便.2.应用全程法解题求功时,有些力可能不是全过程都作用的,必须根据不同的情况分别对待,弄清楚物体所受的力在哪段位移上做功,哪些力做功,做正功还是负功,正确写出总功.(2018·余姚中学模拟)如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度x =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m ,h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放,小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块第二次通过C 点时的速度大小; (3)小滑块最终停止的位置距B 点的距离.解析:(1)小物块从A 到D 的过程中,由动能定理得:mg (h 1-h 2)-μmgx =12mv 2D -0,代入数据得:v D =3 m/s.(2)从D 到C 的过程,由动能定理得:mgh 2=12mv 2C -12mv 2D ,代入数据得:v C =6 m/s.(3)滑块最终静止在BC 上,对全过程,运用动能定理得:mgh 1-μmgs =0,代入数据解得:s =8.6 m ,则距离B 点的距离为:L =5 m -(8.6-5) m =1.4 m.答案:(1)3 m/s (2)6 m/s (3)1.4 m考点三 与图象相关的动能问题 (自主学习)图象所围“面积”的意义1.v -t 图:由公式x =vt 可知,v -t 图线与时间轴围成的面积表示物体的位移. 2.a -t 图:由公式Δv =at 可知,a -t 图线与时间轴围成的面积表示物体速度的变化量. 3.F -x 图:由公式W =Fx 可知,F -x 图线与位移轴围成的面积表示力所做的功. 4.P -t 图:由公式W =Pt 可知,P -t 图线与时间轴围成的面积表示力所做的功.3-1.[v -t 图象] A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B .F 1、F 2对A 、B 做功之比为1∶2C .A 、B 质量之比为2∶1D .全过程中A 、B 克服摩擦力做功之比为2∶1 答案:C3-2.[a -t 图象] 用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是( )A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功解析:由a -t 图象可知:图线与时间轴围成的“面积”代表物体在相应时间内速度的变化情况,在时间轴上方为正,在时间轴下方为负.物体6 s 末的速度v 6=12×(2+5)×2 m/s-12×1×2 m/s=6 m/s ,则0~6 s 内物体一直向正方向运动,A 错误;由图象可知物体在5 s 末速度最大,v m =12×(2+5)×2 m/s=7 m/s ,B 错误;由图象可知在2~4 s 内物体加速度不变,物体做匀加速直线运动,速度变大,C 错误;在0~4 s 内合力对物体做的功由动能定理可知:W 合4=12mv 24-0,又v 4=12×(2+4)×2 m/s=6 m/s ,得W 合4=36 J ,0~6 s 内合力对物体做的功由动能定理可知:W 合6=12mv 26-0,又v 6=6 m/s ,得W 合6=36 J ,则W 合4=W 合6,D 正确. 答案:D1.(多选)(2019·第十九中学月考)将质量为m 的小球在距地面高度为h 处抛出,抛出时的速度大小为v 0.小球落到地面的速度大小为2v 0,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程,下面说法中正确的是( BC ) A .小球克服空气阻力做的功大于mgh B .重力对小球做的功等于mgh C .合外力对小球做的功大于mv 20 D .合外力对小球做的功等于mv 20解析:根据动能定理得:12m (2v 0)2-12mv 20=mgh -W f ,解得:W f =mgh -32mv 20<mgh ,故A 错误;重力做的功为W G =mgh ,B 正确;合外力对小球做的功W 合=12m (2v 0)2-12mv 20=32mv 20,C 正确,D 错误.2.(2018·某某、某某联考)如图所示,斜面AB 竖直固定放置,物块(可视为质点)从A 点静止释放沿斜面下滑,最后停在水平面上的C 点,从释放到停止的过程中克服摩擦力做的功为W .因斜面塌陷,斜面变成APD 曲面,D 点与B 在同一水平面上,且在B 点左侧.已知各接触面粗糙程度均相同,不计物块经过B 、D 处时的机械能损失,忽略空气阻力,现仍将物块从A 点静止释放,则(B )A .物块将停在C 点B .物块将停在C 点左侧C .物块从释放到停止的过程中克服摩擦力做的功大于WD .物块从释放到停止的过程中克服摩擦力做的功小于W解析:物块在斜面上滑动时,克服摩擦力做的功为W f =μmg cos θ·L ,物块在曲面上滑动时,做曲线运动,根据牛顿第二定律有:F N -mg cos θ=m v 2R,即F N >mg cos θ,故此时的滑动摩擦力f ′=μF N >μmg cos θ,且物块在曲面上滑过路程等于在斜面上滑过的路程L ,故物块在曲面上克服摩擦力做的功W ′f >W f =μmg cos θ·L ,根据动能定理可知,物块将停在C 点左侧,故A 错误,B 正确;从释放到最终停止,动能的改变量为零,根据动能定理可知,物块克服摩擦力做的功等于重力做的功,而两种情况下,重力做的功相同,物块从释放到停止的过程中克服摩擦力做的功等于W ,故C 、D 错误.3.如图所示,水平平台上有一个质量m =50 kg 的物块,站在水平地面上的人用跨过定滑轮的细绳向右拉动物块,细绳不可伸长.不计滑轮的大小、质量和摩擦.在人以速度v 从平台边缘正下方匀速向右前进x 的过程中,始终保持桌面和手的竖直高度差h 不变.已知物块与平台间的动摩擦因数μ=0.5,v =0.5 m/s ,x =4 m ,h =3 m ,g 取10 m/s 2.求人克服细绳的拉力做的功.解析:设人发生x 的位移时,绳与水平方向的夹角为θ,由运动的分解可得,物块的速度v 1=v cos θ由几何关系得cos θ=xh 2+x 2在此过程中,物块的位移s =h 2+x 2-h =2 m 物块克服摩擦力做的功W f =μmgs 对物块,由动能定理得W T -W f =12mv 21所以人克服细绳的拉力做的功W T =mv 2x 22(h 2+x 2)+μmgs =504 J.答案:504 J[A 组·基础题]1.(2016·某某卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( C ) A .动能增加了1 900 J B .动能增加了2 000 J C .重力势能减小了1 900 J D .重力势能减小了2 000 J2. 质量为10 kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1 m/s ,一切摩擦不计,则物体运动到x =16 m 处时,速度大小为( B )A .2 2 m/sB .3 m/sC .4 m/sD .17 m/s3. 如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,滑块经过的总路程是( A )A.1μ(v 202g cos θ+x 0tan θ) B .1μ(v 202g sin θ+x 0tan θ) C.2μ(v 202g cos θ+x 0tan θ)D .1μ(v 202g cos θ+x 0cot θ)4. 如图所示,质量为M =3 kg 的小滑块,从斜面顶点A 由静止沿ABC 下滑,最后停在水平面上的D 点,不计滑块从AB 面滑上BC 面以及从BC 面滑上CD 面时的机械能损失.已知AB =BC =5 m ,CD =9 m ,θ=53°,β=37°(sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2),在运动过程中,小滑块与所有接触面间的动摩擦因数相同.则( D )A .小滑块与接触面间的动摩擦因数μ=0.5B .小滑块在AB 面上运动的加速度a 1与小滑块在BC 面上运动的加速度a 2之比a 1a 2=53C .小滑块在AB 面上的运动时间小于小滑块在BC 面上运动时间D .小滑块在AB 面上运动时克服摩擦力做功小于小滑块在BC 面上运动时克服摩擦力做功 5.(多选) 某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示.则在此过程中( BD )A .物体所受的合力做功为mgh +12mv 2B .物体所受的合力做功为12mv 2C .人对物体做的功为mghD .人对物体做的功大于mgh6.(多选) 如图所示,竖直平面内固定着一个螺旋形光滑轨道,一个小球从足够高处落下,刚好从A 点进入轨道,则关于小球经过轨道上的B 点和C 点时,下列说法正确的是( ABC )A .轨道对小球不做功B .小球在B 点的速度小于在C 点的速度C .小球在B 点对轨道的压力小于在C 点对轨道的压力D .改变小球下落的高度,小球在B 、C 两点对轨道的压力差保持不变7.(多选) (2016·某某卷)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( AB )A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g8.(多选) 如图所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地有( BD )A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的5倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能相同[B 组·能力题]9.(多选)(2019·某某实验中学期中)如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.下列说法正确的是( ABD )A .小船从A 点运动到B 点的全过程克服阻力做的功W f =fd B .小船经过B 点时的速度大小v 1=v 20+2m (Pt 1-fd )C .小船经过B 点时的速度大小v 1=2v 20+2m (Pt 1-fd )D .小船经过B 点时的加速度大小a =P m 2v 20+2m (Pt 1-fd )-fm 解析:小船从A 点运动到B 点过程中克服阻力做功:W f =fd ,故A 正确;小船从A 点运动到B 点,电动机牵引缆绳对小船做功:W =Pt 1 ,由动能定理有:W -W f =12mv 21-12mv 20,联立解得:v 1=v 20+2(Pt 1-fd )m,故B 正确,C 错误;设小船经过B 点时绳的拉力大小为F ,绳与水平方向夹角为θ,绳的速度大小为v ′,则P =Fv ′, v ′=v 1cos θ,F cos θ-f =ma ,联立解得:a =P m 2v 20+2m (Pt 1-fd )-fm ,故D 正确.A .在运动过程中滑块A 的最大加速度是2.5 m/s 2B .在运动过程中滑块B 的最大加速度是3 m/s 2C .滑块在水平面上运动的最大位移是3 mD .物体运动的最大速度为 5 m/s解析:假设开始时A 、B 相对静止,对整体根据牛顿第二定律,有F =2Ma ,解得a =F 2M =102×2=2.5 m/s 2;隔离B ,B 受到重力、支持力和A 对B 的静摩擦力,根据牛顿第二定律,f =Ma =2×2.5=5 N <μMg =6 N ,所以A 、B 不会发生相对滑动,保持相对静止,最大加速度均为2.5 m/s 2,故A 正确,B 错误;当F =0时,加速度为0,之后A 、B 做匀速运动,位移继续增加,故C 错误;F -x 图象包围的面积等于力F 做的功,W =12×2×10=10 J ;当F =0,即a =0时达到最大速度,对A 、B 整体,根据动能定理,有W =12×2Mv 2m -0;代入数据得:v m = 5 m/s ,故D 正确.11. 为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角θ=60°,长L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道D ,如图所示.现将一个小球从距A点高h =0.9 m 的水平台面上以一定的初速度v 0水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33.g 取10 m/s 2,求:(1)小球初速度的大小; (2)小球滑过C 点时的速率;(3)要使小球不离开轨道,则竖直圆轨道的半径应该满足什么条件. 解析:(1)小球开始时做平抛运动,有v 2y =2gh 代入数据解得v y =2gh =2×10×0.9 m/s =3 2 m/s 在A 点有tan θ=v yv x得v x =v 0=v ytan θ=323m/s = 6 m/s. (2)从水平抛出到C 点的过程中,由动能定理得mg (h +L 1sin θ)-μmgL 1cos θ-μmgL 2=12mv 2C -12mv 2代入数据解得v C =3 6 m/s.(3)小球刚刚过最高点时,重力提供向心力,有mg =m v 2R 112mv 2C =2mgR 1+12mv 2 代入数据解得R 1=1.08 m.当小球刚能到达与圆心等高处时,有 12mv 2C =mgR 2 代入数据解得R 2=2.7 m.当圆轨道与AB 相切时R 3=L 2·tan 60°=1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是0<R ≤1.08 m. 答案:(1) 6 m/s (2)3 6 m/s (3)0<R ≤1.08 m。
高考物理大一轮复习第五章第2讲动能定理及应用讲义含解析教科版一、动能1.定义:物体由于运动而具有的能. 2.公式:E k =12mv 2.3.单位:焦耳,1J =1N·m=1kg·m 2/s 2. 4.标矢性:动能是标量,动能与速度方向无关.5.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 12.二、动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W =ΔE k =E k2-E k1=12mv 22-12mv 12.3.物理意义:合力的功是物体动能变化的量度. 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图1所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).对物块有W G +W f1+W f2=12mv 2-12mv 02对小球有-2mgR +W f =12mv 2-12mv 02图1自测1 (2018·全国卷Ⅱ·14)如图2,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )图2A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功答案 A解析由题意知,W拉+W阻=ΔE k,W阻<0,则W拉>ΔE k,A项正确,B项错误;W阻与ΔE k的大小关系不确定,C、D项错误.自测2关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是( )A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体所受合外力一定为零答案 A自测3如图3所示,AB为14圆弧轨道,BC为水平直轨道,BC恰好在B点与AB相切,圆弧的半径为R,BC的长度也是R.一质量为m的物体与两个轨道间的动摩擦因数都为μ,它由轨道顶端A从静止开始下落,恰好运动到C处停止,重力加速度为g,那么物体在AB段克服摩擦力所做的功为( )图3A.μmgR2B.mgR2C.mgR D.(1-μ)mgR答案 D解析设物体在AB段克服摩擦力所做的功为W AB,物体从A到C的全过程,根据动能定理有mgR-W AB-μmgR=0,所以W AB=mgR-μmgR=(1-μ)mgR,故D正确.命题点一对动能定理的理解1.动能定理表明了“三个关系”(1)数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功.(2)因果关系:合外力做功是引起物体动能变化的原因.(3)量纲关系:单位相同,国际单位都是焦耳.2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题.当然动能定理也就不存在分量的表达式.例1(多选)如图4所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中( )图4A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功等于A的动能的增量C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和答案BD解析A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,B正确.A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B相对地的位移不相等,故二者做功不相等,C错误.对B应用动能定理W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确.根据功能关系可知,外力F 做的功等于A和B动能的增量与产生的内能之和,故A错误.变式1(多选)用力F拉着一个物体从空中的a点运动到b点的过程中,重力做功-3J,拉力F做功8J,空气阻力做功-0.5J,则下列判断正确的是( )A.物体的重力势能增加了3JB.物体的重力势能减少了3JC.物体的动能增加了4.5JD .物体的动能增加了8J 答案 AC解析 因为重力做功-3J ,所以重力势能增加3J ,A 正确,B 错误;根据动能定理W 合=ΔE k ,得ΔE k =-3J +8J -0.5J =4.5J ,C 正确,D 错误.命题点二 动能定理的基本应用1.应用流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)应用动能定理的关键在于准确分析研究对象的受力情况及运动情况,可以画出运动过程的草图,借助草图理解物理过程之间的关系.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理.(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验.例2 (多选)(2016·全国卷Ⅲ·20)如图5所示,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )图5A .a =2mgR -WmRB .a =2mgR -W mRC .N =3mgR -2WRD .N =2mgR -WR答案 AC解析 质点P 下滑过程中,重力和摩擦力做功,根据动能定理可得mgR -W =12mv 2,又a =v2R,联立可得a =2mgR -WmR,A 正确,B 错误;在最低点重力和支持力的合力充当向心力,根据牛顿第二定律可得N -mg =ma ,代入可得N =3mgR -2WR,C 正确,D 错误.例3 (2017·上海单科·19)如图6所示,与水平面夹角θ=37°的斜面和半径R =0.4m 的光滑圆轨道相切于B 点,且固定于竖直平面内.滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为零.已知滑块与斜面间动摩擦因数μ=0.25.(g 取10m/s 2,sin37°=0.6,cos37°=0.8)求:图6(1)滑块在C 点的速度大小v C ; (2)滑块在B 点的速度大小v B ; (3)A 、B 两点间的高度差h .答案 (1)2m/s (2)4.29 m/s (3)1.38m解析 (1)在C 点,滑块竖直方向所受合力提供向心力mg =mv C 2R解得v C =gR =2m/s(2)对B →C 过程,由动能定理得 -mgR (1+cos37°)=12mv C 2-12mv B 2解得v B =v C 2+2gR1+cos37°≈4.29m/s(3)滑块在A →B 的过程,由动能定理得mgh -μmg cos37°·hsin37°=12mv B 2-0代入数据解得h =1.38m.变式2 (2018·江西省新余市上学期期末)滑梯是幼儿园必备的一种玩具,它可以培养孩子坚定的意志和信心,可以培养孩子的勇敢精神.现有一滑梯,高处水平台面距地面高h =1.5m ,倾斜槽倾角为37°,下端为水平槽,长L =0.5m ,厚度不计.倾斜部分和水平部分用一忽略大小的圆弧连接,示意图如图7所示,一质量为20kg 的小孩由静止从高处水平台面沿倾斜槽下滑,当滑到水平槽末端时速度大小为v =2m/s.(结果保留两位小数,重力加速度g = 10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图7(1)若滑梯的倾斜槽和水平槽动摩擦因数相同,求出动摩擦因数μ的值;(2)若小孩滑到水平槽末端速度大于1m/s 时危险性较大,为了小孩能滑到水平槽且保证安全,将滑梯水平槽粗糙处理.[倾斜槽的动摩擦因数与(1)问中相同],请求出水平槽处理后的动摩擦因数μ1的取值范围. 答案 (1)0.52 (2)μ1≥0.82解析 (1)研究小孩的整个运动过程,利用动能定理:mgh -μmg cos37°×hsin37°-μmgL =12mv 2解得μ=0.52(2)为使小孩能安全到达水平槽的末端,则在水平槽的末端速度v ′应小于等于1m/s ,小孩到达斜槽末端的速度为v 1,利用动能定理,在倾斜槽上有mgh -μmg cos37°×h sin37°=12mv 12在水平槽上有12mv ′2-12mv 12=-μ1mgL联立得μ1=0.82 所以μ1≥0.82.命题点三 动能定理与图像问题的结合1.解决物理图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. (2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量. 2.图像所围“面积”的意义(1)v -t 图像:由公式x =vt 可知,v -t 图线与坐标轴围成的面积表示物体的位移. (2)a -t 图像:由公式Δv =at 可知,a -t 图线与坐标轴围成的面积表示物体速度的变化量. (3)F -x 图像:由公式W =Fx 可知,F -x 图线与坐标轴围成的面积表示力所做的功. (4)P -t 图像:由公式W =Pt 可知,P -t 图线与坐标轴围成的面积表示力所做的功. 例4 如图8甲所示,在倾角为30°的足够长的光滑斜面AB 的A 处连接一粗糙水平面OA ,OA 长为4m .有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 只在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10m/s 2,试求:图8(1)滑块运动到A 处的速度大小;(2)不计滑块在A 处的速率变化,滑块冲上斜面AB 的长度是多少? 答案 (1)52m/s (2)5m解析 (1)由题图乙知,在前2m 内,F 1=2mg ,做正功,在第3m 内,F 2=-0.5mg ,做负功,在第4m 内,F 3=0.滑动摩擦力f =-μmg =-0.25mg ,始终做负功,对于滑块在OA 上运动的全过程,由动能定理得F 1x 1+F 2x 2+fx =12mv A 2-0代入数据解得v A =52m/s.(2)对于滑块冲上斜面的过程,由动能定理得 -mgL sin30°=0-12mv A 2解得L =5m所以滑块冲上斜面AB 的长度L =5m.变式3 (2018·广东省深圳市上学期模拟)一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为E k0,与斜面间的动摩擦因数不变,则该过程中,物块的动能E k 与位移x 关系的图线是( )答案 C解析 小物块上滑过程,由动能定理得-(mg sin θ+μmg cos θ)x =E k -E k0,整理得E k =E k0-(mg sin θ+μmg cos θ)x ;设小物块上滑的最大位移大小为s ,小物块下滑过程,由动能定理得(mg sin θ-μmg cos θ)(s -x )=E k -0,整理得E k =(mg sin θ-μmg cos θ)s -(mg sin θ-μmg cos θ)x ,故只有C 正确.变式4 (2019·湖北省黄石市调研)用传感器研究质量为2kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6s 内物体的加速度随时间变化的关系如图9所示.下列说法正确的是( )图9A .0~6s 内物体先向正方向运动,后向负方向运动B .0~6s 内物体在4s 时的速度最大C .物体在2~4s 时的速度不变D .0~4s 内合力对物体做的功等于0~6s 内合力对物体做的功 答案 D解析 物体6s 末的速度v 6=12×(2+5)×2m/s-12×1×2m/s=6 m/s ,则0~6s 内物体一直向正方向运动,A 项错误;由题图可知物体在5s 末速度最大,为v m =12×(2+5)×2m/s=7 m/s ,B 项错误;由题图可知物体在2~4s 内加速度不变,做匀加速直线运动,速度变大,C 项错误;在0~4s 内由动能定理可知,W 合4=12mv 42-0,又v 4=12×(2+4)×2m/s=6 m/s ,得W 合4=36J,0~6s 内合力对物体做的功:W 合6=12mv 62-0,又v 6=6m/s ,得W 合6=36J .则W 合4=W 合6,D 项正确.命题点四 动能定理在多过程问题中的应用例5 (2018·河南省洛阳市上学期期中)如图10所示,光滑的轨道ABO 的AB 部分与水平部分BO 相切,轨道右侧是一个半径为R 的四分之一的圆弧轨道,O 点为圆心,C 为圆弧上的一点,OC 与水平方向的夹角为37°.现将一质量为m 的小球从轨道AB 上某点由静止释放.已知重力加速度为g ,不计空气阻力.(sin37°=35,cos37°=45)图10(1)若小球恰能击中C 点,求刚释放小球的位置距离BO 平面的高度; (2)改变释放点的位置,求小球落到轨道时动能的最小值. 答案 (1)4R 15 (2)3mgR2解析 (1)设小球经过O 点的速度为v 0,从O 点到C 点做平抛运动,则有R cos37°=v 0t ,R sin37°=12gt 2从A 点到O 点,由动能定理得mgh =12mv 02联立可得,刚释放小球的位置距离BO 平面的高度h =415R ; (2)设小球落到轨道上的点与O 点的连线与水平方向的夹角为θ,小球做平抛运动,R cos θ=v 0′t ′R sin θ=12gt ′2对此过程,由动能定理得mgR sin θ=E k -12mv 0′2解得E k =mgR (34sin θ+14sin θ)当sin θ=33时,小球落到轨道时的动能最小,最小值为E k =32mgR . 变式5 如图11所示,轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑,固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1m .质量m =0.2kg 的小物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5m/s ,g 取10 m/s 2.图11(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;(3)若物块能冲上曲面的最大高度h =0.2m ,求物块沿曲面上滑过程所产生的热量. 答案 (1)1.7J (2)3m/s (3)0.5J解析 (1)对小物块从B 点至压缩弹簧最短的过程,由动能定理得, -μmgs -W 克弹=0-12mv 02W 克弹=E p代入数据解得E p =1.7J(2)对小物块从B 点开始运动至返回B 点的过程,由动能定理得, -μmg ·2s =12mv B 2-12mv 02代入数据解得v B =3m/s(3)对小物块沿曲面的上滑过程, 由动能定理得-W 克f -mgh =0-12mv B 2产生的热量Q =W 克f =0.5J.1.在篮球比赛中,某位同学获得罚球机会,如图1,他站在罚球线处用力将篮球投出,篮球以约为1m/s 的速度撞击篮筐.已知篮球质量约为0.6kg ,篮筐离地高度约为3m ,忽略篮球受到的空气阻力,则该同学罚球时对篮球做的功大约为( )图1A .1JB .10JC .50JD .100J 答案 B解析 该同学将篮球投出时的高度约为h 1=1.8m ,根据动能定理有W -mg (h -h 1)=12mv 2,解得W =7.5J ,故选项B 正确.2.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,它落到地面时的速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A .mgh -12mv 2-12mv 02B .-12mv 2-12mv 02-mghC .mgh +12mv 02-12mv 2D .mgh +12mv 2-12mv 02答案 C解析 对物块从h 高处竖直上抛到落地的过程,根据动能定理可得mgh -W f =12mv 2-12mv 02,解得W f =mgh +12mv 02-12mv 2,选项C 正确.3.(2018·天津理综·2)滑雪运动深受人民群众喜爱.如图2所示,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )图2A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功一定为零D .机械能始终保持不变 答案 C解析 运动员从A 点滑到B 点的过程中速率不变,则运动员做匀速圆周运动,其所受合外力指向圆心,A 错误.如图所示,运动员受到的沿圆弧切线方向的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,B 错误.由动能定理知,运动员匀速下滑动能不变,合外力做功为零,C 正确.运动员下滑过程中动能不变,重力势能减小,机械能减小,D 错误.4.(2016·全国卷Ⅲ·16)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )A.s t 2B.3s 2t 2C.4s t 2D.8s t2 答案 A解析 动能变为原来的9倍,则质点的速度变为原来的3倍,即v =3v 0,由s =12(v 0+v )t 和a =v -v 0t 得a =s t2,故A 项正确.5.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图像是( )答案 A解析 小球做竖直上抛运动,设初速度为v 0,则v =v 0-gt小球的动能E k =12mv 2,把速度v 代入得E k =12mg 2t 2-mgv 0t +12mv 02 E k 与t 为二次函数关系.6.(多选)太阳能汽车是靠太阳能来驱动的汽车.当太阳光照射到汽车上方的光电板时,光电板中产生的电流经电动机带动汽车前进.设汽车在平直的公路上由静止开始匀加速行驶,经过时间t ,速度为v 时达到额定功率,并保持不变.之后汽车又继续前进了距离s ,达到最大速度v max .设汽车质量为m ,运动过程中所受阻力恒为f ,则下列说法正确的是( ) A .汽车的额定功率为fv maxB .汽车匀加速运动过程中,克服阻力做功为fvtC .汽车从静止开始到速度达到最大值的过程中,克服阻力所做的功为12mv max 2-12mv 2D .汽车从静止开始到速度达到最大值的过程中,合力所做的功为12mv max 2答案 AD7.(多选)(2019·山西省运城市质检)质量为m 的物体放在水平面上,它与水平面间的动摩擦因数为μ,重力加速度为g .用水平力拉物体,运动一段时间后撤去此力,最终物体停止运动.物体运动的v -t 图像如图3所示.下列说法正确的是( )图3A .水平拉力大小为F =m v 0t 0B .物体在3t 0时间内位移大小为32v 0t 0C .在0~3t 0时间内水平拉力做的功为12mv 02D .在0~3t 0时间内物体克服摩擦力做功的平均功率为12μmgv 0答案 BD解析 根据v -t 图像和牛顿第二定律可知F -μmg =m v 0t 0,故选项A 错误;由v -t 图像与坐标轴所围面积可知,在3t 0时间内的位移为x =12·3t 0·v 0=32v 0t 0,所以选项B 正确;在0~3t 0时间内由动能定理可知W -μmgx =0,故水平拉力做的功W =32μmgv 0t 0,又f =μmg =mv 02t 0,则W =34mv 02,选项C 错误;0~3t 0时间内克服摩擦力做功的平均功率为P =W f 3t 0=12μmgv 0,所以选项D 正确.8.(多选)(2018·安徽省蚌埠市一质检)如图4所示,B 、M 、N 分别为竖直光滑圆轨道的右端点、最低点和左端点,B 点和圆心等高,N 点和圆心O 的连线与竖直方向的夹角为α=60°.现从B 点的正上方某处A 点由静止释放一个小球,经圆轨道飞出后以水平速度v 通过C 点,已知圆轨道半径为R ,v =gR ,重力加速度为g ,则以下结论正确的是(不计空气阻力)( )图4A .C 、N 的水平距离为3RB .C 、N 的水平距离为2RC .小球在M 点对轨道的压力为6mgD .小球在M 点对轨道的压力为4mg 答案 AC解析 小球从N 到C 的过程可看做逆方向的平抛运动,则v N cos α=v 、v N sin α=gt 、x CN =vt ,解得v N =2v =2gR 、x CN =3R ,故A 项正确,B 项错误;小球从M 到N 的过程由动能定理可得,-mg (R -R cos α)=12mv N 2-12mv M 2,小球在M 点时,由牛顿第二定律可得,N M -mg =m v M2R ,解得N M =6mg ,根据牛顿第三定律可得,小球在M 点对轨道的压力为6mg ,故C 项正确,D 项错误.9.(2017·全国卷Ⅱ·24)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别设置一个挡板和一面小旗,如图5所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1.重力加速度为g .求:图5(1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度.答案 (1)v 02-v 122gs 0 (2)s 1v 0+v 122s 02解析 (1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得 -μmgs 0=12mv 12-12mv 02①解得μ=v 02-v 122gs 0②(2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小.设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得v 02-v 12=2a 1s 0③ v 0-v 1=a 1t ④ s 1=12a 2t 2⑤联立③④⑤式得a 2=s 1v 1+v 022s 02⑥10.(2017·河北省唐山市模拟)如图6所示,装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度x =5m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30m 、h 2=1.35m .现让质量为m 的小滑块(可视为质点)自A 点由静止释放.已知小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求:图6(1)小滑块第一次到达D 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔;(3)小滑块最终停止的位置距B 点的距离. 答案 (1)3m/s (2)2s (3)1.4m 解析 (1)小滑块从A →B →C →D 过程中, 由动能定理得mg (h 1-h 2)-μmgx =12mv D 2-0代入数据解得v D =3m/s. (2)小滑块从A →B →C 过程中, 由动能定理得mgh 1-μmgx =12mv C 2代入数据解得v C =6m/s小滑块沿CD 段上滑的加速度大小a =g sin θ=6m/s 2小滑块沿CD 段上滑到最高点的时间t 1=v C a=1s由对称性可知小滑块从最高点滑回C 点的时间t 2=t 1=1s 故小滑块第一次与第二次通过C 点的时间间隔t =t 1+t 2=2s.(3)设小滑块在水平轨道上运动的总路程为x 总,对小滑块运动全过程应用动能定理有mgh 1-μmgx 总=0代入数据解得x 总=8.6m ,故小滑块最终停止的位置距B 点的距离为:2x -x 总=1.4m. 11.(2018·湖北省黄冈市检测)某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1kg ,通电后以额定功率P =1.5W 工作,进入竖直轨道前受到的阻力恒为0.3N ,随后在运动中受到的阻力均可不计.图中L =10.00m ,R =0.32m ,h =1.25m ,s =1.50m .问:要使赛车完成比赛,电动机至少工作多长时间?(取g =10m/s 2)图7答案 2.5s解析 赛车通过圆轨道最高点的最小速度为v 1′,根据牛顿第二定律得,mg =m v 1′2R,得v 1′=gR根据动能定理得,由B 点至圆轨道最高点有-mg ·2R =12mv 1′2-12mv 12解得v 1=4m/s为保证赛车通过最高点,到达B 点的速度至少为v 1=4m/s 根据h =12gt 2得,t =2hg =0.5s则平抛运动的初速度v 2=s t=3m/s为保证赛车能越过壕沟,则到达B 点的速度至少为v 2=3m/s 因此赛车到达B 点的速度至少为v =v 1=4m/s 从A 到B 对赛车由动能定理得Pt -fL =12mv 2解得t ≈2.5s.。
第2讲 动能 动能定理知识排查动能1.定义:物体由于运动而具有的能叫动能。
2.公式:E k =12m v 2。
3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。
4.矢标性:动能是标量,只有正值。
5.状态量:动能是状态量,因为v 是瞬时速度。
动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
2.表达式:W =12m v 22-12m v 21或W =E k2-E k1。
3.物理意义:合外力的功是物体动能变化的量度。
4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以间断作用。
5.应用动能定理解决的典型问题大致分为两种(1)单一物体的单一过程或者某一过程;(2)单一物体的多个过程。
动能定理由于不涉及加速度和时间,比动力学研究方法要简便。
小题速练1.思考判断(1)物体的动能不变,所受合外力一定为零( )(2)物体在合外力作用下做变速运动,动能一定变化( )(3)动能不变的物体,一定处于平衡状态( )(4)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化( )(5)如果物体所受的合外力不为零,那么合外力对物体做功一定不为零()答案(1)×(2)×(3)×(4)√(5)×2.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。
他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。
韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J解析由题可得,重力做功W G=1 900 J,则重力势能减少1 900 J ,故选项C 正确,D错误;由动能定理得,W G-W f=ΔE k,克服阻力做功W f=100 J,则动能增加1 800 J,故选项A、B错误。
第2讲 动能和动能定理【课程标准】 1.理解动能和动能定理。
2.能用动能定理解释生产生活中的现象。
【素养目标】物理观念:了解动能的概念和动能定理的内容。
科学思维:会用动能定理分析曲线运动、多过程运动问题。
一、动能 定义 物体由于运动而具有的能公式 E k =21mv 2矢标性 动能是标量,只有正值,动能与速度方向无关状态量 动能是状态量,因为v 是瞬时速度 相对性 由于速度具有相对性,所以动能也具有相对性动能的 变化物体末动能与初动能之差,即ΔE k =12 mv 22 -12mv 21 。
动能的变化是过程量命题·生活情境滑滑梯是小朋友的乐趣所在,如图所示为一滑梯的实物图,水平段与斜面段平滑连接。
某小朋友从滑梯顶端由静止开始滑下,经斜面底端后水平滑行一段距离,停在水平滑道上。
整个过程小朋友的动能如何变化? 提示:先增大后减小,最后变为0。
二、动能定理命题·科技情境荷兰埃因霍芬理工大学的太阳能团队研发出一款太阳能房车,车顶上配有一个8.8平方米的太阳能电池板,搭配60 kW·h的锂离子电池,最高时速可达120 km。
在晴朗的阳光下,该车一天可以行驶约730 km,而在电池充满电后,夜间行驶的续航里程也可以达到600 km。
(1)该款房车的能量转化关系是什么?提示:太阳能转化为电能,电能转化为动能和内能。
(2)若该款房车的质量为m,以恒定功率P启动,经时间t速度达到最大v,则房车受到的阻力在此过程中做的功是多少?提示:12mv2-Pt。
角度1 动能(1)质量大的物体,动能一定大。
( ×)(2)速度方向变化,物体的动能一定变化。
( ×)(3)动能不变的物体一定处于平衡状态。
( ×)角度2 动能定理(4)如果物体所受的合外力不为零,那么合外力对物体做的功一定不为零。
( ×)(5)合外力做功是物体动能变化的原因。
( √ ) (6)动能定理只适用于同时作用的力做功。