递归算法与递归程序
- 格式:doc
- 大小:488.50 KB
- 文档页数:19
C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
递归树
递归树的结点有两个域,如下图:
T(size)指问题大小为size时,函数的复杂度。
nonrec.cost指问题大小为size时的非递归代价。
根结点的每个子结点都代表了这个问题分拆的一个子问题的复杂度。
就这样递归地分解问题。
一直到达叶子结点,也就是base-case.在前面的讨论中,我们没有涉及base-case,在使用递归树分析复杂度时,我们假设base-case的复杂度为1。
举一个例子就可以很明白的说明如何构造递归树。
Example1: 由递归方程T(n)=2T(n/2)+n构造递归树
首先,构造根接点
它的子结点是
……,以此类推。
所以,最后的递归树为:
递归树规则:
根结点的复杂度=所有非叶结点的非递归复杂度+叶子结点的复杂度。
所以,在上面的例子中,每层的非递归复杂度为n,而base-case出现在大约lgn 层(n/2^d =1;d = lgn)。
由于base-case的复杂度为1,所以T(n)≈nlgn,即递归树是分析和计算递归方程的一个重要工具。
它可以直观地表示出递归函数的复杂度,并使人易于理解。
【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
2、简答题:1.算法需要满足哪些性质?简述之。
算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。
2)输出:算法产生至少一个量作为输出。
3)确定性:组成算法的每条指令清晰、无歧义。
4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
2)用递推来实现递归函数。
3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。
1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
c语言九连环← 递归程序算法描述一、概述九连环是一种经典的益智游戏,通过递归的方式可以有效地解决该问题。
本文档将详细描述如何使用C语言实现九连环的递归算法。
二、问题描述九连环是一个由9个环相连构成的环状结构,要求通过递归的方式求解九连环的解法。
每个环可以取下来再重新放上去,每次只能将相邻的两个环取下或放上,目标是找出一种方法将所有环都正确放置。
三、算法设计递归是一种解决问题的有效方法,可以解决九连环问题。
通过递归的方式,我们可以将九连环分解为两个部分:当前环和其它八个环。
当当前环放置好时,就可以将其取下来并处理其它八个环,这就是递归的基本思想。
具体的算法流程如下:1. 判断当前环是否能够放置到正确的位置上,如果不能则返回错误信息;2. 将当前环取下来,并递归处理其它八个环;3. 将当前环重新放置到正确的位置上;4. 返回当前环的状态信息。
四、代码实现以下是一个使用C语言实现九连环递归算法的示例代码:```c#include <stdio.h>#include <stdlib.h>#define MAX_NUMBER 9 // 九连环的最大环数#define MAX_SIZE 100 // 存储状态的数组大小// 存储状态的数组int state[MAX_NUMBER][MAX_SIZE];// 递归函数,求解九连环的解法int solve(int num, int pos, int size) {// 边界条件:当只有一个环时,已经成功放置了if (num == 1) {return 1;}// 当前环无法放置到正确位置上,返回错误信息if (state[num-1][pos] == -1) {return -1;}// 将当前环取下来,并处理其它八个环int ret = solve(num-1, pos+1, size); // pos+1表示下一个位置可以放置当前环if (ret == -1) { // 如果无法放置其它八个环,则返回错误信息return -1;} else { // 否则将当前环重新放置到正确位置上,并返回当前环的状态信息state[num-1][pos] = ret; // 将当前环的状态标记为已放置return ret+1; // 返回当前环的状态信息(已放置)}}int main() {// 初始化状态数组,表示每个位置上是否有环以及是否成功放置了for (int i = 0; i < MAX_NUMBER; i++) {for (int j = 0; j < MAX_SIZE; j++) {state[i][j] = -1; // 初始状态为未放置状态(-1)或错误状态(-2)}}// 设置第一个环成功放置的状态为已放置状态(0)和下一个位置可以放置下一个环的状态为已放置状态(1)state[0][0] = 0; // 第一个环成功放置状态为已放置状态(0)state[0][9] = 1; // 下一个位置可以放置下一个环的状态为已放置状态(1)// 通过递归求解九连环的解法,并输出结果信息(已放置的环数)int count = solve(MAX_NUMBER, 0, MAX_SIZE); // 从第一个位置开始求解九连环的解法,输出已放置的环数即可得到最终结果信息(即成功的解法) printf("成功解法:%d\n", count); // 将已放置的环数输出即可得到最终结果信息(即成功的解法)return 0;}```五、总结本文档详细描述了如何使用C语言实现九连环的递归算法,通过递归的方式将九连环分解为两个部分:当前环和其它八个环,并实现了相应的代码实现。
C语言中的递归程序可以用非递归算法实现吗C语言中的递归程序可以用非递归算法来实现。
递归是一种使用函数自身调用的编程技巧,通过将一个问题拆分成更小的子问题来解决。
然而,递归在处理大规模问题或者嵌套过深的情况下会导致栈溢出,并且递归调用的开销较大。
因此,一些复杂的递归程序可以通过非递归算法来重新实现,以降低开销和避免栈溢出。
一种常见的非递归替代方法是使用循环结构和栈数据结构来模拟递归函数的行为。
栈的数据结构可以保存每次递归调用过程中的参数和局部变量,从而避免函数调用的开销。
下面以经典的阶乘函数为例,展示如何将递归程序转化为非递归算法。
递归版阶乘函数:```cint factorial(int n)if (n == 0)return 1;} elsereturn n * factorial(n-1);}```非递归版阶乘函数:```cint factorial(int n)int result = 1;while (n > 0)result *= n;n--;}return result;```这个非递归版本的阶乘函数使用了一个循环来迭代计算乘法,并使用一个变量 `result`来保存当前的结果。
每次迭代,`n` 减1,并将当前结果乘以 `n`,直到 `n` 为0。
类似的,其他的递归函数也可以通过类似的方式来转化为非递归版本。
需要注意的是,非递归版本通常需要额外的变量来保存中间结果,并使用循环结构来模拟函数的递归调用过程。
通过将递归程序转化为非递归算法,可以避免栈溢出和函数调用开销,从而提高程序的效率和性能。
但是非递归算法通常会增加代码的复杂度和可读性,因此开发者在选择使用递归还是非递归算法时应该权衡这些因素。
总而言之,C语言中的递归程序可以通过非递归算法来实现。
通过使用循环结构和栈数据结构,可以模拟递归函数的行为,并避免由于递归调用导致的栈溢出和函数调用开销。
但是需要注意的是,非递归算法可能会增加代码的复杂度和可读性,开发者需要在性能和代码清晰度之间进行权衡。
一、教学目标1、知识与技能(1).认识递归现象。
(2).使用递归算法解决问题往往能使算法的描述乘法而易于表达(3).理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。
(4).认识递归算法往往不是高效的算法。
(5).了解递归现象的规律。
(6).能够设计递归程序解决适用于递归解决的问题。
(7).能够根据算法写出递归程序。
(8).了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。
2、方法与过程本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。
然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。
最后用子过程解决汉诺塔的经典问题。
3、情感态度和价值观结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。
二、重点难点1、教学重点(1)了解递归现象和递归算法的特点。
(2)能够根据问题设计出恰当的递归程序。
2、教学难点(1)递归过程思路的建立。
(2)判断问题是否适于递归解法。
(3)正确写出递归程序。
三、教学环境1、教材处理教材选自《广东省普通高中信息技术选修一:算法与程序设计》第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。
然后利用子过程解决汉诺塔的经典问题。
教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。
然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。
最后用子过程解决汉诺塔的经典问题。
教学方法采用讲解、探究、任务驱动和学生自主学习相结合2、预备知识学生已掌握了用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。
3、硬件要求建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。
4、所需软件学生机要安装VB6.0或以上版本。
5、所需课时2课时(90分钟)四、教学过程导入:大家玩汉诺塔游戏:图4-5(1)汉诺塔游戏的部分界面这个游戏盘子在A、B、C三根柱子上不停运动,有没有规律,和你在照过镜子时遇到的情况相同吗?当你往镜子前面一站,镜子里面就有一个你的像。
但你试过两面镜子一起照吗?如果甲、乙两面镜子相互面对面放着,你往中间一站,嘿,两面镜子里都有你的千百个“化身”!为什么会有这么奇妙的现象呢?原来,甲镜子里有乙镜子的像,乙镜子里也有甲镜子的像,而且这样反反复复,就会产生一连串的“像中像”。
这是一种递归现象。
由同学们总结出递归算法的概念递归算法:是一种直接或者间接地调用自身的算法。
在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
4-16:著名的意大利数学家斐波那契(Fibonacci)在他的著作《算盘书》中提出了一个“兔子问题”:假定小兔子一个月就可以长成大兔子,而大兔子每个月都会生出一对小兔子。
如果年初养了一对小兔子,问到年底时将有多少对兔子? (当然得假设兔子没有死亡而且严格按照上述规律长大与繁殖)我们不难用以前学过的知识设计出如下算法:①输入计算兔子的月份数:n②If n < 3 Then c = 1 Else a = 1: b = 1③i = 3④ c = a + b:a = b:b = c⑤i=i+1,如果i≤n则返回④⑥结束参考程序如下:Private Sub Command1_Click()n = Val(Text1.Text)If n < 3 Then c = 1 Else a = 1: b = 1For i = 3 To nc = a + ba = bb = cNext iText2.Text = "第" & n & "月的兔子数目是:" & cEnd Sub图4-5(2)斐波那契兔子程序运行结果图开动脑筋:我们有没有更简单的方法解决该问题呢?4.5.1 从斐波那契的兔子问题看递归算法1.斐波那契的兔子问题子(1)分析问题。
我们可以根据题意列出表4-3来解决这个问题:表4—3兔子问题分析表这个表格虽然解决了斐波那契的兔子问题(年底时兔子的总数是144只),但仔细观察一下这个表格,你会发现兔子的数目增长得越来越快,如果时间再长,只用列表的方法就会有困难。
(例如,你愿意用列表的方法求出5年后兔子的数目吗?)我们需要研究表中的规律,找出一般的方法,去解决这个问题。
交流仔细研究表4-8,你有些什么发现?每一个月份的大兔数、小兔数与上一个月的数字有什么联系,能肯定这个规律吗?恭喜你,你快成功了?(2)设计算法。
“兔子问题”很容易列出一条递推式而得到解决。
假设第N个月的兔子数目是F(N),我们有:这是因为每月的大兔子数目一定等于上月的兔子总数,而每个月的小兔子数目一定等于上月的大兔子数目(即前一个月的兔子的数目)。
由上述的递推式我们可以设计出递归程序。
递归程序的特点是独立写出一个函数(或子过程),而这个函数只对极简单的几种情况直接给出解答,而在其余情况下通过反复的调用自身而把问题归结到最简单的情况而得到解答。
空中加油站:自定义函数的定义格式:Function procedurename(arguments) [As type]StatementsEnd Function其中的procedurename是函数名,arguments是函数中的参数表,type是函数返回值的数据类型,[]表示可有可无的部分,statements是过程中的代码调用函数的格式:procedurename(arguments)(3)编写程序。
窗体中开设一个文本框Textl用于填人月数N,设置命令框Commandl,点击它即执行程序求出第N月的兔子数。
然后用文本框Text2输出答案。
根据递推式可以写出递归程序如下:Function Fib(ByVal N As Integer) As Long文本框2 If N < 3 Then Fib = 1 Else Fib = Fib(N - 1) + Fib(N - 2)End FunctionPrivate Sub Command1_Click()N = Val(Text1.Text)Text2.Text = "第" & N & "月的兔子数目是:" & Fib(N)End Sub(4)调试程序因为这个算法的效率不高,建议在调试程序时月份数不要大于40。
图4-5(4)斐波那契兔子程序运行结果图(5)检测结果挑战自我:(以下部分由学生自己完成)(1)利用递归方法编写一求N的阶乘。
分析:根据N!=N*(N-1)*(N-2)*(N-3)*……*3*2*1可以推出下列式子:这是一个典型的递归算法,参考程序如下:Function F(ByVal n As Integer) As LongIf n = 1 Then F = 1 Else F = n * F(n - 1)End FunctionPrivate Sub Form_Click()Dim n As Integern = Val(InputBox("请输入正整数N:", "求N的阶乘")) Print "输入的正整数是"; n;Print ",阶乘是"; F(n)End Sub图4-5(5)求阶乘程序的运行结果图(2)对一正整数N,用数字l和2组成一条加法算式,使其和为N,共可以列出多少条不同的式子?(“l+2”和“2+1”看作是不同的式子)。
算法设计:假设和为N时可列式子的方法数是F(N),那么第一个加数可选择1或2。
当第一个加数为1时剩下加数的和为N一1,故方法数为F(N一1);当第一个加数为2时,剩下加数的和为N-2,故方法数为F(N-2)。
于是可以得到如下式子:这是一个典型的递归算法,参考程序如下:参考程序如下:Function F(ByVal n As Integer) As LongIf n <= 2 Then F = n Else F = F(n - 1) + F(n - 2)End FunctionPrivate Sub Form_Click()Dim n As Integern = Val(InputBox("请输入正整数N:", "输入式子的总和"))Print "当总和是"; n; "时"Print "可以列出不同的由1和2组成的加法式子"; F(n); "条"End Sub图4-5(6)书上P137练习2程序运行结果图(3)罗光明在上楼梯时,有时一步一级楼梯,有时一步两级。
如果楼梯有N级,他上完这N级楼梯有多少种不同的方法?设计算法假设楼梯级数为N时的方法数是F(N),那么第一步可选择1或2级楼梯。
当第一步为1级时剩下楼梯的级数为N-1,故方法数为F(N-1);当第一步为2级时,剩下楼梯的级数为N-2,故方法数为F(N-2)。
于是可以得到如下式子:这是一个典型的递归算法,参考程序如下:程序如下:Function F(ByVal n As Integer)As LongIf n<=2 Then F=n Else F=F(n-1)+F(n-2)End Functi 0nPrivate Sub Form_Click()Dim n As Integern=Val(InputBox("请输入楼梯级数N:","输人楼梯级数"))Print "当楼梯级数";n;"时,"Print "可以有";F(n);"种不同的上楼梯方法。
"End Sub同学们比较一下你们所做的练习(2)和(3)的程序代码,不知同学们有没有发现一个有趣的现象?为什么会这样?本节小结:递归算法的特点递归过程一般通过函数或子过程来实现。